首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Pu L  Li Q  Fan X  Yang W  Xue Y 《Genetics》2008,180(2):811-820
  相似文献   

9.
A nuclear low-copy gene phylogeny provides strong evidence for the hybrid origin of seven polyploid species in Geinae (Rosaceae). In a gene tree, alleles at homologous loci in an allopolyploid species are expected to be sisters to orthologues in the ancestral taxa rather than to each other. Alleles at a duplicated locus in an autopolyploid, however, are expected to be more closely related to each other than they are to any orthologous copies in closely related species. We cloned and sequenced about 1.9 kilobases from the 5' end of the GBSSI-1 gene from two diploid, one tetraploid, and six hexaploid species. Each of the three loci in the hexaploid species forms a separate group, two of which are more closely related to copies in other species than they are to each other. This finding indicates that the hexaploid lineage evolved through two consecutive allopolyploidization events. Based on the GBSSI-1 gene tree, we hypothesized that there was an initial hybridization between a diploid species from the ancestral lineage of Coluria and Waldsteinia and an unknown diploid species to form the tetraploid Geum heterocarpum lineage. Backcrossing of G. heterocarpum with a representative of the unknown diploid lineage then resulted in a hexaploid lineage that has radiated considerably since its origin, comprising at least 40 extant species with various morphologies. A penalized likelihood analysis indicated that Geinae may be about 17 million years old, implying that the hypothesized allopolyploid speciation events are relatively ancient. Six of the 22 cloned Geinae GBSSI-1 copies in this study, which all are duplicate copies in polyploid taxa, may have become pseudogenes. We compared the GBSSI-1 phylogeny with one from chloroplast data and explored implications for the evolution of some fruit characters.  相似文献   

10.
11.
The domestication of both diploid and tetraploid cotton species was carried out for fiber utilization. To understand the origin and domestication of fibers, 18 genes related to fiber development were individually cloned and sequenced from 22 different cotton species. Their structures, phylogenetic relationship and molecular evolution were further studied. In the orthologous and homeologous loci of the 18 genes, the sequence and structure of 72.22% were conserved and 27.78% were diverse. Tree topologies constructed based on the combined sequences showed that all 13 D-genome species were congruent with Fryxell's subsection taxonomy, the A- and D-subgenomes independently evolved in the allopolyploid after polyploid formation, and Gossypium raimondii had the closest relationship with all allotetraploids of D-subgenomes. The molecular evolutionary rates revealed approximately equivalent rates among different D-genome species, and purifying selection acted on all genes in the wild D-genome species. Among orthologs and homeologs, the D-subgenomes had higher evolutionary rates than the A-subgenomes in tetraploid cotton species, and the cultivars had higher evolutionary rates than either the semi-domesticated or wild species. Our study revealed that human domestication altered the molecular evolutionary pattern of genes related to fiber development, and Gossypium hirsutum endured greater selective pressures than Gossypium barbadense during the domestication process.  相似文献   

12.
13.
14.
Sucrose synthase (Sus) is a key enzyme in plant sucrose metabolism. In cotton, Sus (EC 2.4.1.13) is the main enzyme that degrades sucrose imported into cotton fibers from the phloem of the seed coat. This study demonstrated that the genomes of Gossypium arboreum L., G. raimondii Ulbr., and G. hirsutum L., contained 8, 8, and 15 Sus genes, respectively. Their structural organizations, phylogenetic relationships, and expression profiles were characterized. Comparisons of genomic and coding sequences identified multiple introns, the number and positions of which were highly conserved between diploid and allotetraploid cotton species. Most of the phylogenetic clades contained sequences from all three species, suggesting that the Sus genes of tetraploid G. hirsutum derived from those of its diploid ancestors. One Sus group (Sus I) underwent expansion during cotton evolution. Expression analyses indicated that most Sus genes were differentially expressed in various tissues and had development-dependent expression profiles in cotton fiber cells. Members of the same orthologous group had very similar expression patterns in all three species. These results provide new insights into the evolution of the cotton Sus gene family, and insight into its members' physiological functions during fiber growth and development.  相似文献   

15.
16.
The R2R3-MYB transcription factor gene family in maize   总被引:2,自引:0,他引:2  
Du H  Feng BR  Yang SS  Huang YB  Tang YX 《PloS one》2012,7(6):e37463
  相似文献   

17.
18.
19.
20.
Comparative development of fiber in wild and cultivated cotton   总被引:10,自引:0,他引:10  
SUMMARY One of the most striking examples of plant hairs is the single-celled epidermal seed trichome of cultivated cotton. The developmental morphology of these commercial "fibers" has been well-characterized in Gossypium hirsutum , but little is known about the pattern and tempo of fiber development in wild Gossypium species, all of which have short, agronomically inferior fiber. To identify developmental differences that account for variation in fiber length, and to place these differences in a phylogenetic context, we conducted SEM studies of ovules at and near the time of flowering, and generated growth curves for cultivated and wild diploid and tetraploid species. Trichome initiation was found to be similar in all taxa, with few notable differences in trichome density or early growth. Developmental profiles of the fibers of most wild species are similar, with fiber elongation terminating at about two weeks post-anthesis. In contrast, growth is extended to three weeks in the A- and F-genome diploids. This prolonged elongation period is diagnosed as a key evolutionary event in the origin of long fiber. A second evolutionary innovation is that absolute growth rate is higher in species with long fibers. Domestication of species is associated with a further prolongation of elongation at both the diploid and allopolyploid levels, suggesting the effects of parallel artificial selection. Comparative analysis of fiber growth curves lends developmental support to previous quantitative genetic suggestions that genes for fiber "improvement" in tetraploid cotton were contributed by the agronomically inferior D-genome diploid parent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号