首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Certain higher plants synthesize and accumulate glycine betaine, a compound with osmoprotectant properties. Biosynthesis of glycine betaine proceeds via the pathway choline betaine aldehyde glycine betaine. Plants such as tobacco (Nicotiana tabacum L.) which do not accumulate glycine betaine lack the enzymes catalyzing both reactions. As a step towards engineering glycine betaine accumulation into a non-accumulator, spinach and sugar beet complementary-DNA sequences encoding the second enzyme of glycine-betaine synthesis (betaine aldehyde dehydrogenase, BADH, EC 1.2.1.8) were expressed in tobacco. Despite the absence of a typical transit peptide, BADH was targeted to the chloroplast in leaves of transgenic plants. Levels of extractable BADH were comparable to those in spinach and sugar beet, and the molecular weight, isoenzyme profile and K m for betaine aldehyde of the BADH enzymes from transgenic plants were the same as for native spinach or sugar beet BADH. Transgenic plants converted supplied betaine aldehyde to glycine betaine at high rates, demonstrating that they were able to transport betaine aldehyde across both the plasma membrane and the chloroplast envelope. The glycine betaine produced in this way was not further metabolized and reached concentrations similar to those in plants which accumulate glycine betaine naturally. Betaine aldehyde was toxic to non-transformed tobacco tissues whereas transgenic tissues were resistant due to detoxification of betaine aldehyde to glycine betaine. Betaine aldehyded ehydrogenase is therefore of interest as a potential selectable marker, as well as in the metabolic engineering of osmoprotectant biosynthesis.Abbreviations BADH betaine aldehyde dehydrogenase - bp base pairs - FAB-MS fast atom bombardment-mass spectrometry - GAPDH NADP-linked glyceraldehyde-3-phosphate dehydrogenase We thank Dr. G. An for the gift of the vector pGA643 and Mr. Sylvain Lebeurier for help in maintaining plants. This work was supported, in part, by grants from the Natural Sciences and Engineering Research Council of Canada, the Rockefeller Foundation, and the U.S. Department of Agriculture, and by gifts from CIBAGEIGY Biotechnology.  相似文献   

2.
山菠菜胆碱单氧化物酶基因(CMO)的克隆与分析   总被引:43,自引:0,他引:43  
甜菜碱是一类广泛存在于生物体内的渗透保护剂。高等植物中,甜菜碱的生物合成经由胆碱→甜菜碱醛→甜菜碱两步反应完成,其中第一步反应,也是甜菜碱生物合成的限速反应,由胆碱单氧化物酶(CMO)催化。本研究以耐盐植物山菠菜(Atriplex hortensis)为材料构建了盐胁迫下的cDNA文库,用菠菜CMO cDNA为探针从中筛选获得一个长1.77kb的cDNA克隆,测序结果表明该克隆包含一个完整的开放读码框,编码一个由438个氨基酸构成的多肽,与菠菜和甜菜CMO的氨基酸序列同源性分别为81%和72%。同菠菜和甜菜中的CMO序列相比,山菠菜CMO基因(AhCMO)也具有保守的RieskeType[2Fe2S]簇结合区和保守的多铁原子核结合域。对盐处理条件下山菠菜CMO基因转录水平的研究表明CMO基因在盐胁迫情况下表达量增加约3倍。将CMO与35S启动子连接后转化烟草(Nictiana tabacumvar.Xanthi),获得了具有一定耐盐性状的转基因植株,在1.2%NaCl的盐浓度下生长良好。  相似文献   

3.
Meng YL  Wang YM  Zhang B  Nii N 《Cell research》2001,11(3):187-193
INTRODUCTIONAmaranth is a C4 dicotyledonous mesophytecrop plant. A. tricofor is a major variety for veg-etable and ornamental crops, and is widely culti-vated in the wor1d. Osmoprotectant glycine betaine(GB) was detected in Amaranthaceae, A. HyPochon-driacus L[2] and A. Caudatus L[3, 4]. GB iswidespread and an effective osmoprotectant in manyplants[3]. We studied the photosynthetic adaptationmechanism of A. trico1or under salt stress due to ac-cumulation of GB[5].GB is synthesized …  相似文献   

4.
根据已发表的几种植物的甜菜碱醛脱氢酶(BADH)基因的同源保守区设计了一对兼并引物,通过RT-PCR方法从中亚滨藜中扩增出BADH基因的近5′端序列,共395bp,与菠菜、山菠菜、甜菜、千穗谷、大麦的BADHcDNA相应片段的同源性较高。以此片段为探针,对中亚滨藜的基因组进行Southern杂交分析,证明该基因可能是单拷贝的。Northern印迹杂交结果表明NaCl250mmol/L处理的植株的BADHmRNA水平比对照植株约高2倍,说明中亚滨藜中BADH基因的表达受盐诱导。  相似文献   

5.
6.
7.
菠菜甜菜碱醛脱氢酶基因的克隆和序列分析   总被引:7,自引:0,他引:7  
以耐盐的菠菜mRNA为模板,经反转录合成甜菜碱醛脱氢酶(BADH)基因第一链cDNA。在人工合成的两端引物引导下,通过多聚酶链式反应(PCR),扩增获得双链cDNA。把重组有BADH基因的pUC19转化至E.coli DH5α菌株,亚克隆后测定了基因的全序列。所得到的BADH基因全长序列为1491bp,编码497个氨基酸。与文献报道的相比较,核苷酸序列同源性99.8%,氨基酸序列同源性达99.6%。在此基础上,构建了BADH基因的高等植物表达载体。  相似文献   

8.
Betaine aldehyde dehydrogenase (BADH) catalyzes the last step in the synthesis of the osmoprotectant glycine betaine from choline. Although betaine aldehyde has been thought to be a specific substrate for BADH, recent studies have shown that human and sugar beet BADHs also catalyze the oxidation of omega-aminoaldehydes. To characterize the kinetic and stability properties of spinach BADH, five kinds of expression vectors encoding full length, mature, E103Q, E103K, and chimera BADHs were constructed. These enzymes together with Escherichia coli BADH were expressed in E. coli and purified. The affinities for betaine aldehyde were similar in the spinach and E. coli BADHs, whereas those for omega-aminoaldehydes were higher in spinach BADH than in E. coli BADH. A chimera BADH in which part of the Rossmann type fold in the spinach BADH was replaced with that of E. coli BADH, showed properties which resembled spinach BADH more than E. coli BADH. The spinach E103K mutant was almost inactive, whereas the E103Q mutant showed a similar activity for the oxidation of betaine aldehyde to that of wild type BADH, but a lower affinity for omega-aminoaldehydes. All spinach BADHs were dimers whereas E. coli BADH was a tetramer. E. coli BADH was more stable at high temperature than spinach BADHs. The E103Q mutant was most labile to high temperature. These properties are discussed in relation to the structure of spinach BADH.  相似文献   

9.
We isolated cDNAs encoding betaine aldehyde dehydrogenase (BADH, EC 1.2.1.8) from the salt-tolerant Poaceae, Zoysia tenuifolia by polymerase chain reactions. Zoysia betaine aldehyde dehydrogenase 1 (ZBD1) is 1892bp long and codes for 507 amino acids. The deduced amino acid sequence of ZBD1 is 88% similar to the sequence of rice BADH. Ten cDNA clones were isolated from a cDNA Library of salt-treated Z. tenuifolia by using the ZBD1 fragment as a probe. The proteins coded in some clones were more homologous to BBD2, the cytosolic BADH of barley, than to ZBD1. To investigate their enzymatic properties, ZBD1 and spinach BADH were expressed in Escherichia coli and purified. The optimal pH of ZBD1 was 9.5, which was more alkaline than that of spinach BADH. ZBD1 was less tolerant to NaCl than spinach BADH. ZBD1 showed not only BADH activity but also aminoaldehyde dehydrogenase activity. The Km values of ZBD1 for betaine aldehyde, 4-aminobutyraldehyde (AB-ald), and 3-aminopropionaldehyde (AP-ald) were 291, 49, and 4.0 microM, respectively. ZBD1 showed higher specific activities for AB-ald and AP-ald than did spinach BADH.  相似文献   

10.
Tobacco (Nicotianum tabacum L.) plants engineered to express a sugar beet (Beta vulgaris L.) betaine aldehyde dehydrogenase (BADH) cDNA acquired not only BADH activity, but also three other aldehyde dehydrogenase activities (those measured with 3-dimethylsulfoniopropionaldehyde, 3-aminopropionaldehyde, and 4-aminobutyraldehyde, all of which are natural products). This shows that BADH is not, as believed up to now, a substrate-specific enzyme and that its role may not be limited to glycine betaine synthesis.  相似文献   

11.
Betaine aldehyde dehydrogenase in sorghum.   总被引:25,自引:0,他引:25       下载免费PDF全文
The ability to synthesize and accumulate glycine betaine is wide-spread among angiosperms and is thought to contribute to salt and drought tolerance. In plants glycine betaine is synthesized by the two-step oxidation of choline via the intermediate betaine aldehyde, catalyzed by choline monooxygenase and betaine aldehyde dehydrogenase (BADH). Two sorghum (Sorghum bicolor) cDNA clones, BADH1 and BADH15, putatively encoding betaine aldehyde dehydrogenase were isolated and characterized. BADH1 is a truncated cDNA of 1391 bp. BADH15 is a full-length cDNA clone, 1812 bp in length, predicted to encode a protein of 53.6 kD. The predicted amino acid sequences of BADH1 and BADH15 share significant homology with other plant BADHs. The effects of water deficit on BADH mRNA expression, leaf water relations, and glycine betaine accumulation were investigated in leaves of preflowering sorghum plants. BADH1 and BADH15 mRNA were both induced by water deficit and their expression coincided with the observed glycine betaine accumulation. During the course of 17 d, the leaf water potential in stressed sorghum plants reached -2.3 MPa. In response to water deficit, glycine betaine levels increased 26-fold and proline levels increased 108-fold. In severely stressed plants, proline accounted for > 60% of the total free amino acid pool. Accumulation of these compatible solutes significantly contributed to osmotic potential and allowed a maximal osmotic adjustment of 0.405 MPa.  相似文献   

12.
Members of the Chenopodiaceae can accumulate high levels (>100 mol·(g DW)-1) of glycine betaine (betaine) in leaves when salinized. Chenopodiaceae synthesize betaine by a two-step oxidation of choline (cholinebetaine aldehyde betaine), with the second step catalyzed by betaine aldehyde dehydrogenase (BADH, EC 1.2.1.8). High betaine levels have also been reported in leaves of species from several distantly-related families of dicotyledons, raising the question of whether the same betaine-synthesis pathway is used in all cases.Fast atom bombardment mass spectrometry showed that betaine levels of >100 mol·(g DW)-1 are present in Lycium ferocissimum Miers (Solanaceae), Helianthus annuus L. (Asteraceae), Convolvulus arvensis L. (Convolvulaceae), and Amaranthus caudatus L. (Amaranthaceae), that salinization promotes betaine accumulation in these plants, and that they can convert supplied choline to betaine aldehyde and betaine. Nicotiana tabacum L. and Lycopersicon lycopersicum (L.) Karst. ex Farw. (Solanaceae), Lactuca sativa L. (Asteraceae) and Ipomoea purpurea L. (Convolvulaceae) also contained betaine, but at a low level (0.1–0.5 mol·(g DW)-1. Betaine aldehyde dehydrogenase activity assays, immunotitration and immunoblotting demonstrated that the betaine-accumulating species have a BADH enzyme recognized by antibodies raised against BADH from Spinacia oleracea L. (Chenopodiaceae), and that the Mr of the BADH monomer is in all cases close to 63 000. These data indicate that the cholinebetaine aldehydebetaine pathway may have evolved by vertical descent from an early angiosperm ancestor, and might be widespread (albeit not always strongly expressed) among flowering plants. Consistent with these suggestions, Magnolia x soulangiana was found to have a low level of betaine, and to express a protein of Mr 63 000 which cross-reacted with antibodies to BADH from Spinacia oleracea.Abbreviations BADH Betaine aldehyde dehydrogenase - DCIMS desorption chemical ionization mass spectrometry - FABMS fast atom bombardment mass spectrometry - Mr relative molecular mass - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate - TLC thin-layer chromatography  相似文献   

13.
盐胁迫下三色苋甜菜碱及有关酶含量的变化   总被引:2,自引:0,他引:2  
三色苋(Amaranthus tricolor)不同器官中的甜菜碱(GB)含量显著不同.除子叶外,根、茎和叶的GB含量和茎、叶中的胆碱单加氧酶(CMO)含量都因300 mmol/L的NaCl处理而增加.甜菜碱醛脱氢酶(BADH)的表达无论盐处理与否在所有器官中都能检测到,其含量变化不大.当种子发芽时,具备合成GB的能力,CMO含量增加;在此之前未能检测到CMO,也不能合成GB.研究结果表明三色苋响应盐胁迫而合成GB的关键酶是CMO.  相似文献   

14.
Cell recovery from osmotic stress was studied in suspension cell cultures from Alternanthera philoxeroides [Mart.] Griseb. Changes in different classes of cellular solutes were measured after cells were transferred from 0 to 200 mM NaCl (high salt) to obtain an integrated picture of the solute pools involved in osmotic adjustment. By 2 h, cellular [Na+] and [Cl] had increased several-fold, potentially accounting for the osmotic adjustment that produced a rapid recovery of cell turgor. There was a four-fold increase in the concentration of quaternary ammonium compounds (QAC) by 12 h and a slower increase for several days afterward. Betaine aldehyde dehydrogenase (BADH) is required for synthesis of glycine betaine, a QAC produced by a range of organisms in response to osmotic stress. Western-blot analysis for BADH suggested that glycine betaine was a significant component of the QAC solutes. The amount of BADH was generally similar at different sampling times for control and high salt cells, unlike previous reports of stimulation by osmotic stress in intact plants of some species. Between 3 and 7 days after cell transfer to high salt, other organic solutes increased in concentration and [Na+] and [Cl] decreased. In A. philoxeroides, high [Na+] and [Cl] produce rapid osmotic adjustment but organic solutes apparently replace these potentially harmful inorganic ions after the recovery of turgor.  相似文献   

15.
In Escherichia coli the osmoprotective compound glycine betaine is produced from choline by two enzymes; choline dehydrogenase (CDH) oxidizes choline to betaine aldehyde and then further on to glycine betaine, while betaine aldehyde dehydrogenase (BADH) facilitates the conversion of betaine aldehyde to glycine betaine. To evaluate the importance of BADH, a BADH/CDH fusion enzyme was constructed and expressed in E. coli and in Nicotiana tabacum. The fusion enzyme displayed both enzyme activities, and a coupled reaction could be measured. The enzyme was characterized regarding molecular weight and the dependence of the enzyme activities on environmental factors (salt, pH, and poly(ethylene glycol) addition). At high choline concentrations, E. coli cells expressing BADH/CDH were able to grow to higher final densities and to accumulate more glycine betaine than cells expressing CDH only. The intracellular glycine betaine levels were almost 5-fold higher for BADH/CDH when product concentration was related to CDH activity. Also, after culturing the cells at high NaCl concentrations, more glycine betaine was accumulated. On medium containing 20 mM choline, transgenic tobacco plants expressing BADH/CDH grew considerably faster than vector-transformed control plants.  相似文献   

16.
Betaine aldehyde dehydrogenase (BADH) is widely considered as a key enzyme in glycine betaine metabolism in higher plants. Several paralogous genes encoding different isozymes of BADH have been identified and characterized in some plants; however, until now, only limited information is available about BADH genes in quinoa (Chenopodium quinoa). Here, we report the molecular cloning, structural organization, phylogenetic evolution, and expression profile of a BADH gene (CqBADH1) from quinoa. The translated putative CqBADH1 protein included five conserved features of the ALDH Family 10. Comparisons between the cDNA and genomic sequences revealed that the CqBADH1 gene contained 15 exons and 14 introns. Comparative screening of introns in homologous genes demonstrated that the number and position of the BADH introns were highly conserved among the BADH genes in Amaranthaceae plants and in other more distantly related plant species. A phylogenetic analysis showed that CqBADH1 had the closest relationship with a protein from Atriplex canescens and belonged to the ALDH10 family. Expression profile analyses indicated that CqBADH1 was expressed only in root, and showed time-dependent expression profiles under NaCl-stress condition. Moreover, in quinoa, NaCl stress led to increased levels of CqBADH1 mRNA accompanied by the accumulation of glycine betaine. This is the first study to describe a BADH gene in quinoa.  相似文献   

17.
The effect of triadimefon (TDM) on various biochemical parameters was studied in NaCl stressed radish (Raphanus sativus L.). Stress imposed by 80 mM NaCl decreased the protein content and proline oxidase activity, and increased the proline and glycine betaine contents, and protease, -glutamyl kinase and ATPase activities. The TDM treatment alleviated the stress by increasing protein, and glycine betaine contents, and by decreasing proline accumulation, and proline oxidase and ATPase activities.  相似文献   

18.
By fusion of mouse myeloma cells (SP2/O-Ag14) and spleen cells derived from BALB/c mice immunized with spinach betaine aldehyde dehydrogenase (BADH) protein, a hybridoma cell line secreting monoclonal antibodies was obtained. The antibody titer of the ascites was about 1 : 103. Not only could the monoclonal antibodes cross react with the BADH of spinach and sugar beet, it could also cross react with the leaf and root crude extracts of barley, rice, sorghum, and wheat. These results indicated the occurrence of BADH in both the photosynthetic tissue and the non-photosynthetic tissue of these graminea spicies.  相似文献   

19.
The present study pertains to the effect of different concentration of NaCl on the contents of proteins, free amino acids, proline and glycine betaine in leaves, stems and roots of Ipomoea pes-caprae. The protein content of the tissues increased in response to salinity upto 200 mM NaCl; the free amino acids content showed a reversal trend. The proline and glycine betaine contents increased with increasing salinity upto 500 mM NaCl. The accumulation of proline and glycine betaine might play a role in the alleviation of salt stress. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Responses of Ceriops roxburghiana Arn. leaves to the sodium chloride, applied at different concentrations (ranging from 100 to 600 mM), has been evaluated. Total amino acid content decreased with increasing NaCl concentration, while the protein content increased significantly up to 400 mM concentration and decreased thereafter. Total sugar content decreased at concentrations beyond 400 mM. Proline and glycine betaine were accumulated with increasing NaCl concentration. Protease and ATPase activities were increased whereas proline oxidase activity were decreased with increasing salinity. Peroxidase and malate dehydrogenase (NADH-MDH) activities did not significantly differ under various NaCl concentrations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号