首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The flight muscle of adult desert locusts, Schistocerca gregaria, contains a fatty acid binding protein (FABP) that is homologous to mammalian M-FABP (cardiac FABP). In spite of the evolutionary distance between invertebrates and vertebrates, locust muscle FABP is similar to cardiac FABP in its amino acid sequence, structure, and binding behavior. While cardiac FABP is present already in the prenatal period, locust FABP is an adult specific protein; its expression is directly linked to metamorphosis. A correlation seems to exist between fatty acid oxidative capacity and FABP content in both locust and mammals. To accomplish the higher metabolic rate encountered during migratory flight, locust flight muscle cytosol contains more than three times as much FABP as that in mammalian heart. Increased fatty acid utilization by exercise or endurance training apparently induces FABP expression. Similarities and differences between vertebrate and invertebrate M-FABP are discussed in light of the proposed functions of muscle FABP as fatty acid transporter and cytoprotectant.  相似文献   

5.
The amino acid sequence of the fatty acid binding protein (FABP) from flight muscle of the locust, Schistocerca gregaria, has been determined. The sequence of the N-terminal 39 amino acid residues, determined by automated Edman degradation, was used to prepare a degenerate oligonucleotide that corresponded to amino acid residues 16-23. cDNA coding for FABP was constructed from flight muscle mRNA and amplified by the polymerase chain reaction using the degenerate oligonucleotide and an oligo dT-NotI primer adapter as primers. The amplification product was cloned and sequenced. Additionally, a cDNA library of flight muscle mRNA was prepared and screened with a 414-bp probe prepared from the clone. The primary structure of locust FABP was compared with the proteins in the Swiss protein databank and found to have significant homology with mammalian FABPs over the entire 133-residue sequence. The best match was versus human heart FABP (41% identity), attesting to the highly conserved nature of this protein. The results suggest that locust muscle FABP is a member of the lipid binding protein superfamily and may provide valuable insight into the evolution of this abundant protein class.  相似文献   

6.
7.
Since insect flight muscles are among the most active muscles in nature, their extremely high rates of fuel supply and oxidation pose interesting physiological problems. Long-distance flights of species like locusts and hawkmoths are fueled through fatty acid oxidation. The lipid substrate is transported as diacylglycerol in the blood, employing a unique and efficient lipoprotein shuttle system. Following diacylglycerol hydrolysis by a flight muscle lipoprotein lipase, the liberated fatty acids are ultimately oxidized in the mitochondria. Locust flight muscle cytoplasm contains an abundant fatty acid-binding protein (FABP). The flight muscle FABP ofLocusta migratoria is a 15 kDa protein with an isoelectric point of 5.8, binding fatty acids in a 1:1 molar stoichiometric ratio. Binding affinity of the FABP for longchain fatty acids (apparent dissociation constant Kd=5.21±0.16 M) is however markedly lower than that of mammalian FABPs. The NH2-terminal amino acid sequence shares structural homologies with two insect FABPs recently purified from hawkmoth midgut, as well as with mammalian FABPs. In contrast to all other isolated FABPs, the NH2 terminus of locust flight muscle FABP appeared not to be acetylated. During development of the insect, a marked increase in fatty acid binding capacity of flight muscle homogenate was measured, along with similar increases in both fatty acid oxidation capacity and citrate synthase activity. Although considerable circumstantial evidence would support a function of locust flight muscle FABP in intracellular uptake and transport of fatty acids, the finding of another extremely well-flying migratory insect, the hawkmothAcherontia atropos, which employs the same lipoprotein shuttle system, however contains relatively very low amounts of FABP in its flight muscles, renders the proposed function of FABP in insect flight muscles questionable.  相似文献   

8.
9.
In migrating lepidopteran and orthopteran insects, lipid is the preferred fuel for sustained flight activity. Diacylglycerol is delivered by lipophorin to the flight muscle and hydrolyzed to free fatty acid and glycerol. After penetrating the plasma membrane by an unknown mechanism, fatty acids are bound by the intracellular fatty acid binding protein (FABP) and transported through the cytosol. After their conversion to acyl-CoA esters, the fatty acids enter the mitochondrial matrix via the carnitine shuttle for subsequent β-oxidation. This article reviews the current knowledge of lipid metabolism in insect flight muscle, with particular emphasis on the structure and function of FABP and its expression during locust development and flight.  相似文献   

10.
11.
12.
13.
The muscle-specific promoter of the dystrophin gene is active in skeletal, cardiac, and smooth muscles and is specifically stimulated during differentiation of myoblasts into multinucleated myotubes. An 850-base pair (bp) DNA fragment upstream from the cap site is able to confer a partial muscle specificity to a reporter gene. The region between -850 and -140 bp includes nonspecific negative and positive regulatory sequences. A continuous stretch of 140 bp upstream from the cap site exhibits a striking conservation between rodents and human (93% homology) and still retains muscle preference of expression. It contains two putative binding sites for factors involved in regulation of other muscle-specific genes, a CCArGG box and an E box. This latter element, however, is unable to confer the ability to be transactivated by MyoD1 to the dystrophin promoter. The -140-bp promoter fragment exhibits antagonist effects contributed by one inhibiting sequence (nucleotide -140/-96), active in all cell types, and one activating region, from nucleotide -96 to the cap site, sufficient to confer a muscle preference of expression, in which the CCArGG box seems to play a major role.  相似文献   

14.
15.
16.
Intracellular lipid-binding proteins have evolved from a common ancestral gene with the appearance of mitochondrial oxidation, to guarantee, for example, transport of fatty acids through the aqueous cytosol to their site of utilization. The mammalian forms of these lipid carriers are structurally well-characterized and have been categorized, on the basis of sequence similarities and several typical ligand-binding features, into four subfamilies. Only a single complex structure of an invertebrate fatty-acid-binding protein (FABP) has been reported to date, which reveals a unique ligand-binding arrangement yet unknown in vertebrate FABPs. In the present study, the structure of a second invertebrate FABP (locust muscle) complexed with a fatty acid has been determined on the basis of intermolecular NOE connectivities between the protein and the uniformly (13)C-enriched oleate ligand. The resulting ligand conformation, although resembling the closely related mammalian heart- and adipocyte-type FABPs, is characterized by certain binding features that differ significantly from the typical hairpin-turn ligand shapes of the latter forms. This is primarily due to an alanine-to-leucine substitution in locust FABPs that produces a steric hindrance for ligand binding. A comparison with an FABP from tobacco hornworm larvae furthermore demonstrates that certain amino acid substitutions that appear to be specific for invertebrates decidedly influence the binding arrangement inside the protein cavity. Hence, as a result of these evolutionary variations, invertebrate FABPs may display a much greater diversity in intracellular lipid binding than observed for the mammalian transport proteins, thus possibly providing new insights for the design of modified lipid carriers.  相似文献   

17.
18.
19.
M-FABP from flight muscle of the locust,Schistocerca gregaria, is similar to mammalian H-FABP in its physical characteristics and amino acid sequence. We have studied developmental changes using ELISA, Northern Blotting, and EM/immuno-gold techniques. M-FABP is found in cytoplasm and nuclei, but not in mitochondria. It is the most abundant soluble muscle protein in fully developed adult locusts, comprising 18% of the total cytosolic protein. However, no FABP is detectable at the beginning of the adult stage. Its concentration rises dramatically during the next 10 days, after which it reaches its maximal value. Expression apparently is turned on after adult ecdysis and continues for 10 days; thereafter, FABP mRNA diminishes and reaches a constant, but low level, probably needed to maintain the current FABP level. From a series of experiments employing metamorphosis-controlling hormones and antihormones it is evident that the induction of FABP expression is directly linked to metamorphosis.Abbreviations ELISA Enzyme Linked Immuno Sorbent Assay - FABP Fatty Acid-Binding Protein - H-FABP mammalian Heart Fatty Acid-Binding Protein - M-FABP locust flight Muscle Fatty Acid-Binding Protein  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号