首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The involvement of individual molecular forms of GnRH in the regulation of reproductive cyclicity in a viviparous marine teleost, the grass rockfish (Sebastes rastrelliger), was evaluated by relating the brain and pituitary content of the neuropeptide to reproductive status. The presence of sea bream (sb) GnRH, chicken GnRH-II, and salmon GnRH in the brain was confirmed by their elution pattern on HPLC and RIA. In addition, HPLC elution profiles suggest that there may be a fourth form of GnRH. All forms of GnRH were found in male and female brains in all reproductive conditions. However, only sbGnRH could be detected in appreciable amounts in the pituitary. Of the four forms of GnRH found in the rockfish, only sbGnRH fluctuated during the reproductive cycle and large accumulations were detected in the brains and pituitaries of postspawn females and regressed males. The accumulation of sbGnRH at the end of the reproductive cycle is suggested to reflect a decline in GnRH secretion relative to synthesis. The dominance of sbGnRH in the pituitary and its individual fluctuation in relation to seasonal changes in reproductive status suggests that sbGnRH is an important regulator of gonadotropin-mediated reproductive activity in rockfish.  相似文献   

2.
J A King  R P Millar 《Peptides》1985,6(4):689-694
Gonadotropin-releasing hormone (GnRH) immunoreactive peptides in extracts of hake (Merluccius capensis) and tilapia (Tilapia sparrmanii) brain were investigated by high performance liquid chromatography (HPLC) and radioimmunoassay with region-specific antisera. In hake brain, content and concentration of GnRH was higher in the pituitary gland than in the hypothalamic lobes or extrahypothalamic brain. Hake pituitary gland GnRH was purified by six consecutive HPLC systems. The major GnRH molecular form co-eluted with salmon brain GnRH (Trp7, Leu8-GnRH) in four different HPLC systems which were specifically designed to separate the four natural vertebrate GnRHs (mammalian, salmon, chicken I and II). The immunoreactive peak in the final purification step had a retention time identical to that of Trp7, Leu8-GnRH and an UV absorbance (280 nm) peak appropriate for two tryptophan residues in the peptide, as in Trp7, Leu8-GnRH. Six additional less hydrophobic forms of GnRH were detected. Tilapia brain extract contained two major GnRH molecular forms which had identical retention times to chicken GnRH I (Gln8-GnRH) and Trp7, Leu8-GnRH in an HPLC system which separates the natural vertebrate GnRHs. The immunological properties of these two immunoreactive peaks, determined by relative interaction with four region-specific GnRH antisera raised against vertebrate GnRHs, were identical to those of Gln8-GnRH and Trp7, Leu8-GnRH. Additional GnRH molecular forms were also detected. In summary, these findings indicate that a major GnRH molecule in hake pituitary gland is Trp7, Leu8-GnRH, while tilapia brain contains both Trp7, Leu8-GnRH and Gln8-GnRH. Additional GnRH molecular forms were detected in both species.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Multiple forms of GnRH within individual brains may have different functions. However, some vertebrates such as salmonids continue to reproduce even though they have lost or do not express 1 of the 3 forms of GnRH found in most other teleosts. We examined a basal salmonid, lake whitefish, to determine the mechanism by which a reduction in the number of GnRH forms occurs. We identified for the first time 3 distinct GnRHs in a salmonid. One form is novel and is designated whitefish GnRH. The primary structure is pGlu-His-Trp-Ser-Tyr-Gly-Met-Asn-Pro-Gly-NH(2). HPLC and RIA were used for purification followed by Edman degradation for sequence determination. Mass spectroscopy was used to confirm the sequence and amidation of the peptide. The other 2 forms, salmon GnRH and chicken GnRH-II, are identical to the 2 forms found in salmon, which evolved later than whitefish. Synthetic whitefish GnRH is biologically active, as it increased mRNA expression of growth hormone and the alpha-subunit for LH and thyroid-stimulating hormone in dispersed fish pituitary cells. Our data support the hypothesis that the ancestral salmonid had a third GnRH form when the genome doubled (tetraploidization), but the third form was lost later in some salmonids due to chromosomal rearrangements. We suggest that the salmon GnRH form compensated for the loss of the third form.  相似文献   

4.
The present paper reports the immunohistochemical distribution of the gonadotropin-releasing hormone (GnRH) structures in the brain of the Senegalese sole, Solea senegalensis. In this study, we have used two antibodies against the salmon GnRH and chicken GnRH-II forms and the streptavidin–biotin-peroxidase complex method. Immunoreactive cell bodies are observed at the junction between the olfactory bulbs and the telencephalon (terminal nerve ganglion cells), in the ventral telencephalon, in the preoptic parvocellular nucleus, and in the synencephalic nucleus of the medial longitudinal fasciculus. GnRH-immunoreactive fibres were found extensively throughout the brain, located in the telencephalon, preoptic area, hypothalamus, hypophysis, optic tectum, midbrain and rhombencephalon. The antisera used in this study against the two GnRH forms exhibited cross-reactivity on the same cell masses and did not allow cell populations expressing different GnRH forms to be discriminated clearly. However, anti-salmon GnRH immunostained the GnRH cells and fibres of the forebrain much more intensely, whereas the anti-chicken GnRH antiserum shows a higher immunoreactivity on synencephalic cells of the medial longitudinal fasciculus.  相似文献   

5.
Five distinct forms of gonadotropin-releasing hormone (GnRH) and their analogs, six of which are newly designed, were used to study reproduction in Thai catfish, Clarias macrocephalus. Determination was made for the percentage of fish that ovulated within 16-18 h; the percentage of eggs fertilized; and the percentage of larva that hatched and survived for 7 days. The results show, firstly, that natural chicken GnRH-II, which is identical with catfish GnRH-II, was significantly more effective at a dose of 300 micrograms/kg than the control injection for the induction of ovulation. Dogfish GnRH at the same dose was also significantly more effective than the control, but was not significantly different from chicken (catfish) GnRH-II for ovulation induction. The novel catfish GnRH-I, mammalian GnRH and salmon GnRH were not effective at 100, 150 or 300 micrograms/kg in Thai catfish. Secondly, 5 of 8 analogs of GnRH at a dose of 20 micrograms/kg resulted in a significantly higher percentage of ovulating fish compared with the control fish. Among these five analogs, the most effective were the two analog forms of chicken GnRH-II (D-Arg6,Pro9 NEt and D-Nal6,Pro9 NEt), followed by the salmon GnRH analog (D-Arg6,Pro9 NEt), a dogfish GnRH analog (D-Arg6,Pro9 NEt) and the mammalian GnRH analog (D-Ala6,Pro9 NEt). Not significantly different from the controls were the two catfish GnRH-I analogs and one of the dogfish (D-Nal6,Pro9 NEt) analogs. The six new analogs had not been previously tested in any animal. Thirdly, the number of fish ovulating was the same whether GnRH was administered in one or two injections.  相似文献   

6.
7.
J A King  R P Millar 《Peptides》1986,7(5):827-834
GnRH immunoreactive and bioactive peptides in Xenopus laevis brain extract were investigated by high performance liquid chromatography (HPLC), radioimmunoassay with region-specific antisera raised against GnRH (mammalian), His5,Trp7,Tyr8-GnRH (chicken II) and Tyr3,Leu5,Glu6,Trp7,Lys8-GnRH (lamprey), and by assessment of biological activity. Two immunoreactive peptides eluted in the same positions as GnRH and His5,Trp7,Tyr8-GnRH respectively in HPLC systems which were specifically designed to separate four known natural vertebrate GnRHs (mammalian, chicken I and II, salmon). The immunological properties of these two immunoreactive peaks, determined by relative interaction with three region-specific antisera raised against mammalian GnRH and two specific His5,Trp7,Tyr8-GnRH antisera, were identical to those of GnRH and His5,Trp7,Tyr8-GnRH. The immunoreactive peak co-eluting with His5,Trp7,Tyr8-GnRH represented approximately one-third of the total brain GnRH. Both immunoreactive peaks stimulated luteinizing hormone (LH) release in a chicken dispersed pituitary cell bioassay, and the amounts of LH release stimulated by the two peaks were appropriate for these peaks being GnRH and His5,Trp7,Tyr8-GnRH. A small hydrophobic peak with GnRH immunoreactivity eluted in the same position as Trp7,Leu8-GnRH (salmon), while Gln8-GnRH (chicken I) and lamprey GnRH were not detected. Two additional rather hydrophilic peptides cross-reacted with a COOH-terminus-directed antiserum and had LH-releasing activity. LH-releasing activity was also detected in hydrophobic HPLC fractions. In summary, these data provide evidence for the presence of both GnRH and a second peptide with properties identical to His5,Trp7,Tyr8-GnRH in X. laevis brain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A pleuronectiform fish, the barfin flounder Verasper moseri, has three molecular forms of gonadotropin-releasing hormone (GnRH) in the brain, salmon GnRH (sGnRH), chicken GnRH-II (cGnRH-II) and seabream GnRH (sbGnRH). To elucidate the ontogenic origin of the neurons that produce these GnRH molecules, the development of three GnRH systems was examined by in situ hybridization and immunocytochemistry. Neuronal somata that express sGnRH mRNA were detected first in the vicinity of the olfactory epithelium 21 days after hatching (Day 21), and then in the transitional area between the olfactory nerve and olfactory bulb and the terminal nerve ganglion on Day 28. cGnRH-II mRNA-expressing neuronal somata were first identified in the midbrain tegmentum near the ventricle on Day 7. cGnRH-II-immunoreactive (ir) fibers were first found in the brain on Day 7. sbGnRH mRNA-expressing neuronal somata were first detected in the preoptic area on Day 42. sbGnRH-ir fibers were localized in the preoptic area-hypothalamus, and formed a distinctive bundle of axons projecting to the pituitary on Day 70. These results indicate that three forms of GnRH neurons have separate embryonic origins in the barfin flounder as in other perciform fish such as tilapia Oreochromis niloticus and red seabream Pagrus major: sGnRH, cGnRH-II and sbGnRH neurons derive from the olfactory placode, the midbrain tegmentum near the ventricle and the preoptic area, respectively.  相似文献   

9.
Molecular variants of GnRH were characterized by reverse-phase, high-performance liquid chromatography from brain extracts of fish in three different orders: Synbranchiformes (swamp eel [Synbranchus marmoratus]), Cyprinidontiformes (platyfish [Xiphophorus maculatus] and green swordtail [X. helleri]), and Atheriniformes (Patagonia pejerrey [Odontesthes hatchery]). Also, pituitary gland extracts from the pejerrey O. bonariensis (Atheriniformes) were characterized. Eluted fractions were tested in radioimmunoassays with antisera specific to GnRH, including both antisera that detected only one form of GnRH and those that detected several forms. The results show that brain extracts obtained from all species contained the same three molecular forms of GnRH, which were immunologically and chromatographically undistinguishable from chicken GnRH-II, pejerrey GnRH (pjGnRH), and salmon GnRH. This study supports the hypothesis that expression of these three forms is common in different fish orders and that pjGnRH is the main regulator of pituitary function in these fish.  相似文献   

10.
The purpose of the present work was to develop a chromatographic system for the separation of five molecular forms of the gonadotropin-releasing hormone (GnRH); mammalian GnRH (mGnRH) (LHRH), salmon GnRH (sGnRH), chicken I GnRH (clGnRH), chicken II GnRH (cIIGnRH) and lamprey GnRH I (IGnRH-I). By using an ion-exchange HPLC column and isocratic elution, it was possible to separate properly the five peptides in approximately 20 min. The utility of the system in determining the GnRHs forms present in the brain of two species of vertebrates was examined.  相似文献   

11.
Radioimmunoassay (RIA) studies on highperformance liquid chromatography (HPLC) fractions of brain extracts of the three-spined stickleback, Gasterosteus aculeatus, provided evidence for at least two forms of gonadotropin-releasing hormone (GnRH). One form showed chromatographic and immunological properties similar to that of synthetic salmon GnRH (sGnRH). A second, unidentified form of GnRH eluted in the same position as chicken GnRH I (cGnRH-I); however, it did not cross-react in a cGnRH-I RIA. Furthermore, it cannot be excluded that chicken GnRH II (cGnRH-II) and maybe one other unidentified form are present in the stickleback. The distribution of GnRH in the brain of breeding adult male sticklebacks was studied by use of immunohistochemistry. Two antisera against sGnRH and antisera against mGnRH and cGnRH-II were applied on cryosections and visualized using the peroxidase-antiperoxidase method. Staining patterns were similar after incubations with all four antisera. Immunoreactive fibers were found in most parts of the brain. Three distinct groups of GnRH-immunoreactive perikarya were found in the nucleus olfactoretinalis, in the nucleus anterior periventricularis, and in the nucleus lateralis tuberis. Moreover, weakly stained cells occurred in a periventricular position in the midbrain. The proximal pars distalis of the pituitary, housing the gonadotropic cells, was richly innervated by GnRH-positive fibers. In the pars intermedia and in the rostral pars distalis, immunoreactive fibers were absent.  相似文献   

12.
Three forms of GnRH, chicken (c) GnRH-II, salmon (s) and seabream (sb) GnRH, were immunologically characterized in the brain and pituitary of turbot by ELISA. cGnRH-II and sGnRH were detected in the brain, while sbGnRH and sGnRH (but not cGnRH-II) were detected in the pituitary. In females, the levels of cGnRH-II in the turbot brain extracts increased from May to July, concomitant with an increase in oocyte diameter. In the pituitary, sbGnRH was found to be the dominant form, with levels 100-600-fold those of sGnRH. Both sGnRH and sbGnRH in the pituitary showed variation during the spawning season; sbGnRH increased from May to July and correlated with the increase in oocyte diameter, while sGnRH decreased. The overall patterns were the same for male turbot, although levels were generally lower. These findings suggest that sbGnRH could be controlling reproduction in the turbot. However, the seasonal variation in sGnRH indicates a potential physiological role in turbot reproduction. This study gives the first immunological indications that sbGnRH is present in the pituitary of a pleuronectiform fish, and will provide the basis for further studies on the endocrine regulation of reproduction in flatfish.  相似文献   

13.
14.
Synopsis Gonadotropin-releasing hormone (GnRH) is thought to play a fundamental role in the reproduction of cartilaginous fishes. The primary structures of the only form of GnRH in ratfish,Hydrolagus colliei, and one of four forms of GnRH in dogfish,Squalus acanthias, have recently been shown to be identical to a form originally isolated from birds (chicken GnRH-II). Phylogenetic studies indicate that this chicken GnRH-II molecule is the most highly conserved GnRH family member in vertebrates; it is present in animals from cartilaginous fishes to marsupials. However, the presence of four immunoreactive forms of GnRH inS. acanthias, but only one form inH. colliei suggests that the two subclasses of these species diverged a long time ago. Immunocytochemical localization of GnRH shows that it is found in the brains of all chondrichthyans examined to date. GnRH cell bodies and fibers were found in specific patterns throughout the brain in our studies of dogfish shark and black skate,Bathyraja kincaidii. The lack of immunoreactive GnRH fibers in the median eminence and the unique arrangement of the pituitary in Chondrichthyes suggest that transport of GnRH from the brain to the pituitary gonadotropes occurs in the systemic circulation. The use of this unconventional route is further supported by markedly higher levels of serum GnRH in ratfish compared with other vertebrates.  相似文献   

15.
Gonadotropin-releasing hormone (GnRH) molecular forms in the brains of three reptiles, Alligator mississippiensis (alligator), Calcides ocellatus tiligugu (skink) and Podarcis s. sicula (lizard) were characterized by high performance liquid chromatography (HPLC) and radioimmunoassay with region-specific antisera, and by assessment of luteinizing (LH)-releasing activity in chicken dispersed pituitary cells. In alligator brain two GnRHs had identical properties to the two known forms of chicken hypothalamic GnRH (Gln8-GnRH and His5,Trp7,Tyr8-GnRH) in their elution on two reverse phase HPLC systems, cross-reaction with region-specific GnRH antisera, and ability to release LH. In skink brain, one immunoreactive and bioactive GnRH form, which eluted in the same position as His5,Trp7,Tyr8-GnRH on reverse phase HPLC, was identified. Three bioactive and immunoreactive GnRHs were detected in lizard brain. One form had similar properties to salmon brain GnRH (Trp7,Leu8-GnRH). The other two GnRH-like peptides are novel forms. One of these forms eluted in the same position as Gln8-GnRH on HPLC but had different immunological properties, while the third form was a rather hydrophobic species which appeared to be modified in the middle region of the molecule.  相似文献   

16.
Gonadotropin-releasing hormone (GnRH) peptides in the brain, testis and plasma of an electric ray (Torpedo marmorata) were investigated by gel filtration chromatography, reverse phase high performance liquid chromatography and radioimmunoassay with region-specific antisera. In the brain, two major forms of GnRH were demonstrated. One form had identical chromatographic and immunological properties to chicken GnRH II, and the second, novel, molecular form had structural features in common with mammalian, chicken II and salmon GnRHs. A minor, early-eluting immunoreactive peak, possibly also a novel GnRH, was also evident. Immunoreactive GnRH was not detected in the testis. In the plasma, a single major early-eluting immunoreactive peak was demonstrated. This peak, identical to the minor peak observed in the brain, is likely to represent a novel form of GnRH which has immunological properties in common with mammalian, chicken II and salmon GnRHs. Immunoreactive GnRH was not detected in the plasma of species from other vertebrate classes, including rabbit, chicken, monitor lizard, clawed toad, frog, cichlid fish and lamprey. The finding of chicken GnRH II in a species of Chondrichthyes adds further support to our hypothesis that this widespread structural variant may represent an early-evolved and conserved form of GnRH. The presence of a GnRH molecular form in the plasma of the electric ray suggests that GnRH may reach target organs (pituitary and gonads) via the general circulation in some species of Chondrichthyes.  相似文献   

17.
Summary The distribution and density of cell bodies and fibers immunoreactive to GnRH-like peptides were investigated in the brain of male juvenile frogs (Rana esculenta) during postmetamorphic development. An immunohistochemical technique was used, involving antisera raised against 4 variants of GnRH: mammalian GnRH, chicken GnRH-I, chicken GnRH-II and salmon GnRH. A comparison of the immunohistochemical distribution at 8 different developmental stages shows that the maximum density of immunoreactive-GnRH elements, and the full distributional complexity of this system, is attained at the completion of spermatogenesis. Immunoreactive-GnRH cell bodies first appear in the anterior preoptic area during the metamorphic climax, and then appear sequentially in the medial septal area, tegmentum and, lastly, in the retrochiasmatic area and olfactory bulb when immunoreactive-fibers also reach the cerebellum. The GnRH system reacts positively to antisera for all 4 GnRH variants, but immunoreactivity for chicken GnRH-I is the weakest.  相似文献   

18.
The ontogeny of gonadotropin-releasing hormone (GnRH) mRNA-producing neurons was studied in developing hybrid striped bass (white bass Morone chrysops female × striped bass Morone saxatilis male), 1–55 days post-fertilization (dpf), by whole-mount in situ hybridization. Neurons that produce salmon (s) GnRH were first detected at 32 h post-fertilization in the olfactory placodes. These neurons migrated posteriorly during development and reached their final position at the olfactory bulbs-telencephalon boundary, possibly the terminal nerve ganglion (TNg) by 11 dpf. First signal of chicken (c) GnRH-II neurons appeared in the midbrain 2 dpf and remained there throughout development. A signal of seabream (sb) GnRH mRNA was first detected at 21 dpf in the preoptic area (POA) and as a bilateral continuum along the ventral telencephalon at 32–55 dpf. The expression of all three forms of GnRH increased throughout development. These results suggest that cGnRH-II neurons originate in the mid-brain, and that sGnRH neurons originate in the olfactory placodes and migrate caudally to the TNg. Neurons that express sbGnRH seem to originate at the preoptic area and then to migrate anteriorly along the ventral telencephalon. An olfactory placodal origin of these neurons, however, cannot be ruled out.  相似文献   

19.
Gonadotropin-releasing hormone (GnRH) peptides in the brain and pituitary of the European eel (Anguilla anguilla) were investigated by reverse phase high performance liquid chromatography (HPLC) and radioimmunoassay with region-specific antisera. Two GnRH molecular forms were demonstrated in brain and pituitary extracts. One form eluted in the same position as synthetic mammalian GnRH on HPLC and was recognized by antibodies directed against the NH2 and COOH termini of mammalian GnRH as well as by antibodies to the middle region. The second form eluted in the same position as synthetic chicken GnRH II and was recognized by specific antibodies to this molecule. Salmon GnRH and chicken GnRH I were not detected. The occurrence of mammalian GnRH in teleost fish suggests that this molecular form is more ancient than was previously suspected and arose earlier than in primitive tetrapods, or that it has arisen in the eel through random mutation of salmon GnRH. The lack of salmon GnRH in the eel brain indicates that this molecular form is not common to all teleost species. The finding in eel brain of chicken GnRH II, which has previously been described in species of Mammalia, Aves, Reptilia, Amphibia, Osteichthyes, and Chondrichthyes, supports our hypothesis that this widespread structural variant may represent an early evolved and conserved form of GnRH.  相似文献   

20.
Evolution of GnRH ligands and receptors in gnathostomata   总被引:5,自引:0,他引:5  
Gonadotropin-releasing hormone (GnRH) is the final common signaling molecule used by the brain to regulate reproduction in all vertebrates. Until now, a total of 24 GnRH structural variants have been characterized from vertebrate, protochordate and invertebrate nervous tissue. Almost all vertebrates already investigated have at least two GnRH forms coexisting in the central nervous system. Furthermore, it is now well accepted that three GnRH forms are present both in early and late evolved teleostean fishes. The number and taxonomic distribution of the different GnRH variants also raise questions about the phylogenetic relationships between them. Most of the GnRH phylogenetic analyses are in agreement with the widely accepted idea that the GnRH family can be divided into three main groups. However, the examination of the gnathostome GnRH phylogenetic relationships clearly shows the existence of two main paralogous GnRH lineages: the 'midbrain GnRH" group and the "forebrain GnRH" group. The first one, represented by chicken GnRH-II forms, and the second one composed of two paralogous lineages, the salmon GnRH cluster (only represented in teleostean fish species) and the hypophysotropic GnRH cluster, also present in tetrapods. This analysis suggests that the two forebrain clades share a common precursor and reinforces the idea that the salmon GnRH branch has originated from a duplication of the hypophysotropic lineage. GnRH ligands exert their activity through G protein-coupled receptors of the rhodopsin-like family. As with the ligands, multiple GnRHRs are expressed in individual vertebrate species and phylogenetic analyses have revealed that all vertebrate GnRHRs cluster into three main receptor types. However, new data and a new phylogenetic analysis propose a two GnRHR type model, in which different rounds of gene duplications may have occurred in different groups within each lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号