首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Time-dependent changes in blood cholinesterase activity caused by single intravenous, oral or dermal administration of methyl parathion to adult female rats were defined. Intravenous and oral administration of 2.5 mg/kg methyl parathion resulted in rapid (<60 min) decreases in cholinesterase activity which recovered fully in vivo within 30-48 h. In contrast, spontaneous reactivation of cholinesterase in vitro was complete within 6 h at 37 degrees C. Dermal administration of methyl parathion caused dose-dependent inhibition of cholinesterase activity which developed slowly (> or =6 h) and was prolonged (> or =48 h). Time- and route-dependent effects of methyl parathion on cholinesterase activity in brain and other tissues generally paralleled its effects on activity in blood. In conclusion, pharmacodynamics of methyl parathion differ substantially with route of exposure. Recovery of cholinesterase in vivo after intravenous or oral exposure may partially reflect spontaneous reactivation and suggests a rapid clearance of methyl parathion or its active metabolite methyl paraoxon. The more gradual and prolonged inhibition of cholinesterase caused by dermal administration is consistent with disposition of methyl parathion at a site from which it or methyl paraoxon is only slowly distributed. Thus, dermal exposure to methyl parathion may pose the greatest risk for long-term adverse effects.  相似文献   

2.
The effects of a single or repeated dermal administration of methyl parathion on motor function, learning and memory were investigated in adult female rats and correlated with blood cholinesterase activity. Exposure to a single dose of 50 mg/kg methyl parathion (75% of the dermal LD(50)) resulted in an 88% inhibition of blood cholinesterase activity and was associated with severe acute toxicity. Spontaneous locomotor activity and neuromuscular coordination were also depressed. Rats treated with a lower dose of methyl parathion, i.e. 6.25 or 12.5 mg/kg, displayed minimal signs of acute toxicity. Blood cholinesterase activity and motor function, however, were depressed initially but recovered fully within 1-3 weeks. There were no delayed effects of a single dose of methyl parathion on learning acquisition or memory as assessed by a step-down inhibitory avoidance learning task. Repeated treatment with 1 mg/kg/day methyl parathion resulted in a 50% inhibition of blood cholinesterase activity. A decrease in locomotor activity and impairment of memory were also observed after 28 days of repeated treatment. Thus, a single dermal exposure of rats to doses of methyl parathion which are lower than those that elicit acute toxicity can cause decrements in both cholinesterase activity and motor function which are reversible. In contrast, repeated low-dose dermal treatment results in a sustained inhibition of cholinesterase activity and impairment of both motor function and memory.  相似文献   

3.
The mpd gene coding for a novel methyl parathion hydrolase (MPH) was previously reported and its putative open reading frame was also identified. To further confirm its coding region, the intact region encoding MPH was obtained by PCR and expressed in Escherichia coli as a hexa-His C-terminal fusion protein. The fusion protein was purified to homogeneity by metal-affinity chromatography. The enzyme activity and zymogram assay showed that the fusion protein was functional in degrading methyl parathion. The amino terminal sequencing of the purified recombinant MPH indicated that a signal peptide of the first 35 amino acids was cleaved from its precursor to form active MPH. A rat polyclonal antiserum was raised against the purified mature fusion protein. The results of Western blot and zymogram demonstrated that mature MPH in native Plesiomonas sp. strain M6 was also processed from its precursor by cleavage of a putative signal peptide at the amino terminus. The production of active MPH in E. coli was greatly improved after the coding region for the signal peptide was deleted. HPLC gel filtration of the purified mature recombinant MPH revealed that the MPH was a monomer.  相似文献   

4.
Propetamphos [(E)-l-methylethyl 3[[(ethylamino)methoxyphosphinothioyl]oxy]-2-bu-tenoate], the active ingredient in Safrotin,® is an organophosphate developed by Sandoz, Ltd.® (Switzerland) as an insecticide (1). Although metabolism of propetamphos has been previously investigated (2,3), there is no pharmacokinetic data available in the literature. The current studies were undertaken to investigate the pharmacokinetics of propetamphos following intravenous administration in male and female Fischer 344 (F344) rats. Rats were dosed via an indwelling jugular cannula at a dose of 12 mg/kg (one-tenth the oral LD-50). Blood samples were withdrawn via the cannula at predetermined timepoints to quantitate plasma concentrations of propetamphos over time. Propetamphos is highly bound to plasma proteins (free fraction = 0.06). Free propetamphos concentration in plasma vs. time data were analyzed by noncompartmental methods. The terminal elimination rate constant, λ, was significantly different for males versus females (0.015 min?1 for males and 0.037 min?1 for females, p = 0.001). Plasma was cleared of unbound propetamphos at rates of 0.559 ± 0.069 and 0.828 ± 0.181 L/min/kg for males and females (mean ± standard error). Mean residence times (MRTs) for propetamphos in the body for males and females were 28.3 ± 5.7 and 14.4 ± 3.5 min, and the volume of distribution at steady state (Vss) was 14.7 ± 2.6 and 12.3 ± 4.5 L/kg. The differences in these parameters, clearance (CI), MRT, and Vss, were not statistically significant at the p < 0.05 level for males versus females, but MRT was nearly significantly different (p = 0.08). Because of the rapid elimination of propetamphos from plasma following intravenous administration, it is unlikely that propetamphos would bioaccumulate in environmentally exposed animals. Although the pharmacokinetic parameters were not statistically different for males and females in these studies, there was a clear clinical difference in their susceptibility to propetamphos toxicity. Female rats presented with overt signs of organophosphate intoxication, whereas males were only slightly effected. The observed gender-related clinical difference in susceptibility to toxicity suggests that there may be a difference in the extent of elimination due to activation versus detoxication of propetamphos in males and females. Another possible explanation for the clinical difference in propetamphos toxicity is that inhibition of acetyl-cholinesterase by the activated, oxygenated form of propetamphos (propetamphos oxon) may be greater in females than in males.  相似文献   

5.
In this research, the influence of goethite on biodegradation kinetic of methyl parathion was investigated in the presence of Pseudomonas sp. Z1. Semipermeable membrane experiments were performed to demonstrate the role of adhesion of degrading bacteria to surface of goethite in biodegradation of methyl parathion. Sorption of methyl parathion and bacteria onto goethite particles were also measured to assess the distribution of methyl parathion and bacteria between water and goethite surface. The first-order degradation rate constant of methyl parathion in different concentrations of goethite was in the order of 0.1 g L−1 > 0.01 g L−1 > 0 g L−1 > 1 g L−1 > 20 g L−1, suggesting the presence of low concentrations of goethite accelerated the biodegradation of methyl parathion and high concentrations of goethite inhibited this biodegradation process. According to the result of semipermeable membrane experiment, when no bacterial attachment occurred in the system, the promotive effect of 0.1 g L−1 goethite for microbial degradation was disappeared and the inhibition effect of 20 g L−1 goethite increased. The results clearly demonstrated that the adhesion of bacteria to goethite was beneficial to the biodegradation of methyl parathion. The information obtained is of fundamental significance for the understanding of microbial degradation of organic pollution in soil.  相似文献   

6.
Jiang J  Zhang R  Li R  Gu JD  Li S 《Biodegradation》2007,18(4):403-412
A genetically engineered microorganism (GEM) capable of simultaneous degrading methyl parathion (MP) and carbofuran was successfully constructed by random insertion of a methyl parathion hydrolase gene (mpd) into the chromosome of a carbofuran degrading Sphingomonas sp. CDS-1 with the mini-transposon system. The GEM constructed was relatively stable and cell viability and original degrading characteristic was not affected compared with the original recipient CDS-1. The effects of temperature, initial pH value, inoculum size and alternative carbon source on the biodegradation of MP and carbofuran were investigated. GEM cells could degrade MP and carbofuran efficiently in a relatively broad range of temperatures from 20 to 30°C, initial pH values from 6.0 to 9.0, and with all initial inoculation cell densities (105–107 CFU ml−1), even if alternative glucose existed. The optimal temperature and initial pH value for GEM cells to simultaneously degrade MP and carbofuran was at 30°C and at pH 7.0. The removal of MP and carbofuran by GEM cells in sterile and non-sterile soil were also studied. In both soil samples, 50 mg kg−1 MP and 25 mg kg−1 carbofuran could be degraded to an undetectable level within 25 days even if there were indigenous microbial competition and carbon sources effect. In sterile soil, the biodegradation rates of MP and carbofuran were faster, and the decline of the inoculated GEM cells was slower compared with that in non-sterile soil. The GEM constructed in this study was potential useful for pesticides bioremediation in natural environment.  相似文献   

7.
Pharmacokinetic studies are reported after single oral administration of 3 mg/kg of stereochemically pure (S)-ketoprofen [(S)-KP] and (R)-ketoprofen [(R)-KP] to three male Cynomolgus monkeys and after repeated administration for 6 months of 3, 15 and 75 mg/kg/day of (S)-KP to both male and female monkeys. A high-performance liquid chromatographic (HPLC) analysis was performed without derivatization of the samples, using a chiral column. The pharmacokinetic parameters for (S)-KP after administration of (S)-KP and for (R)-KP after administration of (R)-KP were, respectively, elimination half-life 2.32 ± 0.36 and 1.64 ± 0.40 h; oral clearance 3.50 ± 0.66 and 7.50 ± 3.20 ml/min/kg; apparent volume of distribution 0.74 ± 0.24 and 1.16 ± 0.76 liter/kg; mean residence time 1.79 ± 0.77 and 1.41 ± 0.65 h; area under the concentration/time curve 14.16 ± 2.93 and 7.31 ± 2.98 μg·h/ml. Forty-nine percent unidirectional bioinversion of (R)-KP to (S)-KP was observed in this species and the pharmacokinetic parameters for the (S)-KP resulting from this inversion were also calculated. In the study of 6-month repeated administration of (S)-KP, linear pharmacokinetic behavior and no evidence of drug accumulation were observed at the three dose levels. © 1994 Wiley-Liss, Inc.  相似文献   

8.
Kim SH  Lee MG 《Life sciences》2002,70(11):1299-1315
Pharmacokinetic parameters of ipriflavone were evaluated after intravenous administration of spray-dried ipriflavone with polyvinylpyrrolidone, SIP (5, 10, 20, and 40 mg/kg as ipriflavone) and oral administration of SIP (50, 100, and 200 mg/kg as ipriflavone) to rats. The hepatic, gastric, and intestinal first-pass effects of ipriflavone were also measured after intravenous, intraportal, intraduodenal, and oral administration of SIP (20 or 50 mg/kg as ipriflavone) to rats. After intravenous and oral administration, the pharmacokinetic parameters of ipriflavone were dose-independent. The extent of absolute oral bioavailability (F) was also independent of oral doses; the mean F value was approximately 24%. Considering the amount of unchanged ipriflavone recovered from 24-hr gastrointestinal tract (the mean value was approximately 12%), the low F values could be due to the hepatic, gastric, and/or intestinal first-pass effects. Based on total body clearance (CL) data of ipriflavone after intravenous administration, the first-pass effect in the heart and lung could be almost negligible, if any, in rats. Approximately 30% of ipriflavone absorbed into the portal vein was eliminated by liver (hepatic first-pass effect) based on intravenous and intraportal administration of SIP. The area under the plasma concentration-time curve from time zero to time infinity (AUC) values after oral administration and intraduodenal instillation of SIP, 50 mg/kg as ipriflavone, were not significantly different, but the values were significantly smaller (129 and 116 microg ml/min) than that after intraportal administration of SIP, 20 mg/kg as ipriflavone (513 microg ml/min based on 50 mg/kg), indicating that gastric first-pass effect of ipriflavone was negligible, but intestinal first-pass effect was considerable in rats. Therefore, the low F value of ipriflavone after oral administration to rats was mainly due to intestinal first-pass effect. The hepatic first-pass effect and incomplete absorption of ipriflavone from rat gastrointestinal tract could also contributed to the low F in rats.  相似文献   

9.
Crocetin, a unique carotenoid with a short carbon chain length, is an active compound of saffron and Gardenia jasminoides Ellis used as traditional herbal medicine. The present study was undertaken to investigate the pharmacokinetic profiles of crocetin in healthy adult subjects. The study was conducted as an open-label, single dose escalation with 10 Filipino volunteers (5 men and 5 women). The subjects received a single dose of crocetin at three doses (7.5, 15 and 22.5 mg) in one week interval. Blood samples were collected from the brachial vein before and at 1, 2, 4, 6, 8, 10 and 24 h after administration. Plasma concentrations of crocetin were determined by high-performance liquid chromatography (HPLC). Crocetin was rapidly absorbed and detected within an hour of administration with a mean time to reach maximum concentration (Tmax) of crocetin ranging from 4.0 to 4.8 h. The mean values of Cmax and AUC0-24 h ranged from 100.9 to 279.7 ng/ml and 556.5 to 1720.8 ng.h/ml respectively. Cmax and AUC values increased with dose proportional manner. Crocetin was eliminated from human plasma with a mean elimination half life (T1/2) of 6.1 to 7.5 h.In summary, there were no serious adverse events up to 22.5 mg dose of crocetin while crocetin was found to be absorbed more quickly than the other carotenoids such as β-carotene, lutein and lycopene.  相似文献   

10.

Background  

Phenoxodiol is a novel isoflavone currently being studied in clinical trials for the treatment of cancer. This study reports the pharmacokinetics of phenoxodiol in patients with cancer.  相似文献   

11.
Pseudomonas sp. strain WBC-3 utilizes methyl parathion (MP) and para-nitrophenol as the sole source of carbon, nitrogen and energy. In this study, strain WBC-3 was inoculated into lab-scale MP-contaminated soil for bioaugmentation. Accelerated removal of MP was achieved in bioaugmentation treatment compared to non-bioaugmentation treatment, with complete removal of 0.536 mg g−1 dry soil in bioaugmentation treatment within 15 days and without accumulation of toxic intermediates. The analysis of denaturing gradient gel electrophoresis and real-time PCR showed that strain WBC-3 existed stably during the entire bioaugmentation period. Simultaneously, redundancy analysis for evaluating the relationships between the environmental factors and microbial community structure indicated that the indigenous bacterial community structure was significantly influenced by strain WBC-3 inoculation (P = 0.002).  相似文献   

12.
Propetamphos is a member of the vinyl phosphate group of insecticides and is mainly used for sheep dipping. There have been no published metabolic studies on the effect of propetamphos in man to date, although the present authors have published the identification of a metabolite. The present paper presents data from a human volunteer study investigating the toxicokinetics of the organophosphorus pesticide propetamphos following oral and dermal exposure. Five volunteers ingested a propetamphos dose of 10 μg kg-1 (35nmol kg-1) body weight. Following a washout of 4 weeks, a 100mg (356 μmol) dermal dose of propetamphos was applied, occluded to 80cm2 of the inner forearm, for 8 h to the same five volunteers. In a pilot study (several weeks before the main study), one volunteer also received an occluded dermal dose of 50 mg (178 μmol) propetamphos. Unabsorbed propetamphos on the skin was washed off after 8 h and collected. Blood and urine samples were collected over 30 and 54 h for the oral and dermal exposures respectively. Blood samples were analysed for plasma and erythrocyte cholinesterase. Urine samples were analysed for a urinary metabolite of propetamphos: methylethylphosphoramidothioate (MEPT). Following oral and dermal exposure, peak urinary MEPT levels occurred at 1 and 10-12 h respectively. The apparent urinary elimination half-lives of MEPT had means of 1.7h (oral exposure) and 3.8 h (dermal exposure). Approximately 40% of the oral dose and 1% of the dermal dose were recovered as urinary MEPT or metabolites, which could be hydrolysed to MEPT. Approximately 90% of the dermal dose was recovered from the skin washings. Data from a volunteer showed that a doubling of the dermal dose resulted in approximately double the concentration of total MEPT. Alkaline hydrolysis of urine samples increased the level of MEPT detected after both oral and dermal doses. The increase was greater and statistically significant (p < 0.001, paired t-test) for the dermal dose. This increase in MEPT suggests the presence of other MEPT-containing metabolites or conjugates. The difference in the increase between oral and dermal doses raises the question of a difference in metabolism between the two routes. No individual showed a significant depression compared with their pre-exposure levels of erythrocyte acetyl cholinesterase or plasma cholinesterase activity for either dosing route. However, on a group basis, there was a statistically significant mean depression in plasma cholinesterase activity at 8 and 24 h for oral exposure, with a maximum mean depression of 7% from pre-exposure levels at 8 h. Hydrolysis of urine samples had the effect of reducing the interindividual coefficient of variation (CV) for total excretion of MEPT following both oral (CV reduced from 36 to 8%) and dermal (CV reduced from 40 to 17%) exposure. The ability to detect and follow the elimination of low doses of propetamphos by measurement of 'total' (after hydrolysis) urinary MEPT suggests it is a suitable biomarker of propetamphos exposure. The comparatively short elimination half-lives suggest a strategy for biological monitoring of occupational exposure based on samples collected at the end of the shift.  相似文献   

13.
Shin BS  Kim CH  Lee MN  Hur MW  Lee KC  Youn YS  Yoo SD 《Regulatory peptides》2007,140(1-2):74-80
This study first reports the absorption kinetics of GST-TatdMt, a recombinant Tat protein possessing potent anti-obesity activity, in rats after nasal, s.c., and p.o. administration. GST-TatdMt was over-expressed in E. coli, purified, and radioiodinated using the IODO-GEN method. The radioiodinated 125I-GST-TatdMt was administered to rats by nasal, s.c., and oral routes at doses of 7.3 microg (420.7 nCi), 146.5 microg (8413.8 nCi), and 146.5 microg (8413.8 nCi), respectively. For the determination of absolute bioavailability, 125I-GST-TatdMt was also given to rats by i.v. injection (73.2 microg, 4206.9 nCi). Following administration by extravascular routes, the systemic absorption of radioactivity was prolonged, with Cmax being attained within 4.2-8.0 h. The absolute bioavailability calculated as dose-normalized AUC(extravascular)/AUC(i.v.) was 98.0, 75.8, and 87.1% after nasal, s.c., and oral administration, respectively. The majority of administered radioactivity was excreted in urine (57.5-64.7%), with fecal excretion being less (2.5-12.7%). The distribution of 125I-GST-TatdMt to various tissues was also determined at 4 and 72 h after s.c. injection. The findings of this study suggest that this protein may be absorbed into the systemic circulation when given by extravascular administration.  相似文献   

14.
A pharmacokinetic study of oxytetracycline (OTC) following a single (100 mg kg?1) or a multi‐dose (100 mg kg?1 for 5 days) oral administration was carried out in yellow catfish, Pelteobagrus fulvidraco. After oral administration at 25°C, a one‐compartment model was developed. The absorption half‐life (t1/2(ka)) was 3.92, 1.44, 2.75, and 3.34 h in plasma, muscle, liver, and kidney after the single dose, and 0.35, 0.22, 0.42, 0.32 h after the multi‐dose, respectively. The order of peak concentration (Cmax) was liver > kidney > plasma > muscle, at 3.48 μg g?1, 2.90 μg g?1, 1.46 μg ml?1, and 1.39 μg g?1 after the single dose, and 14.02 μg g?1, 8.51 μg g?1, 4.17 μg ml?1, and 3.84 μg g?1 after the multi‐dose, respectively. The elimination half‐lives (t1/2(ke)) of OTC in plasma, muscle, liver, and kidney were calculated to be 7.64, 26.29, 19.08, and 10.61 h after the single dose, and 47.54, 70.99, 49.87, and 47.73 h after the multi‐dose, respectively. The results suggest that OTC was absorbed faster after the multi‐dose than after the single dose, suggesting that OTC could be more efficacious after the multi‐dose and more effective in the control bacterial diseases in aquaculture, with the side effects of longer withdrawal periods.  相似文献   

15.
The purpose of this study was to determine the cellular distribution and degradation in rat liver following intravenous injection of superparamagnetic iron oxide nanoparticles used for magnetic resonance imaging (NC100150 Injection). Relaxometric and spectrophotometric methods were used to determine the concentration of the iron oxide nanoparticles and their degradation products in isolated rat liver parenchymal, endothelial and Kupffer cell fractions. An isolated cell phantom was also constructed to quantify the effect of the degradation products on the loss of MR signal in terms of decreased transverse relaxation times, T2*. The results of this study show that iron oxide nanoparticles found in the NC100150 Injection were taken up and distributed equally in both liver endothelial and Kupffer cells following a single 5 mg Fe/kg body wt. bolus injection in rats. Whereas endothelial and Kupffer cells exhibited similar rates of uptake and degradation, liver parenchymal cells did not take up the NC100150 Injection iron oxide particles. Light-microscopy methods did, however, indicate an increased iron load, presumably as ferritin/hemosiderin, within the hepatocytes 24 h post injection. The study also confirmed that compartmentalisation of ferritin/hemosiderin may cause a significant decrease in the MRI signal intensity of the liver. In conclusion, the combined results of this study imply that the prolonged presence of breakdown product in the liver may cause a prolonged imaging effect (in terms of signal loss) for a time period that significantly exceeds the half-life of NC100150 Injection iron oxide nanoparticles in liver.  相似文献   

16.
Objective: To assess effects of intravenous streptokinase, one month of oral aspirin, or both, on long term survival after suspected acute myocardial infarction. Design: Randomised, “2×2 factorial,” placebo controlled trial. Setting: 417 hospitals in 16 countries. Subjects: 17 187 patients with suspected acute myocardial infarction randomised between March 1985 and December 1987. Follow up of vital status complete to at least 1 January 1990 for 95% of all patients and to mid-1997 for the 6213 patients in United Kingdom. Interventions: Intravenous streptokinase (1.5 MU in 1 hour) and oral aspirin (162 mg daily for 1 month) versus matching placebos. Main outcome measures: Mortality from all causes during up to 10 years’ follow up, with subgroup analyses based on 4 year follow up. Results: After randomisation, 1841 deaths were recorded in days 0-35, 991 from day 36 to end of year 1, 1478 in years 2-4, and 1230 in years 5-10. Allocation to streptokinase was associated with 29 (95% confidence interval 20 to 38) fewer deaths per 1000 patients during days 0-35. This early benefit persisted (death rate ratio 0.98 (0.92 to 1.04) for additional deaths between day 36 and end of year 10), so that there were 28 (14 to 42) and 23 (2 to 44) fewer deaths per 1000 patients treated with streptokinase after 4 years and 10 years respectively. There was no evidence that absolute survival benefit increased with prolonged follow up among any category of patient, including those presenting early after symptoms started or with anterior ST elevation. Nor did the early benefits seem to be lost in any category (including those aged over 70). Allocation to one month of aspirin was associated with 26 (16 to 35) fewer deaths per 1000 during first 35 days, with little further benefit or loss during subsequent years (death rate ratio 0.99 (0.93 to 1.06) between day 36 and end of year 10). The early benefit obtained with combination of streptokinase and one month of aspirin also seemed to persist long term. Conclusions: The early survival advantages produced by fibrinolytic therapy and one month of aspirin started in acute myocardial infarction seem to be maintained for at least 10 years.

Key messages

  • Large randomised trials have shown that the survival benefits of intravenous fibrinolytic therapy for patients with acute myocardial infarction persist for at least one year, but there is relatively little information about longer term effects
  • By contrast, this report from the ISIS-2 trial of intravenous streptokinase and of one month of oral aspirin includes nearly 4000 deaths between the start of year 2 and the end of year 10
  • The early survival benefits of fibrinolytic therapy persist for at least 10 years after treatment and do not seem to increase or decrease with prolonged follow up in any category of patients, including elderly subjects
  • The survival benefits of short term aspirin treatment in acute myocardial infarction also persist long term and are additional to those of fibrinolytic therapy, and other studies show that these benefits can be increased by continuing aspirin treatment for some years after myocardial infarction
  相似文献   

17.
Decapod crustaceans do not appear to produce juvenile hormone, but rather its immediate precursor, methyl farnesoate (MF). Both MF and its immediate precursor, farnesoic acid (FA) are produced by the mandibular organs (MO) in crustaceans. The MO are homologous to the insect corpora allata (CA), the site of juvenile hormone biosynthesis. However, the FGLamide allatostatin (ASTs) peptides, of which there are about 60 distinct forms reported from crustaceans, have previously been found to have no effect on MO activity in crustaceans. We have identified by immunocytochemistry the presence of FGLamide-like AST immunoreactivity in neurosecretory cells throughout the CNS as well as in neurohaemal structures such as the sinus gland and pericardial organs. The ASTs are likely delivered to the MO hormonally and/or by local neurohaemal release. Using MO from adult males, we have found wide variability between animals in the in vitro rates of MF and FA biosynthesis. Treatment with Dippu-ASTs has a statistically significant stimulatory effect on MF synthesis, but only in MO that are initially producing MF at lower rates. No effect on FA production was observed, suggesting that the FGLamide ASTs exert their effect on the o-methyl transferase, the enzyme responsible for the conversion of FA to MF.  相似文献   

18.
Kim H  Radwanski E  Lovey R  Lin CC  Nomeir AA 《Chirality》2002,14(5):436-441
Genaconazole (SCH 39304) is a potent triazole antifungal agent that is active both orally and topically. Genaconazole is a racemic mixture which contains 50% of the RR (SCH 42427) and 50% of the SS (SCH 42426) enantiomers. The RR isomer accounts for most of the antifungal activity of genaconazole. Serum concentrations of the RR and SS enantiomers were analyzed by a chiral HPLC method which involved extraction of serum with organic solvent followed by separation on a Cyclobond I column and quantification by UV absorbance at 205 nm. The bioavailability and pharmacokinetic profiles of the two enantiomers after oral administration of the racemate (genaconazole) were very similar in cynomolgus monkeys. In rats following dosing with genaconazole, the RR enantiomer had a lower C(max) and a longer t(1/2) than the SS enantiomer, while the AUC(I) values of the two enantiomers were similar. Based on chiral HPLC analysis, there was no evidence for the inversion of the RR to the SR isomer, or of the SS to the SR isomer, indicating that there was no chiral inversion of the RR or SS enantiomers in either species. Genaconazole at 20 mg/kg and the RR (SCH 42427) enantiomer at 10 mg/kg had very similar serum concentration-time profiles and C(max), AUC(I), and t(1/2) values for the RR enantiomer in both rats and monkeys, indicating that the two treatments were equivalent with respect to the bioavailability of the RR enantiomer.  相似文献   

19.
Cholinesterase activities in rat forebrain, erythrocytes, and plasma were assessed after a single oral administration of metrifonate or dichlorvos. In 3-month-old rats, the dichlorvos (10 mg/kg p.o.)-induced inhibition of cholinesterase reached its peak in brain after 15–45 min and after 10–30 min in erythrocytes and plasma. Cholinesterase activity recovered rapidly after the peak of inhibition, but did not reach control values in brain and erythrocytes within 24 h after drug administration. The recovery of plasma cholinesterase activity, in contrast, was already complete 12 h after dichlorvos treatment. Metrifonate (100 mg/kg p.o.) had qualitatively similar inhibition kinetics as dichlorvos, albeit with a slightly delayed onset. Peak values were attained 45–60 min (brain) and 20–45 min (blood), after drug administration. Apparently complete recovery of cholinesterase activity was noted in both tissues 24 h after treatment. The dose-dependence of drug-induced inhibition of cholinesterase in rat blood and brain was determined at the time of maximal inhibition, i.e., 30 min after dichlorvos treatment and 45 min after metrifonate treatment. The oral ED50 values obtained for dichlorvos were 8 mg/kg for brain and 6 mg/kg for both erythrocyte and plasma cholinesterase. The corresponding oral ED50 values for metrifonate were 10 to 15 times higher, i.e., 90 mg/kg in brain and 80 mg/kg in erythrocytes and plasma. In rats deprived of food for 18 h before drug treatment, the corresponding ED50 values for metrifonate were 60 and 45 mg/kg, respectively, indicating an about two-fold higher sensitivity of fasted rats to metrifonate-induced cholinesterase inhibition compared to non-fasted rats. Compared to 3-month-old rats, 19-month-old rats showed a higher sensitivity towards metrifonate and dichlorvos. At the time of maximal inhibition, there was a strong correlation between the degree of cholinesterase inhibition in brain and blood. These results demonstrate that single oral administration of metrifonate and dichlorvos induces an inhibition of blood and brain cholinesterase in the conscious rat in a dose-dependent and apparently fully reversible manner. While the efficiency of a given dose of inhibitor may vary with the satiety status or age of the animal, the extent of brain ChE inhibition can be estimated from the level of blood ChE activity.  相似文献   

20.
This study investigated the potential of Azolla pinnata (AP) in the removal of toxic methyl violet 2B (MV) dye wastewater using the phytoextraction approach with the inclusion of an Artificial Neural Network (ANN) modelling. Parameters examined included the effects of dye concentration, pH and plant dosage. The highest removal efficiency was 93% which was achieved at a plant dosage of 0.8 g (dye volume = 200 mL, initial pH = 6.0, initial dye concentration = 10 mg L?1). A significant decrease in relative frond number (RFN), a growth rate estimator, observed at a dye concentration of 20 mg L?1 MV indicated some toxicity, which coincided with the plant pigments studies where the chlorophyll a content was lower than the control. There were little differences in the plant pigment contents between the control and those in the presence of dye (5 to 15 mg L?1) indicating the tolerance of AP to MV at lower concentrations. A three-layer ANN model was optimized (6 neurons in the hidden layer) and successfully predicted the phytoextraction of MV (R = 0.9989, RMSE = 0.0098). In conclusion, AP proved to be a suitable plant that could be used for the phytoextraction of MV while the ANN modelling has shown to be a reliable method for the modelling of phytoextraction of MV using AP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号