首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
昆虫抗菌肽是由昆虫细胞特定基因编码、由细胞核糖体合成的,具有体液免疫功能的一类碱性多肽,对细菌、真菌、病毒和原虫,甚至癌细胞都具有杀伤作用,有望开发成为新一代的抗菌药物。随着抗菌肽家族的不断扩大,其各方面的研究也日益深入。简要综述了昆虫抗菌肽的种类及结构特点、作用机制、生物活性、构效关系、药物开发情况。  相似文献   

2.
Interest in biophysical studies on the interaction of antimicrobial peptides and lipids has strongly increased because of the rapid emergence of antibiotic-resistant bacterial strains. An understanding of the molecular mechanism(s) of membrane perturbation by these peptides will allow a design of novel peptide antibiotics as an alternative to conventional antibiotics. Differential scanning calorimetry and X-ray diffraction studies have yielded a wealth of quantitative information on the effects of antimicrobial peptides on membrane structure as well as on peptide location. These studies clearly demonstrated that antimicrobial peptides show preferential interaction with specific phospholipid classes. Furthermore, they revealed that in addition to charge-charge interactions, membrane curvature strain and hydrophobic mismatch between peptides and lipids are important parameters in determining the mechanism of membrane perturbation. Hence, depending on the molecular properties of both lipid and peptide, creation of bilayer defects such as phase separation or membrane thinning, pore formation, promotion of nonlamellar lipid structures or bilayer disruption by the carpet model or detergent-like action, may occur. Moreover, these studies suggest that these different processes may represent gradual steps of membrane perturbation. A better understanding of the mutual dependence of these parameters will help to elucidate the molecular mechanism of membrane damage by antimicrobial peptides and their target membrane specificity, keys for the rationale design of novel types of peptide antibiotics.  相似文献   

3.
抗菌肽是一类抗细菌、真菌、病毒、寄生虫及肿瘤细胞的小分子多肽,是生物抵御自然界中有害微生物侵染的重要因素,且具抗菌谱广、无免疫原性、作用机制独特、耐热性好等特性,有望成为抗生素的替代品。本文着重介绍了抗菌肽的性质、种类、作用机理等方面的研究进展,同时对其应用、目前存在的问题进行了讨论。  相似文献   

4.
Q. Q. Ma  Y. F. Lv  Y. Gu  N. Dong  D. S. Li  A. S. Shan 《Amino acids》2013,44(4):1215-1224
Antimicrobial peptides represent ancient host defense effector molecules present in organisms across the evolutionary spectrum. Lots of antimicrobial peptides were synthesized based on well-known structural motif widely existed in a variety of lives. Leucine-rich repeats (LRRs) are sequence motifs present in over 60,000 proteins identified from viruses, bacteria, and eukaryotes. To elucidate if LRR motif possesses antimicrobial potency, two peptides containing one or two LRRs were designed. The biological activity and membrane–peptide interactions of the peptides were analyzed. The results showed that the tandem of two LRRs exhibited similar antibacterial activity and significantly weaker hemolytic activity against hRBCs than the well-known membrane active peptide melittin. The peptide with one LRR was defective at antimicrobial and hemolytic activity. The peptide containing two LRRs formed α-helical structure, respectively, in the presence of membrane-mimicking environment. LRR-2 retained strong resistance to cations, heat, and some proteolytic enzymes. The blue shifts of the peptides in two lipid systems correlated positively with their biological activities. Other membrane-peptide experiments further provide the evidence that the peptide with two LRRs kills bacteria via membrane-involving mechanism. The present study increases our new understanding of well-known LRR motif in antimicrobial potency and presents a potential strategy to develop novel antibacterial agents.  相似文献   

5.
Anti-infection peptidomics of amphibian skin   总被引:1,自引:0,他引:1  
Peptidomics and genomics analyses were used to study an anti-infection array of peptides of amphibian skin. 372 cDNA sequences of antimicrobial peptides were characterized from a single individual skin of the frog Odorrana grahami that encode 107 novel antimicrobial peptides. This contribution almost triples the number of currently reported amphibian antimicrobial peptides. The peptides could be organized into 30 divergent groups, including 24 novel groups. The diversity in peptide coding cDNA sequences is, to our knowledge, the most extreme yet described for any animal. The patterns of diversification suggest that point mutations as well as insertion, deletion, and "shuffling" of oligonucleotide sequences were responsible for the diversity. The diversity of antimicrobial peptides may have resulted from the diversity of microorganisms. These diverse peptides exhibited both diverse secondary structure and "host defense" properties. Such extreme antimicrobial peptide diversity in a single amphibian species is amazing. This has led us to reconsider the strong capability of innate immunity and molecular genetics of amphibian ecological diversification and doubt the general opinion that 20-30 different antimicrobial peptides can protect an animal because of the relatively wide specificity of the peptide antibiotics. The antimicrobial mechanisms of O. grahami peptides were investigated. They exerted their antimicrobial functions by various means, including forming lamellar mesosome-like structures, peeling off the cell walls, forming pores, and inducing DNA condensation. With respect to the development of antibiotics, these peptides provide potential new templates to explore further.  相似文献   

6.

Background  

Antimicrobial peptides are found in all kingdoms of life. During the evolution of multicellular organisms, antimicrobial peptides were established as key elements of innate immunity. Most antimicrobial peptides are thought to work by disrupting the integrity of cell membranes, causing pathogen death. As antimicrobial peptides target the membrane structure, pathogens can only acquire resistance by a fundamental change in membrane composition. Hence, the evolution of pathogen resistance has been a slow process. Therefore antimicrobial peptides are valuable alternatives to classical antibiotics against which multiple drug-resistant bacteria have emerged. For potential therapeutic applications as antibiotics a thorough knowledge of their mechanism of action is essential. Despite the increasingly comprehensive understanding of the biochemical properties of these peptides, the actual mechanism by which antimicrobial peptides lyse microbes is controversial.  相似文献   

7.

Background

Temporins are small antimicrobial peptides secreted by the Rana temporaria showing mainly activity against Gram-positive bacteria. However, different members of the temporin family, such as Temporin B, act in synergy also against Gram-negative bacteria. With the aim to develop a peptide with a wide spectrum of antimicrobial activity we designed and analyzed a series of Temporin B analogs.

Methods

Peptides were initially obtained by Ala scanning on Temporin B sequence; antimicrobial activity tests allowed to identify the TB_G6A sequence, which was further optimized by increasing the peptide positive charge (TB_KKG6A). Interactions of this active peptide with the LPS of E. coli were investigated by CD, fluorescence and NMR.

Results

TB_KKG6A is active against Gram-positive and Gram-negative bacteria at low concentrations. The peptide strongly interacts with the LPS of Gram-negative bacteria and folds upon interaction into a kinked helix.

Conclusion

Our results show that it is possible to widen the activity spectrum of an antimicrobial peptide by subtle changes of the primary structure. TB_KKG6A, having a simple composition, a broad spectrum of antimicrobial activity and a very low hemolytic activity, is a promising candidate for the design of novel antimicrobial peptides.

General significance

The activity of antimicrobial peptides is strongly related to the ability of the peptide to interact and break the bacterial membrane. Our studies on TB_KKG6A indicate that efficient interactions with LPS can be achieved when the peptide is not perfectly amphipathic, since this feature seems to help the toroidal pore formation process.  相似文献   

8.
C-type lysozyme (cLZ) is an antimicrobial enzyme that plays a major defense role in many human secretions. Recently, we have identified a helix-loop-helix antimicrobial peptide fragment of cLZ. This finding suggests that processing by coexisting proteases might be a relevant physiological process for generating peptides that contribute to the in vivo mucosal defense role of cLZ. In this study, we found that pepsin, under condition relevant to the newborn stomach (pH 4.0), generated various peptides from cLZ with potent bactericidal activity against several strains of Gram-negative and Gram-positive bacteria. Microsequencing and mass spectral analysis revealed that pepsin cleavage occurred at conserved loops within the alpha-domain of cLZ. We found that the bactericidal domain, which was isolated by gel filtration and reversed-phase HPLC, contains two cationic alpha-helical peptides generated from a helix-loop-helix domain (residues 1-38 of cLZ) by nicking at leucine17. A third peptide consisting of an alpha-helix (residues 18-38) and a two-stranded beta-sheet (residues 39-56) structure was also identified. These peptides share structural motifs commonly found in different innate immune defenses. Functional cellular studies with outer membrane-, cytoplasmic membrane vitality- and redox-specific fluorescence dyes revealed that the lethal effect of the isolated antimicrobial peptides is due to membrane permeabilization and inhibition of redox-driven bacterial respiration. The results provide the first demonstration that pepsin can fine-tune the antimicrobial potency of cLZ by generating multiple antimicrobial peptide motifs, delineating a new molecular switch of cLZ in the mucosal defense systems. Finally, this finding offers a new strategy for the design of antibiotic peptide drugs with potential use in the treatment of infectious diseases.  相似文献   

9.
The exploitation of conventional antibiotics in conjunction with the adeptness of microbes has led to the emergence of multi-drug-resistant pathogens. This has posed a severe threat to combating life-threatening infectious diseases. Antimicrobial peptides (AMP), which are considered to be the first line of defense in all living organisms, are being developed for therapeutic use. Herein, we determined the NMR solution structure of Rhesus macaque Myeloid Alpha Defensin-4 (RMAD4), a defensin AMP. Additionally, the distinct modes of membrane perturbation for two structurally dissimilar classes of AMPs was studied using biophysical methods namely, Solid-state 31P NMR, DSC and cryo-TEM. The cathelicidin - Bovine myeloid antimicrobial peptide (BMAP-28 (1–18)), which adopts a helical conformation, and the defensin RMAD4 peptide that natively folds to form β-sheets appeared to engage differently with the bacterial membrane. The helical BMAP-28 (1–18) peptide initiates lipid segregation and membrane thinning followed by pore formation, while the β-stranded RMAD4 peptide demonstrates fragmentation of the bilayer by the carpet or detergent-like mechanism of action. Molecular dynamics studies sufficiently corroborated these findings. The structure and mechanism of action of the AMPs studied using experimental and computational approaches are believed to help in providing a platform for the rational design of new competent and cost-effective antimicrobial peptides for therapeutic applications.  相似文献   

10.
Ribosomally synthesized peptides with antimicrobial properties (antimicrobial peptides-AMPs) are produced by eukaryotes and prokaryotes and represent crucial components of their defense systems against microorganisms. Although they differ in structure, they are nearly all cationic and very often amphiphilic, which reflects the fact that many of them attack their target cells by permeabilizing the cell membrane. They can be roughly categorized into those that have a high content of a certain amino acid, most often proline, those that contain intramolecular disulfide bridges, and those with an amphiphilic region in their molecule if they assume an alpha-helical structure. Most of the known ribosomally synthesized peptides with antimicrobial functions have been identified and studied during the last 20 years. As a result of these studies, new knowledge has been acquired into biology and biochemistry. It has become evident that these peptides may be developed into useful antimicrobial additives and drugs. The use of two-peptide antimicrobial peptides as replacement for clinical antibiotics is promising, though their applications in preservation of foods (safe and effective for use in meat, vegetables, and dairy products), in veterinary medicine, and in dentistry are more immediate. This review focuses on the current status of some of the main types of ribosomally synthesized AMPs produced by eucaryotes and procaryotes and discusses the novel antimicrobial functions, new developments, e.g. heterologous production of bacteriocins by lactic acid bacteria, or construction of multibacteriocinogenic strains, novel applications related to these peptides, and future research paradigms.  相似文献   

11.
Shai Y  Oren Z 《Peptides》2001,22(10):1629-1641
Living organisms of all types produce a large repertoire of gene-encoded, net positively charged, antimicrobial peptides as part of their innate immunity to microbial invasion. Despite significant variations in composition, length and secondary structure most antimicrobial peptides are active in micromolar concentrations, suggesting a common general mechanism for their mode of action. Many antimicrobial peptides bind bacterial phospholipid membranes up to a threshold concentration, followed by membrane permeation/disintegration (the "carpet" mechanism). Recent data suggest that the details of the permeation pathways may vary for different peptides and are assigned to different modes of action. Accumulating data reveal that the molecular basis for cell selectivity is the ability of peptides to specifically bind the negatively charged bacterial membrane, as well as their oligomeric state in solution and in the membrane. Based on the "carpet" mechanism and the role of the peptide oligomeric state, a novel group of diastereomeric (containing D- and L-amino acids) antimicrobial peptides were developed. These peptides may serve as promising templates for the future designs of antimicrobial peptides.  相似文献   

12.
To obtain active and metabolically stable analogues, peptide backbone modifications have been incorporated into many biologically active peptides. In this study, we designed and synthesized pseudopeptides corresponding to the antimicrobial peptide that acted on the lipid membrane of the pathogen. Most pseudopeptides exhibited a longer half-life than the peptide in the presence of serum as well as a considerable activity against test bacteria and fungi. Circular dichroism spectra and retention times of the pseudopeptides helped us to elucidate the effect of the incorporation of backbone modifications on the structural parameters necessary for the activity, indicating that alpha-helical structure was the most important factor for the activity and hydrophobicity had a considerable effect on the activity. Backbone modifications employed in this study can be a useful tool for structure-activity relationship studies and the development of therapeutic agents from membrane-active antimicrobial peptides.  相似文献   

13.
The increase in bacterial resistance to current antibiotics has led to the development of new active molecules. We have isolated the antimicrobial peptide Ctx-Ha from the skin secretion of the frog Hypsiboas albopunctatus. The aim of the present work was to elucidate the mechanism of action of this new antimicrobial peptide. The sequence similarity with Ceratotoxin, the pore size, and the pore-like release of carboxyfluorescein from vesicles indicated that Ctx(Ile21)-Ha has a mechanism of action based on the barrel- stave model. In a second part of this work, we synthesized three analogues to provide information about the relationship between the peptide's structure and its biological activity. Ctx(Ile21)-Ha-VD 16, Ctx(Ile21)- Ha-VD 5,16 and Ctx(Ile21)-Ha-I9K were designed to disrupt the peptide's helical structure and change the hydrophobicity/ hydrophilicity and amphipathicity of the apolar face in order to uncouple the antimicrobial activity of Ctx(Ile21)-Ha from its hemolytic activity. To evaluate the effects of the amino acid substitutions on peptide conformation, secondary structure was accessed using CD measurements. The peptides presented a high amount of α-helical structure in the presence of TFE and LPC. The CD data showed that destruction of the amphipathic α-helix by the replacing isoleucine by lysine is less harmful to the structure than D-amino acid substitutions. Biological tests demonstrated that all peptides have activity. Nevertheless, the peptide Ctx(Ile21)-Ha-I9K showed the highest value of therapeutic index. Our findings suggest that these peptides are potential templates for the development of new antimicrobial drugs. These studies highlight the importance of single amino acid modification as a tool to modulate the biological activity of antimicrobial peptides.  相似文献   

14.
Antimicrobial peptides (AMPs) are naturally occurring promising candidates which can be used as antibiotics against a wide variety of bacteria. The key component for using them as a potent antibiotic is that their mechanism of action is less prone to bacterial resistance. However, the molecular details of their mechanism of action is not yet fully understood. In this study, we try to shed light on the mode of action of AMPs, possible reason behind it, and their interaction with lipid bilayers through experimental as well as molecular dynamics (MD) simulation studies. The focal of our study was Human beta defensin 3 (hBD-3) which is a naturally occurring AMP. We chose three derivatives of hBD-3, namely CHRG01, KSR, and KLR for the detailed analysis presented in this study. These three peptides are evaluated for their antibacterial potency, secondary structure analysis and mechanism of action. The experimental results reveal that these peptides are active against gram positive as well as gram negative bacteria and kill bacteria by forming membrane pores. The MD simulation results correlate well with the antibacterial activity and shed light into the early membrane insertion dynamics. Moreover, the specific amino acids responsible for membrane disruptions are also identified from the MD simulations. Understanding the molecular level interaction of individual amino acids with the lipid bilayer will greatly help in the design of more efficient antimicrobial peptides.  相似文献   

15.
The high-resolution three-dimensional structure of an antimicrobial peptide has implications for the mechanism of its antimicrobial activity, as the conformation of the peptide provides insights into the intermolecular interactions that govern the binding to its biological target. For many cationic antimicrobial peptides the negatively charged membranes surrounding the bacterial cell appear to be a main target. In contrast to what has been found for other classes of antimicrobial peptides, solution NMR studies have revealed that in spite of the wide diversity in the amino acid sequences of amphibian antimicrobial peptides (AAMPs), they all adopt amphipathic α-helical structures in the presence of membrane-mimetic micelles, bicelles or organic solvent mixtures. In some cases the amphipathic AAMP structures are directly membrane-perturbing (e.g. magainin, aurein and the rana-box peptides), in other instances the peptide spontaneously passes through the membrane and acts on intracellular targets (e.g. buforin). Armed with a high-resolution structure, it is possible to relate the peptide structure to other relevant biophysical and biological data to elucidate a mechanism of action. While many linear AAMPs have significant antimicrobial activity of their own, mixtures of peptides sometimes have vastly improved antibiotic effects. Thus, synergy among antimicrobial peptides is an avenue of research that has recently attracted considerable attention. While synergistic relationships between AAMPs are well described, it is becoming increasingly evident that analyzing the intermolecular interactions between these peptides will be essential for understanding the increased antimicrobial effect. NMR structure determination of hybrid peptides composed of known antimicrobial peptides can shed light on these intricate synergistic relationships. In this work, we present the first NMR solution structure of a hybrid peptide composed of magainin 2 and PGLa bound to SDS and DPC micelles. The hybrid peptide adopts a largely helical conformation and some information regarding the inter-helix organization of this molecule is reported. The solution structure of the micelle associated MG2-PGLa hybrid peptide highlights the importance of examining structural contributions to the synergistic relationships but it also demonstrates the limitations in the resolution of the currently used solution NMR techniques for probing such interactions. Future studies of antimicrobial peptide synergy will likely require stable isotope-labeling strategies, similar to those used in NMR studies of proteins.  相似文献   

16.
抗菌肽的作用机制、生物活性及应用研究进展   总被引:1,自引:0,他引:1  
抗菌肽广泛存在于生物界,是辅助生物机体抵抗外来病原体入侵的重要防御分子。抗菌肽不仅能抑制、杀灭多种细菌,而且具有抗真菌、抗寄生虫、抗病毒、抗肿瘤和免疫调节等生物学活性。抗菌肽的作用机制与传统抗生素不同,不仅具有广谱抗微生物作用,而且不易诱导机体产生耐药性,因此,在治疗临床耐药菌株方面具有极大的开发潜力。  相似文献   

17.
18.
细菌对传统抗生素的耐药程度十分严重,寻找克服耐药性的新型抗菌药物已成为当务之急。抗菌肽(antimicrobial peptides,AMPs)是当下较有前景的抗菌药物之一。虽然通常认为,AMPs优先攻击细胞膜的特点使其不会引起广泛的耐药性,但其对特定靶标的识别能力仍为基因突变和细菌耐药性的产生提供了可能。此外,一些细菌还显示出了抵御宿主AMPs的杀伤作用并与宿主细胞共存的能力,相应的细菌防御机制也使其对治疗性AMPs产生抗性,这种交叉抗性近年来也备受关注。这些耐药现象的发现均对AMPs的开发提出了新挑战。本综述就细菌对AMPs耐药的分子机制进行了研究进展的总结,并且对治疗性AMPs与宿主防御肽交叉抗性的相关机制研究进行了归纳,以期寻求新的对抗耐药性的策略。  相似文献   

19.
Antimicrobial peptides continue to garner attention as potential alternatives to conventional antibiotics. Hipposin is a histone-derived antimicrobial peptide (HDAP) previously isolated from Atlantic halibut. Though potent against bacteria, its antibacterial mechanism had not been characterized. The mechanism of this peptide is particularly interesting to consider since the full hipposin sequence contains the sequences of parasin and buforin II (BF2), two other known antimicrobial peptides that act via different antibacterial mechanisms. While parasin kills bacteria by inducing membrane permeabilization, buforin II enters cells without causing significant membrane disruption, harming bacteria through interactions with intracellular nucleic acids. In this study, we used a modular approach to characterize hipposin and determine the role of the parasin and buforin II fragments in the overall hipposin mechanism. Our results show that hipposin kills bacteria by inducing membrane permeabilization, and this membrane permeabilization is promoted by the presence of the N-terminal domain. Portions of hipposin lacking the N-terminal sequence do not cause membrane permeabilization and function more similarly to buforin II. We also determined that the C-terminal portion of hipposin, HipC, is a cell-penetrating peptide that readily enters bacterial cells but has no measurable antimicrobial activity. HipC is the first membrane active histone fragment identified that does not kill bacterial or eukaryotic cells. Together, these results characterize hipposin and provide a useful starting point for considering the activity of chimeric peptides made by combining peptides with different antimicrobial mechanisms. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号