首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Key message

Eight R2R3 - MYB genes in tartary buckwheat were identified, and their expression patterns were comprehensively analyzed, which reveals role in plant response to abiotic stresses.

Abstract

The proteins of the R2R3-MYB superfamily play key roles in the growth and development processes as well as defense responses in plants. However, their characteristics and functions have not been fully investigated in tartary buckwheat (Fagopyrum tataricum), a strongly abiotic resistant coarse cereal. In this article, eight tartary buckwheat R2R3-MYB genes were isolated with full-length cDNA and DNA sequences. Phylogenetic analysis of the members of the R2R3-MYB superfamily between Arabidopsis and tartary buckwheat revealed that the assumed functions of the eight tartary buckwheat R2R3-MYB proteins are divided into five Arabidopsis functional subgroups that are involved in abiotic stress. Expression analysis during abiotic stress and exogenous phytohormone treatments identified that the eight R2R3-MYB genes responded to one or more treatments. This study is the first comprehensive analysis of the R2R3-MYB gene family in tartary buckwheat under abiotic stress.
  相似文献   

2.
3.
4.
5.
6.
Tartary buckwheat (Fagopyrum tataricum Gaertn.) is highly nutritious and an excellent dietary source of flavonoid compounds. Chalcone synthase (CHS) is the first key enzyme involved in flavonoid biosynthesis. Here, three putative CHS genes (designated as FtCHS1 (GU172165), FtCHS2 (KT284884), and FtCHS3 (KT284885) were isolated from tartary buckwheat. Nucleotide sequence analysis indicated that FtCHS1 and FtCHS2 each contained one intron of 444 bp and 157 bp, respectively. FtCHS3 included two introns, one of 86 bp and another of 73 bp. The results of quantitative real-time PCR (qRT-PCR) showed the FtCHSs expression presented the same pattern in the stems and flowers, with FtCHS1>FtCHS3>FtCHS2. A different tendency was found in leaves, with FtCHS3>FtCHS2>FtCHS1. However, there was no direct correlation between the three CHS expression and total flavonoids. Furthermore, high-performance liquid chromatography (HPLC) performance reveals rutin is the most abundant flavonoid in all tissues, leaves should be the main location for quercetin storage in tartary buckwheat.  相似文献   

7.
8.
9.

Background

The value of apparent diffusion coefficient (ADC) values and quantitative parameters (Ktrans, Kep, Ve) in detecting prognostic factor at 3.0 Tesla remains unclear, especially in predicting prognosis of breast cancer.

Methods

A total of 151 patients with IDC underwent breast DCE-MRI and DWI-MRI at 3.0 Tesla following surgery. The ADC values were acquired with b values of 0 and 1000?s/mm2. The relationship between ADC values or DCE-MRI quantitative parameters and size, histologic grade (HG), lymph node metastasis (LNM), ER, PR, and Ki67 was evaluated. The predictive values of ADC, Ktrans, Kep, and Ve to prognosis of IDC were assessed.

Results

ADC value was positively related to size (P?=?0.04) and HER2 (P?=?0.046) expression and negatively related to ER (P?=?0.012) and PR (P?<?0.001) expression. Ktrans value has positive correlation with size (P?<?0.001), HG (P?<?0.001), LNM (P?<?0.001), HER2 (P?=?0.007), and Ki67 (P?<?0.001) expression and negative correlation with ER (P?<?0.001) and PR (P?<?0.001) expression. Kep value was positively related to size (P?<?0.001) and negatively related to ER (P?<?0.001) and PR (P?<?0.001) expression. Ve value was negatively related to HER2 expression (P?=?0.004). The Cox hazard ratio (HR) of ADC, Ktrans, Kep, and Ve values on survival was 5.26 (P?=?0.093), 1.081 (P?=?0.002), 1.006 (P?=?0.941), and 0.883 (P?=?0.926), respectively.

Conclusions

Ktrans value was a best predictive indicator of HG, LNM, ER, PR, and Ki67 expression, and ADC value was the best predictive indicator of HER2. Preoperative use of the 3.0 Tesla could provide important information to determine the optimal treatment plan.
  相似文献   

10.

Key message

Arabidopsis CK2 α4 subunit regulates the primary root and hypocotyl elongation, lateral root formation, cotyledon expansion, rosette leaf initiation and growth, flowering, and anthocyanin biosynthesis.

Abstract

Casein kinase 2 (CK2) is a conserved tetrameric kinase composed of two α and two β subunits. The inhibition of CK2 activity usually results in severe developmental deficiency. Four genes (CKA1CKA4) encode CK2 α subunit in Arabidopsis. Single mutations of CKA1, CKA2, and CKA3 do not affect the normal growth of Arabidopsis, while the cka1 cka2 cka3 triple mutants are defective in cotyledon and hypocotyl growth, lateral root development, and flowering. The inhibition of CKA4 expression in cka1 cka2 cka3 background further reduces the number of lateral roots and delays the flowering time. Here, we report the characterization of a novel knockout mutant of CKA4, which exhibits various developmental defects including reduced primary root and hypocotyl elongation, increased lateral root density, delayed cotyledon expansion, retarded rosette leaf initiation and growth, and late flowering. The examination of the cellular basis for abnormal root development of this mutant revealed reduced root meristem cells with enhanced RETINOBLASTOMA-RELATED (RBR) expression that promotes cell differentiation in root meristem. Moreover, this cka4-2 mutant accumulates higher anthocyanin in the aerial part and shows an increased expression of anthocyanin biosynthetic genes, suggesting a novel role of CK2 in modulating anthocyanin biosynthesis. In addition, the complementation test using primary root elongation assay as a sample confirms that the changed phenotypes of this cka4-2 mutant are due to the lack of CKA4. Taken together, this study reveals an essential role of CK2 α4 subunit in multiple developmental processes in Arabidopsis.
  相似文献   

11.

Background

Eimeria tenella (E. tenella) is a species of Eimeria that causes haemorrhagic caecal coccidiosis, resulting in major economic losses in the global poultry industry. After E. tenella infection, the amount of ATP and Bax in host cells showed highly significant changes. Therefore, it is necessary to investigate the effects of ATP and Bax on the apoptosis of E. tenella host cells.

Results

The ATP-treated group and the V5-treated group had higher E. tenella infection rates than the untreated group at 24, 48, 72, 96, and 120 h after infection with E. tenella. The results of flow cytometry showed that compared with the control group, the mitochondrial permeability transition pore (MPTP) opening in the untreated group was highly significantly increased (P?<?0.01) at 4, 24, 48, 72, 96, and 120 h. Moreover, results from Hoechst-Annexin V-PI staining and flow cytometry showed that the rates of early apoptosis, late apoptosis, and necrosis in the untreated group were significantly lower (P?<?0.05) or highly significantly lower (P?<?0.01) than those of the control group at 4 h, while the rates of early apoptosis, late apoptosis, and necrosis in the untreated group were higher at varying degrees than those in the control group at 24–120 h (P?<?0.05 or P?<?0.01). After treatment with ATP and Bax inhibitors, the rates of early apoptosis, late apoptosis, and necrosis, in addition to the MPTP opening in both the ATP-treated and V5-treated groups, were significantly lower (P?<?0.05) or highly significantly lower (P?<?0.01) than those in the untreated group.

Conclusions

ATP and Bax play important roles in regulating the apoptosis of E. tenella host cells.
  相似文献   

12.
This work investigated the effect of a 6-day heat acclimation (HA) protocol on myotube metabolic responses at baseline and in response to a subsequent lipopolysaccharide (LPS) challenge. C2C12 myotubes were incubated for 2 h/day at 40 °C for 6 days (HA) or maintained at 37 °C (C). Following 24-h recovery, myotubes were challenged with 500 ng/ml LPS for 2 h, then collected for analysis of protein markers of mitochondrial biogenesis and macronutrient storage. Functional significance of these changes was confirmed with mitochondrial respiration and glycolytic measurements on a Seahorse XF-96 analyzer. HA stimulated mitochondrial biogenesis and increased indicators of mitochondrial content [SIRT1 (+?62%); PGC-1α (+?57%); NRF-1 (+?40%); TFAM (+?141%); CS (+?25%); CytC (+?38%); all p?<?0.05]. Altered lipid biosynthesis enzymes [p-ACCa:ACC (+?59%; p?=?0.04) and FAS (??86%; p?<?0.01)] suggest fatty acid generation may have been downregulated, whereas increased GLUT4 (+?69%; p?<?0.01) and LDH-B (+?366%; p?<?0.01) suggest aerobic glycolytic capacity may have been improved. Mitochondrial biogenesis signaling in HA myotubes was suppressed by 500 ng/ml LPS (PGC-1α, NRF-1, TFAM; all p?> 0.05) but increased LDH-B (+?30%; p?=?0.02) and CPT-1 (+?55%; p?<?0.01) suggesting improved catabolic function. Basal respiration was increased in HA myotubes (+?8%; p?<?0.01) and HA myotubes maintained elevated basal respiration during LPS challenge (+?8%; p?<?0.01). LPS reduced peak respiration in C myotubes (??6%; p?<?0.01) but did not impair peak respiration in HA myotubes (p?>?0.05). Oxidative reliance was elevated in HA over that in control (+?25%; p?<?0.01) and in HA?+?LPS over C?+?LPS (+?30%; p?<?0.01). In summary, HA stimulated mitochondrial biogenesis in C2C12 myotubes. HA myotubes exhibited (1) elevated basal/peak mitochondrial respiration capacities; (2) greater oxidative reliance; and (3) protection against LPS-mediated respiration impairment. Collectively, these data suggest HA may improve aerobic metabolism in skeletal muscle and protect against LPS-mediated energy deficit.  相似文献   

13.
Phalaenopsis species are among the most popular potted flowers for their fascinating flowers. When their whole-genome sequencing was completed, they have become useful for studying the molecular mechanism of anthocyanin biosynthesis. Here, we identified 49 candidate anthocyanin synthetic genes in the Phalaenopsis genome. Our results showed that duplication events might contribute to the expansion of some gene families, such as the genes encoding chalcone synthase (PeCHS), flavonoid 3′-hydroxylase (PeF3′H), and myeloblastosis (PeMYB). To elucidate their functions in anthocyanin biosynthesis, we conducted a global expression analysis. We found that anthocyanin synthesis occurred during the very early flower development stage and that the flavanone 3-hydroxylase (F3H), F3′H, and dihydroflavonol 4-reductase (DFR) genes played key roles in this process. Over-expression of Phalaenopsis flavonoid 3′,5′-hydroxylase (F3′5′H) in petunia showed that it had no function in anthocyanin production. Furthermore, global analysis of sequences and expression patterns show that the regulatory genes are relatively conserved and might be important in regulating anthocyanin synthesis through different combined expression patterns. To determine the functions of MYB2, 11, and 12, we over-expressed them in petunia and performed yeast two-hybrid analysis with anthocyanin (AN)1 and AN11. The MYB2 protein had strong activity in regulating anthocyanin biosynthesis and induced significant pigment accumulation in transgenic plant petals, whereas MYB11 and MYB12 had lower activities. Our work provided important improvement in the understanding of anthocyanin biosynthesis and established a foundation for floral colour breeding in Phalaenopsis through genetic engineering.  相似文献   

14.
15.
16.
Tartary buckwheat (Fagopyrum tataricum Gaertn) has been praised as one of green foods for humans in the 21st century. Effects of fertilization on leaf photosynthetic characteristics and grain yield of tartary buckwheat has not been yet reported in detail. Our experiment was set as a split-plot factorial. The main plots and subplots were designed by fertilizer ratio and rate as: NPK 1:1:1 (A1), NPK 1:4:2 (A2), NPK 1:2:3 (A3), and 300 (B1), 450 (B2), and 600 (B3) kg (NPK) ha–1. Our results showed that the grain yield was significantly and positively correlated with the net photosynthetic rate (P N), stomatal conductance (g s), transpiration rate (E), PAR, stomatal limitation value (Ls), chlorophyll content (SPAD value), and leaf area index (LAI), while significantly and negatively correlated with intercellular CO2 concentration (C i) and water-use efficiency (WUE). The grain yield, P N, g s, E, PAR, Ls, SPAD, and LAI increased and then decreased with enhanced fertilization, and their maximum values appeared in the A2B2 treatment. The C i and WUE decreased and then increased with enhanced fertilization, and their minimum values appeared in the A2B2 treatment. Our results suggested that fertilization had significant effects on the leaf photosynthetic capacity and grain yield of tartary buckwheat Yunqiao 1, and the best fertilization strategy was 450 kg ha–1 with NPK 1:4:2.  相似文献   

17.
The present study aimed to investigate the potential effects of vitamins (C and E)/melatonin co-administration on the hematologic and hepatic functions and oxidative stress in alloxan-induced diabetic rats. The intraperitoneal injection of alloxan (120 mg/kg b.w. for 2 days) induced a significant increase of blood glucose levels (hyperglycemia) associated with serious hematologic disorders (P?<?0.01) evidenced by the decrease in the levels of red blood cell count (RBC) (?18 %), hematocrit (Ht) (?18 %), hemoglobin content (Hb) (?36 %), mean corpuscular hemoglobin (MCH) (?17 %), and mean corpuscular hemoglobin concentration (MCHC) (?16 %). The activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and the plasmatic levels of total cholesterol and triglyceride contents of diabetic rats were, however, noted to undergo significant increases by 42 % (P?<?0.01), 134 % (P?<?0.001), 27.5 % (P?<?0.01), 147 % (P?<?0.001), and 67 % (P?<?0.01), respectively, as compared to the control animals. Furthermore, a significant increase in malondialdehyde (MDA) content and a significant decrease in superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities were observed in the plasma and hepatic tissues of diabetic rats when compared to the controls. Interestingly, the treatment with vitamins (C, E) in combination with melatonin was noted to reduce the plasma levels of glucose, lower the MDA levels, and restore the hematologic parameters and biochemical and antioxidant levels of diabetic rats back to normal values, alleviating diabetes metabolic disorders in rats.  相似文献   

18.

Background

Regulated in development and DNA damage response (REDD1), a gene responding to hypoxia or multiple DNA damage events, was recently implicated in cancer development and progression. Previously, in vivo and in vitro experiments indicated that REDD1 functions as an oncogene in ovarian cancer cells. However, the role of REDD1 in cancer cell migration and invasion and in clinical significance of prognostic values is not examined in detail.

Methods

We detected the REDD1 protein expression by immunohistochemistry in 18 normal ovarian surface epithelium or fallopian tube epithelium specimens, 24 ovarian borderline tumors, and 229 ovarian cancers. Fisher’s exact test, logistic regression analysis, the Kaplan–Meier method, and the log-rank test were used to evaluate the association of REDD1 with clinical factors, overall survival and disease-free survival. The prognostic predictive value of REDD1 for ovarian cancer patients was evaluated using multivariate Cox proportional hazard regression models. REDD1 expression in HEY, HEY A8, SKOV3, SKOV3 ip1, OVCA429, OVCA433 and A2780 human ovarian epithelial cancer cell lines was detected by western blotting. The role of REDD1 in cell invasion and migration was assessed by transwell migration and invasion assays using SKOV3, A2780, HEY, HEYA8, and SKOV3-REDD1 with parental A2780-REDD1 HEY-REDD1i and HEY A8-REDD1i.

Results

High expression of REDD1 was observed in 35.4% of primary ovarian carcinoma samples. Overexpression of cytoplasmic REDD1 in ovarian cancer was significantly associated with serous carcinoma (P?<?0.001), late-stage disease (P?<?0.001), ascites (P?<?0.001), and partial or non-response to chemotherapy (P?<?0.001). High cytoplasmic expression of REDD1 was correlated with poorer overall survival (P?<?0.001) and disease-free survival (P?<?0.001). The multivariate Cox proportional hazards regression analysis indicated that patients with high cytoplasmic REDD1 expression had a high risk of death (P?<?0.001) and high risk of an event (i.e., recurrence, progression, or death) (P?<?0.001). REDD1 was first reported as an independent prognostic factor in ovarian cancer patients. In addition, REDD1 overexpression enhanced ovarian cancer cell migration and invasion.

Conclusion

REDD1 is an independent unfavorable prognostic factor in ovarian carcinoma and may promote ovarian cancer metastasis.
  相似文献   

19.
20.
Lignin is closely related to the lodging resistance of common buckwheat (Fagopyrum esculentum Moench.). However, the characteristics of lignin synthesis related genes have not yet been reported. We investigated the lignin biosynthesis gene expression, activities of related enzymes, and accumulation of lignin monomers during branching stage, bloom stage, and milky ripe stage by real-time quantitative PCR, UVspectrophotometry, and gas chromatography-mass spectrometry in the 2nd internode of three common buckwheat cultivars with different lodging resistance. The results showed that lignin content and the activity of phenylalanine ammonia lyase (PAL), 4-coumarate: CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD) and peroxidase (POD) were closely related to the lodging resistance of common buckwheat. Further, we studied gene expression of cinnamate 4-hydroxylase (C4H), caffeoyl-CoA O-methyltransferase (CCoAOMT), ferulate 5-hydroxylase (F5H), cinnamoyl-CoA reductase (CCR), and caffeic acid O-methyltransferase (COMT). The lignin biosynthesis genes were divided into three classes according to their expression pattern: 1) expression firstly increasing and then descending (PAL, 4CL, CAD, C4H, CCoAOMT, F5H, and CCR), 2) expression remaining constant during maturation (C3H), and 3) expression decreasing with maturation (COMT). The present study provides preliminary insights into the expression of lignin biosynthesis genes in common buckwheat, laying a foundation for further understanding the lignin biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号