首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Excess alcohol consumption during pregnancy has been acknowledged to increase the incidence of congenital disorders, especially the cardiovascular system. However, the mechanism involved in ethanol-induced cardiac malformation in prenatal fetus is still unknown. We demonstrated that ethanol exposure during gastrulation in the chick embryo increased the incidence of cardia bifida. Previously, we reported that autophagy was involved in heart tube formation. In this context, we demonstrated that ethanol exposure increased ATG7 and LC3 expression. mTOR was found to be inhibited by ethanol exposure. We activated autophagy using exogenous rapamycin (RAPA) and observed that it induced cardiac bifida and increased GATA5 expression. RAPA beads implantation experiments revealed that RAPA restricted ventricular myosin heavy chain (VMHC) expression. In vitro explant cultures of anterior primitive streak demonstrated that both ethanol and RAPA treatments could reduce cell differentiation and the spontaneous beating of cardiac precursor cells. In addition, the bead experiments showed that RAPA inhibited GATA5 expression during heart tube formation. Semiquantitative RT-PCR analysis indicated that BMP2 expression was increased while GATA4 expression was suppressed. In the embryos exposed to excess ethanol, BMP2, GATA4 and FGF8 expression was repressed. These genes are associated with cardiomyocyte differentiation, while heart tube fusion is associated with increased Wnt3a but reduced VEGF and Slit2 expression. Furthermore, the ethanol exposure also caused the production of excess ROS, which might damage the cardiac precursor cells of developing embryos. In sum, our results revealed that disrupting autophagy and excess ROS generation are responsible for inducing abnormal cardiogenesis in ethanol-treated chick embryos.  相似文献   

2.
骨形态发生蛋白-7(BMP-7)是具有强诱骨活性的蛋白质因子,已通过基因工程技术在体外得到表达,较长时间以来不断被应用于骨损伤疾病的研究,得到了确切的治疗效果。通过载体将BMP-7基因转入真核细胞,与生物聚合载体复合后植入体内,能表达并分泌活性的BMP-7,诱导骨细胞的生成,促进骨组织的修复,成为一种新的有效的治疗手段。  相似文献   

3.
Adeno-associated virus (AAV) is so far the most valuable vehicle for gene therapy because it has no association with immune response and human disease. The present study was conducted to investigate the feasibility of AAV-mediated BMP4 gene transfer for bone formation. In vitro study suggested that AAV-BMP4 vectors could transduce myoblast C2C12 cells and produce osteogenic BMP4. In vivo study demonstrated that new bone formation could be induced by direct injection of AAV-BMP4 into the skeletal muscle of immunocompetent rats. Histological analysis revealed that the newly formed bone was induced through endochondral mechanism. Immunohistochemical staining further demonstrated that AAV-BMP4 gene delivery could mediate long-term transduction, and the involvement of BMP4 expression was responsible for the endochondral ossification. This study is, to our knowledge, the first report in the field of AAV-based BMP gene transfer and should be promising for clinical orthopaedic applications.  相似文献   

4.
In EAE (experimental autoimmune encephalomyelitis), agonists of PPARs (peroxisome proliferator-activated receptors) provide clinical benefit and reduce damage. In contrast with PPARγ, agonists of PPARδ are more effective when given at later stages of EAE and increase myelin gene expression, suggesting effects on OL (oligodendrocyte) maturation. In the present study we examined effects of the PPARδ agonist GW0742 on OPCs (OL progenitor cells), and tested whether the effects involve modulation of BMPs (bone morphogenetic proteins). We show that effects of GW0742 are mediated through PPARδ since no amelioration of EAE clinical scores was observed in PPARδ-null mice. In OPCs derived from E13 mice (where E is embryonic day), GW0742, but not the PPARγ agonist pioglitazone, increased the number of myelin-producing OLs. This was due to activation of PPARδ since process formation was reduced in PPARδ-null compared with wild-type OPCs. In both OPCs and enriched astrocyte cultures, GW0742 increased noggin protein expression; however, noggin mRNA was only increased in astrocytes. In contrast, GW0742 reduced BMP2 and BMP4 mRNA levels in OPCs, with lesser effects in astrocytes. These findings demonstrate that PPARδ plays a role in OPC maturation, mediated, in part, by regulation of BMP and BMP antagonists.  相似文献   

5.
Cell responses to bone morphogenetic proteins (BMP) depend on the expression and surface localisation of transmembrane receptors BMPR-IA, -IB and -II. The present study shows that all three antigens are readily detected in human bone cells. However, only BMPR-II was found primarily at the plasma membrane, whereas BMPR-IA was expressed equally in the cytoplasm and at the cell surface. Notably, BMPR-IB was mainly intracellular, where it was associated with a number of cytoplasmic structures and possibly the nucleus. Treatment with transforming growth factor β1 (TGF-β1) caused rapid translocation of BMPR-IB to the cell surface, mediated via the p38 mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) pathways. The TGF-β1-induced increase in surface BMPR-IB resulted in significantly elevated BMP-2 binding and Smad1/5/8 phosphorylation, although the receptor was subsequently internalised and the functional response to BMP-2 consequently down-regulated. The results show, for the first time, that BMPR-IB is localised primarily in intracellular compartments in bone cells and that TGF-β1 induces rapid surface translocation from the cytoplasm to the cell surface, resulting in increased sensitivity of the cells to BMP-2.  相似文献   

6.
7.
Bone morphogenetic proteins (BMPs) are important for the development and functioning of a wide variety of tissues and organ systems. Their ability to induce bone formation has been harnessed for clinical application. Specifically, local application of BMPs into fractures and fusions has shown some efficacy in inducing bone formation. However, clinical success has not been as robust as might be expected from the results obtained using animal models. This difference may be due to a number of mechanisms regulating BMP activity in vivo. One class of major regulators is the extracellular antagonist (e.g. Noggin, Gremlin, DAN), the dysfunction of which has been shown to result in ectopic bone formation in animal models and human disease. We hypothesize that local application of BMPs at high concentrations induces increased production of BMP antagonists, thereby limiting BMP activity and clinical efficacy. Therapies blocking the function of BMP antagonists should therefore result in enhanced BMP activity and increased bone formation. Furthermore, titrated systemic regulation of BMP antagonist may potentially reverse osteoporosis. Our collective experience with the clinical use of BMP illustrates the importance of understanding mechanisms of endogenous antagonism and regulation in the exogenous application of a protein as a therapeutic.  相似文献   

8.
将人BMP-2的编码区cDNA克隆至穿梭载体pShuttle,以PI-SceI和I-CeuI切下含BMP-2编码区cDNA的片断,在体外与PI-SceI/I-CeuI切开的腺病毒DNA连接,构建重组有BMP-2全长编码区基因的腺病毒DNA,PCR鉴定正确后,经PacI酶切线性化,在脂质体介导下转染HEK293细胞,反复冻融制备重组腺病毒,空斑形成试验测定病毒滴度约为7.5×106~1.5×107pfu/ml。以BMP-2重组腺病毒感染体外培养的小鼠成肌细胞C2C12,Westernblot检测证实有BMP-2表达。  相似文献   

9.
Bone morphogenetic proteins (BMPs) can either promote growth of embryonic muscle by expanding the Pax-3-expressing muscle precursor population or restrict its development by inducing apoptosis. Follistatin, a proposed BMP antagonist, is expressed in embryonic muscle. Deficiency in Follistatin results in muscle defects and postnatal asphyxia. Here, we report that during chick limb development Follistatin enhances BMP-7 action to induce muscle growth but prevents the ability of BMP-7 to induce apoptosis and muscle loss. Follistatin, unlike another BMP-binding protein, Noggin, promotes Pax-3 expression and transiently delays muscle differentiation and thus exerts proliferative signalling during muscle development. We provide data which show that Follistatin binds BMP-7 and BMP-2 at low affinities and that the binding is reversible. These data suggest that Follistatin acts to present BMPs to myogenic cells at a concentration that permits stimulation of embryonic muscle growth.  相似文献   

10.
11.
Neurogenesis is the process in which neurons are generated from neural stem/progenitor cells (NSCs/NPCs). It involves the proliferation and neuronal fate specification/differentiation of NSCs, as well as migration, maturation and functional integration of the neuronal progeny into neuronal network. NSCs exhibit the two essential properties of stem cells: self-renewal and multipotency. Contrary to previous dogma that neurogenesis happens only during development, it is generally accepted now that neurogenesis can take place throughout life in mammalian brains. This raises a new therapeutic potential of applying stem cell therapy for stroke, neurodegenerative diseases and other diseases. However, the maintenance and differentiation of NSCs/NPCs are tightly controlled by the extremely intricate molecular networks. Uncovering the underlying mechanisms that drive the differentiation, migration and maturation of specific neuronal lineages for use in regenerative medicine is, therefore, crucial for the application of stem cell for clinical therapy as well as for providing insight into the mechanisms of human neurogenesis. Here, we focus on the role of bone morphogenetic protein (BMP) signaling in NSCs during mammalian brain development.  相似文献   

12.

Background  

Skin stem cells contribute to all three major lineages of epidermal appendages, i.e., the epidermis, the hair follicle, and the sebaceous gland. In hair follicles, highly proliferative committed progenitor cells, called matrix cells, are located at the base of the follicle in the hair bulb. The differentiation of these early progenitor cells leads to specification of a central hair shaft surrounded by an inner root sheath (IRS) and a companion layer. Multiple signaling molecules, including bone morphogenetic proteins (BMPs), have been implicated in this process.  相似文献   

13.
Ren XY  Ruan QR  Zhu DH  Zhu M  Qu ZL  Lu J 《生理学报》2007,59(3):339-344
本文旨在观察血管紧张素Ⅱ(angiotensinⅡ,AngⅡ)对血管平滑肌细胞核转录因子-κB(nuclear factor-κB,NF-κB)的活性及骨形成蛋白-2(bone morphogenetic protein-2,BMP-2)表达的影响,以探讨AngⅡ参与动脉粥样硬化的机制,并探讨川芎嗪是否能抑制AngⅡ的促动脉粥样硬化作用。采用Western blot、免疫组化和原位杂交等方法分别检测AngⅡ刺激和川芎嗪干预后NF-κB活性、BMP-2蛋白和mRNA表达的变化。结果显示:(1)AngⅡ刺激激活NF-κB。AngⅡ刺激15min即有NF-κB p65核转移,30min达高峰(P〈0.01),1h后减退。川芎嗪抑制AngⅡ诱导的NF-κB激活,与AngⅡ组比较,川芎嗪+AngⅡ组NF-κB活性显著降低(P〈0.01)。(2)AngⅡ刺激6h时BMP-2表达增强(P〈0.05),12h时减弱(P〈0.01),24h时更弱(P〈0.01)。川芎嗪+AngⅡ组中,川芎嗪干预6h时BMP-2表达亦增强,12与24h时保持正常水平。(3)川芎嗪对正常细胞的NF-κB活性和BMP-2表达无影响。以上结果表明,AngⅡ刺激后激活NF-κB并最终使生长抑制因子BMP-2表达下降,这可能是其参与动脉粥样硬化发生的机制之一。BMP-2一过性增高可能不依赖NF-κB通路的激活。川芎嗪可抑制AngⅡ诱导的NF-κB激活与BMP-2表达降低,提示它在抗动脉粥样硬化形成中起重要作用。  相似文献   

14.
Vascular calcification is a common complication in atherosclerosis. Bone morphogenetic protein-2 (BMP-2) plays an important role in atherosclerotic vascular calcification. The aim of this study was to determine the effect of oxidized low density lipoprotein (oxLDL) on BMP-2 protein expression in human coronary artery endothelial cells (CAECs), the roles of Toll-like receptor (TLR) 2 and TLR4 in oxLDL-induced BMP-2 expression, and the signaling pathways involved. Human CAECs were stimulated with oxLDL. The roles of TLR2 and TLR4 in oxLDL-induced BMP-2 expression were determined by pretreatment with neutralizing antibody, siRNA, and overexpression. Stimulation with oxLDL increased cellular BMP-2 protein levels in a dose-dependent manner (40-160 μg/ml). Pretreatment with neutralizing antibodies against TLR2 and TLR4 or silencing of these two receptors reduced oxLDL-induced BMP-2 expression. Overexpression of TLR2 and TLR4 enhanced the cellular BMP-2 response to oxLDL. Furthermore, oxLDL was co-localized with TLR2 and TLR4. BMP-2 expression was associated with activation of nuclear factor-κB (NF-κB), p38 mitogen-activated protein kinase (MAPK), and extracellular signal-regulated kinase (ERK)1/2. Inhibition of NF-κB and ERK1/2 reduced BMP-2 expression whereas inhibition of p38 MAPK had no effect. In conclusion, oxLDL induces BMP-2 expression through TLR2 and TLR4 in human CAECs. The NF-κB and ERK1/2 pathways are involved in the signaling mechanism. These findings underscore an important role for TLR2 and TLR4 in mediating the BMP-2 response to oxLDL in human CAECs and indicate that these two immunoreceptors contribute to the mechanisms underlying atherosclerotic vascular calcification.  相似文献   

15.
Bone morphogenetic proteins are members of the transforming growth factor-beta superfamily that have multiple functions in the developing nervous system. One of them, bone morphogenetic protein-2 (BMP-2), promotes the differentiation of cultured striatal neurones, enhancing dendrite growth and calbindin-positive phenotype. Bone morphogenetic proteins have been implicated in cooperative interactions with other neurotrophic factors. Here we examined whether the effects of BMP-2 on cultured striatal neurones are mediated or enhanced by other neurotrophic factors. BMP-2 had a cooperative effect with low doses of brain-derived neurotrophic factor or neurotrophin-3 (but not with other neurotrophic factors such as glial cell line-derived neurotrophic factor, neurturin or transforming growth factor-beta 2) on the number of calbindin-positive striatal neurones. Moreover, BMP-2 induced phosphorylated Trk immunoreactivity in cultured striatal neurones, suggesting that neurotrophins are involved in BMP-2 neurotrophic effects. The addition of TrkB-IgG or antibodies against brain-derived neurotrophic factor abolished the effects of BMP-2 on the number and degree of differentiation of calbindin-positive striatal neurones. Indeed, BMP-2 treatment increased brain-derived neurotrophic factor protein levels in treated cultures media and BDNF immunocytochemistry revealed that this neurotrophin was produced by neuronal cells. Taken together, these results indicate that brain-derived neurotrophic factor mediates the effects of BMP-2 on striatal neurones.  相似文献   

16.
BMP4 substitutes for loss of BMP7 during kidney development   总被引:3,自引:0,他引:3  
Functional inactivation of divergent bone morphogenetic proteins (BMPs) causes discrete disturbances during mouse development. BMP4-deficient embryos display mesodermal patterning defects at early post-implantation stages, whereas loss of BMP7 selectively disrupts kidney and eye morphogenesis. Whether these distinct phenotypes simply reflect differences in expression domains, or alternatively intrinsic differences in the signaling properties of these ligands remains unknown. To address this issue, we created embryos exclusively expressing BMP4 under control of the BMP7 locus. Surprisingly, this novel knock-in allele efficiently rescues kidney development. These results demonstrate unequivocally that these structurally divergent BMP family members, sharing only minimal sequence similarity can function interchangeably to activate all the essential signaling pathways for growth and morphogenesis of the kidney. Thus, we conclude that partially overlapping expression patterns of BMPs serve to modulate strength of BMP signaling rather than create discrete fields of ligands with intrinsically different signaling properties.  相似文献   

17.
Cell migration is essential for both organogenesis and tumor progression. Bone morphogenetic proteins (BMPs) are reported to be critical for not only bone formation but also tumor invasion. Here, we found that treatment with recombinant human BMP-2 (rhBMP-2) enhanced the haptotactic response of murine osteoblastic MC3T3-E1 and osteosarcoma Dunn cells to various extracellular matrix (ECM) components, including fibronectin, type I collagen, and laminin-1. Function-blocking antibody against integrin alpha5beta1 partially inhibited haptotaxis to fibronectin, suggesting that the response was propagated via these integrins. rhBMP-2 slightly increased the expression level of integrin beta1, and enhanced the speed of cell spreading on fibronectin, focal adhesion formation and phosphorylation of focal adhesion kinase (FAK) at Tyr397. By means of sucrose gradient flotation, incorporation of integrin beta1 in fractions of detergent (CHAPS) resistant membrane was increased when the cells were treated with rhBMP-2. Further, treatment with methyl-beta-cyclodextrin to deplete membrane cholesterol abrogated the effect of rhBMP-2 on haptotaxis, and exogenously added cholesterol reversed this inhibitory effect. Collectively, these results provide insights into the mechanism by which BMP signaling enhances cell migration by modulating fibronectin-integrin beta1 signaling via cholesterol enriched membrane microdomains, lipid rafts.  相似文献   

18.
Bone morphogenetic proteins (BMPs) - expressed in the developing retina - are known to be involved in the regulation of cell proliferation and apoptosis in several tumor entities. The objective of this study was to determine the role of the BMP4 pathway in retinoblastoma cells, which are absent in a functional retinoblastoma (RB1) gene. BMP receptors were detected in all retinoblastoma cell lines investigated. A correct transmission of BMP signaling via the Smad1/5/8 pathway could be demonstrated in WERI-Rb1 retinoblastoma cells and application of recombinant human BMP4 resulted in an increase in apoptosis, which to a large extend is caspase independent. Cell proliferation was not affected by BMP4 signaling, although the pRb-related proteins p107 and p130, contributing to the regulation of the same genes, are still expressed. WERI-Rb1 cells exhibit elevated endogenous levels of p21(CIP1) and p53, but we did not detect any increase in p53, p21(CIP1)or p27(KIP1) expression levels. Id proteins became, however, strongly up-regulated upon exogenous BMP4 treatment. Thus, RB1 loss in WERI-Rb1 cells is obviously not compensated for by pRb-independent (e.g. p53-dependent) cell cycle control mechanisms, preventing an anti-proliferative response to BMP4, which normally induces cell cycle arrest.  相似文献   

19.
This research compared the binding and release of recombinant human bone morphogenetic protein 2 (rhBMP-2) with a series of hydrophobic and hydrophilic poly-lactide-co-glycolide (PLGA) copolymers. Porous microspheres were produced via a double emulsion process. Binding and incorporation of protein were achieved by soaking microspheres in buffered protein solutions, filtering, and comparing protein concentration remaining to nonmicrosphere-containing samples. Protein release was determined by soaking bound microspheres in a physiological buffer and measuring protein concentration (by reversed-phase high-performance liquid chromatography) in solution over time. Normalized for specific surface area and paired by polymer molecular weight. microspheres made from hydrophilic 50∶50 or 75∶25 PLGA bound significantly more protein than microspheres made from the corresponding hydrophobic PLGA. Increased binding capacity correlated with higher polymer acid values. With certain polymers, rhBMP-2 adsorption was decreased or inhibited at high protein concentration, but protein loading could be enhanced by increasing the protein solution:PLGA (volume:mass) ratio or by repetitive soaking. Microspheres of various PLGAs released unbound protein in 3 days, whereas the subsequent bound protein release corresponded to mass loss. RhBMP-2 binding to PLGA was controlled by the acid value, protein concentration, and adsorption technique. The protein released in 2 phases: the first occurred over 3 days regardless of PLGA used and emanated from unbound, incorporated protein, while the second was controlled by mass loss and therefore was dependent on the polymer molecular weight. Overall, control of rhBMP-2 delivery is achievable by selection of PLGA microsphere carriers. Published: October, 7, 2001.  相似文献   

20.
Bone morphogenetic proteins (BMPs) are multifunctional signaling molecules that have gained increasing interest in cancer research. To obtain a systematic view on BMP signaling in pancreatic cancer we first determined the mRNA expression levels of seven BMP ligands (BMP2BMP8) and six BMP specific receptors in pancreatic cancer cell lines and normal pancreatic tissue. BMP receptor expression was seen in all cancer and normal samples. Low expression levels of BMP5 and BMP8 were detected in cancer cells compared to the normal samples, whereas BMP4 expression was elevated in 25% of the cases. The impact of BMP4 and BMP5 signaling on cell phenotype was then evaluated in five pancreatic cancer cell lines. Both ligands suppressed the growth of three cell lines (up to 79% decrease in BMP4-treated PANC-1 cells), mainly due to cell cycle changes. BMP4 and BMP5 concurrently increased cell migration and invasion (maximally a 10.8-fold increase in invaded BMP4-treated PANC-1 cells). The phenotypic changes were typically associated with the activation of the canonical SMAD pathway, although such activation was not observed in the PANC-1 cells. Taken together, BMP4 and BMP5 simultaneously inhibit the growth and promote migration and invasion of the same pancreatic cells and thus exhibit a biphasic role with both detrimental and beneficial functions in pancreatic cancer progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号