首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Raoiella indica Hirst (Acari: Tenuipalpidae) is considered a pest of coconut palm in Asia and the Middle East. This mite was recently introduced in the Americas, where it spread to several countries and expanded its range of hosts, causing heavy losses to coconut and banana production. The phytoseiid mite Amblyseius largoensis (Muma) is one of the predators most often encountered in coconut palms. Because the current prospects for the control of R. indica in the New World indicate the use of acaricides and the management of their natural enemies, the objective of this study was to evaluate the toxicity of selected acaricides to R. indica and the selectivity (i.e., toxicity to the predator relative to toxicity to the prey) for A. largoensis. Assays were performed by the immersion of banana leaf discs in acaricide solutions, followed by the placing of adult females of the pest or predator on the discs. Mortality of the mites was evaluated after 24 h, and the data obtained were subjected to probit analysis. Abamectin, fenpyroximate, milbemectin and spirodiclofen were the products most toxic to R. indica adults, whereas fenpyroximate and spirodiclofen were the most selective for A. largoensis.  相似文献   

2.
The red palm mite (RPM), Raoiella indica Hirst (Acari: Tenuipalpidae), is an invasive phytophagous mite that was recently introduced into The Americas. The predatory mite Amblyseius largoensis Muma (Acari: Phytoseiidae) has been the only natural enemy consistently found in association with RPM. This study aimed to determine if A. largoensis populations from the Indian Ocean Islands (La Réunion and Mauritius) and the Americas (Brazil, Trinidad and Tobago and the USA) consist a taxonomic unit or a group of cryptic species. First, the morphological variability among the A. largoensis populations from these areas was evaluated through morphometric analyses of 36 morphological traits. Then, their genetic variability and phylogenetic relationships were assessed based on two target DNA fragments: the nuclear Internal Transcribed Spacer and the mithochondrial 12S rRNA. Finally, reproductive compatibility of the populations from La Réunion and Roraima, Brazil was evaluated. Morphometric differences between the A. largoensis specimens from La Réunion Island and the Americas were observed, most of them on the length of the setae. Molecular analysis indicated that the A. largoensis populations from the Indian Ocean Islands and the Americas belong to the same taxonomic entity, although to two well defined genetic groups. Crossings involving the A. largoensis populations from La Réunion Island and Roraima, Brazil revealed complete reproductive compatibility between these populations. Information on the morphometric and genetic variability among studied A. largoensis populations can be further exploited in future studies to follow colonization of Indian Ocean Islands populations in the Americas, in the case of field releases.  相似文献   

3.
Raoiella indica (Acari: Tenuipalpidae) is a phytophagous mite that recently invaded the Neotropical region. A predatory mite Amblyseius largoensis (Acari: Phytoseiidae) has been found associated with R. indica in Florida. This study evaluated A. largoensis by determining its likelihood of consuming eggs and larvae of R. indica and Tetranychus gloveri (Acari: Tetranychidae) under no-choice and choice conditions. To detect variations in the response of A. largoensis to R. indica, four populations of predators were examined: (1) predators reared exclusively on R. indica in the laboratory for 2 years, (2) predators reared on T. gloveri in the laboratory for 2 months but reared on R. indica for 2 years previously, (3) predators collected from a field infested with R. indica, and (4) predators collected from a field that had never been infested with R. indica. Results of this study suggest that A. largoensis is likely to accept and consume high numbers of R. indica eggs regardless of their previous feeding experience. In contrast, all populations consumed relatively fewer R. indica larvae than the other prey tested. Predators previously exposed to R. indica were more likely to consume R. indica larvae. By contrast, predators not previously exposed to R. indica showed the lowest likelihood of choosing to feed on this prey item. Plasticity in the response of A. largoensis to R. indica larvae could be associated to selection, learning, or a combination of both. The possible implications of the observed differences in terms of biological control of R. indica are discussed.  相似文献   

4.
The red palm mite, Raoiella indica (Acari: Tenuipalpidae), is an important pest of palms (Arecaceae) and other species within the Zingiberaceae, Musaceae and Strelitziaceae families. Raoiella indica was discovered in the USA (Palm Beach and Broward counties, Florida) late in 2007, and it subsequently spread to other Florida counties. The predatory mite Amblyseius largoensis (Acari: Phytoseiidae) has been found associated with R. indica in Florida. In order to verify whether A. largoensis can develop and reproduce when feeding exclusively on R. indica, the biology of this predator was evaluated on various food sources, including R. indica. Five diets [R. indica, Tetranychus gloveri¸ Aonidiella orientalis, Nipaecocus nipae, oak (Quercus virginiana) pollen] and a no-food control were tested to determine the predators’ development, survivorship, oviposition rate, sex ratio and longevity at 26.5 ± 1°C, 70 ± 5% RH and a 12:12 L:D photophase. Amblyseius largoensis was able to complete its life cycle and reproduce when fed exclusively on R. indica. The development of immature stages of A. largoensis was faster and fecundity and survivorship were higher when fed on R. indica or T. gloveri compared to the other food sources. The intrinsic rate of natural increase of A. largoensis was significantly higher when fed on R. indica than on other diets. These results suggest that, despite earlier assessments, A. largoensis can play a role in controlling R. indica.  相似文献   

5.
The red palm mite (RPM), Raoiella indica Hirst (Acari: Tenuipalpidae), is an invasive pest in the New World, where it is currently considered a serious threat to coconut and banana crops. It was first reported from northern Venezuela in 2007. To determine its current distribution in this country, surveys were carried out from October 2008 to April 2010 on coconut (Cocos nucifera L.), banana (Musa spp.), ornamental plants and weeds in northern Venezuela. Higher population levels of RPM were registered on commercial coconut farms in Falcón and Sucre states but also on other plant species naturally growing along the coastal line in Anzoategui, Aragua, Carabobo, Monagas and Nueva Esparta states. Out of 34 botanical species evaluated, all RPM stages were observed only on eight arecaceous, one musaceous and one streliziaceous species, indicating that the pest developed and reproduced only on these plants. Mite specimens found on weeds were considered spurious events, as immature stages of the pest were never found on these. Amblyseius largoensis (Muma) (Acari: Phytoseiidae) was the most frequent predatory mite associated with RPM in all sampling sites. The results indicate that RPM has spread to extensive areas of northern Venezuela since its initial detection in Güiria, Sucre state. Considering the report of this pest mite in northern Brazil in the late 2009, additional samplings in southern Venezuela should be carried out, to evaluate the possible presence of RPM also in that region.  相似文献   

6.
The red palm mite (RPM), Raoiella indica (Hirst) (Acari: Tenuipalpidae), was found for the first time in the Paraná State, in southern Brazil. The first observations occurred in September 2015, on strawberry (Fragaria × ananassa Duch) leaves, which is not considered a typical host plant of RPM. It is probable that its occurrence on this plant was serendipitous. Visual surveys for RPM were carried out on four typical host plants (banana, coconut, foxtail palm, and real palm), in five cities of the Paraná State (Bela Vista do Paraíso, Londrina, Maringá, Marialva, and Sarandi). RPM was found on each of the four typical host plants, in each of the five cities. Our survey extends RPM occurrence to the southern region of Brazil and indicates that the pest could be widespread in the country.  相似文献   

7.
The accurate characterization of biological control agents is a key step in control programs. Recently, Amblyseius largoensis from Thailand were introduced in Brazil to evaluate their efficiency for the control of the red palm mite, Raoiella indica. The aim of this study was to confirm their identification and to characterize the population from Thailand, comparing it to populations of the Americas and Indian Ocean islands. In addition, a population of A. largoensis from New Caledonia, Oceania, of which DNA sequences were available, was included in phylogenetic analyses. Morphometric data obtained for the population of A. largoensis from Thailand were compared to those of populations from Reunion Island and the Americas through univariate and multivariate analyses. Two DNA fragments were amplified and sequenced: the nuclear ribosomal region ITSS and the mitochondrial 12S rRNA. Haplotypes (12S rRNA) and genotypes (ITSS) were identified and phylogenetic analyses using both fragments were conducted separately and combined using maximum likelihood and the Bayesian information criterion. The integrative approach reveals morphometric and molecular variabilities among populations of A. largoensis and shows that the population identified as A. largoensis collected in Thailand, as well as that from New Caledonia, are conspecific to the populations of the Americas and Indian Ocean islands. Populations from the Americas and Asia are more related to each other than with that from the Indian Ocean islands. Hypotheses to explain this clustering are proposed. Data on the molecular intraspecific variability of this predatory mite from remote areas will be helpful for the development of molecular diagnosis.  相似文献   

8.
The red palm mite Raoiella indica Hirst (Tenuipalpidae) was first reported in the New World in 2004, dispersing quickly and widely while adopting new plant species as hosts. Since then, it has caused severe damage in this region, especially to coconut (Cocos nucifera L.). It was first found in Brazil in 2009, in the northern Amazonian state of Roraima. In the present study, native and introduced plants were sampled between March 2010 and February 2011 in sites of the 15 Roraima municipalities, to estimate its distribution and the associated mite fauna. In addition, monthly samples were taken from a coconut plantation in Mucajaí throughout the same period, for an initial appraisal of the levels R. indica could reach. It was found in 10 municipalities, on 19 plant species of four families. Six species are reported for the first time as hosts. Among the associated predators, 89.1% were Phytoseiidae, most commonly Amblyseius largoensis (Muma), Iphiseiodes zuluagai Denmark & Muma and Euseius concordis (Chant). The highest densities of R. indica, 1.5 and 0.35 mites/cm2 of leaflet (approx total of 331 and 77 mites/leaflet), were reached respectively in March 2010 and February 2011. The highest density of phytoseiids on coconut (0.009 mites/cm2 or about 2 mites/leaflet) was reached in November 2010. The average densities of R. indica recorded for Roraima were comparable to those reported for countries in which the mite is reportedly economically damaging. The dispersal of R. indica through the Amazon forest may result in damage to cultivated and native palms, and plants of other families, if the projected increase in both the frequency and the severity of drought events occurs. Parts of the Amazon have undergone periods of low rainfall, a condition that appears to favour the biology of this mite. Its eventual arrival to northeastern Brazil may result in heavy economic and ecological losses.  相似文献   

9.
Among pests that have recently been introduced into the Americas, the red palm mite, Raoiella indica Hirst (Prostigmata: Tenuipalpidae), is the most invasive. This mite has spread rapidly to several Caribbean countries, United States of America, Mexico, Venezuela, Colombia and Brazil. The potential dispersion of R. indica to other regions of South America could seriously impact the cultivation of coconuts, bananas, exotic and native palms and tropical flowers such as the Heliconiaceae. To facilitate the development of efficacious R. indica management techniques such as the adoption of phytosanitary measures to prevent or delay the dispersion of this pest, the objective of this paper was to estimate the potential geographical distribution of R. indica in South America using a maximum entropy model. The R. indica occurrence data used in this model were obtained from extant literature, online databases and field sampling data. The model predicted potential suitable areas for R. indica in northern Colombia, central and northern Venezuela, Guyana, Suriname, east French Guiana and many parts of Brazil, including Roraima, the eastern Amazonas, northern Pará, Amapá and the coastal zones, from Pará to north of Rio de Janeiro. These results indicate the potential for significant R. indica related economic and social impacts in all of these countries, particularly in Brazil, because the suitable habitat regions overlap with agricultural areas for R. indica host plants such as coconuts and bananas.  相似文献   

10.
The presence of the red palm mite, Raoiella indica Hirst, is reported for the first time in Brazil. This invasive mite was found in July 2009 infesting coconut palms and bananas in urban areas of Boa Vista, State of Roraima, in northern Brazil. Comments on the possible pathways of R. indica into the country, present and potential impact of its introduction and mitigating measures to prevent or to delay the mite spread in Brazil are presented.  相似文献   

11.
Although coconut (Cocos nucifera L.) is the predominant host for Raoiella indica Hirst (Acari: Tenuipalpidae), false spider mite infestations do occur on bananas and plantains (Musa spp. Colla). Since its introduction, the banana and plantain industries have been negatively impacted to different degrees by R. indica infestation throughout the Caribbean. Genetic resistance in the host and the proximity of natural sources of mite infestation has been suggested as two of the main factors affecting R. indica densities in Musa spp. plantations. Greenhouse experiments were established to try to determine what effect coconut palm proximities and planting densities had on R. indica populations infesting Musa spp. plants. Trials were carried out using potted Musa spp. and coconut palms plants at two different ratios. In addition, fourteen Musa spp. hybrid accessions were evaluated for their susceptibility/resistance to colonization by R. indica populations. Differences were observed for mite population buildup for both the density and germplasm accession evaluations. These results have potential implications on how this important pest can be managed on essential agricultural commodities such as bananas and plantains.  相似文献   

12.
The red palm mite (RPM), Raoiella indica Hirst, is a predominant pest of coconuts, date palms and other palm species, as well as a major pest of bananas (Musa spp.) in different parts of the world. Recently, RPM dispersed throughout the Caribbean islands and has reached both the North and South American continents. The RPM introductions have caused severe damage to palm species, and bananas and plantains in the Caribbean region. The work presented herein is the result of several acaricide trials conducted in Puerto Rico and Florida on palms and bananas in order to provide chemical control alternatives to minimize the impact of this pest. Spiromesifen, dicofol and acequinocyl were effective in reducing the population of R. indica in coconut in Puerto Rico. Spray treatments with etoxanole, abamectin, pyridaben, milbemectin and sulfur showed mite control in Florida. In addition, the acaricides acequinocyl and spiromesifen were able to reduce the population of R. indica in banana trials.  相似文献   

13.
The coconut mite, Aceria guerreronis Keifer, is one of the main pests of coconut palms (Cocos nucifera) in northeastern Brazil. The objective of this study was to evaluate the levels of the coconut mite and other mites on coconut palms in the state of S?o Paulo and to estimate the possible role of predatory mites in the control of this pest. The effect of cultivated genotypes and sampling dates on the mite populations was also estimated. We sampled attached fruits, leaflets, inflorescences, and fallen fruits. The coconut mite was the main phytophagous mite found on attached and fallen fruits, with average densities of 110.0 and 20.5 mites per fruit, respectively. The prevalent predatory mites on attached and fallen fruits were Proctolaelaps bulbosus Moraes, Reis & Gondim Jr. and Proctolaelaps bickleyi (Bram), both Melicharidae. On leaflets, the tenuipalpids Brevipalpus phoenicis (Geijsks) and Tenuipalpus coyacus De Leon and the tetranychid Oligonychus modestus (Banks) were the predominant phytophagous mites. On both leaflets and inflorescences, the predominant predatory mites belonged to the Phytoseiidae. Neoseiulus baraki (Athias-Henriot) and Neoseiulus paspalivorus (De Leon), predators widely associated with the coconut mite in northeastern Brazil and several other countries, were not found. The low densities of the coconut mite in S?o Paulo could be related to prevailing climatic conditions, scarcity of coconut plantations (hampering the dispersion of the coconut mite between fields), and to the fact that some of the genotypes cultivated in the region are unfavorable for its development.  相似文献   

14.
Aceria guerreronis Keifer (Acari: Eriophyidae) is considered a major pest of the coconut (Cocos nucifera L.), and the use of pesticides is the current method to control it. However, no standard toxicological tests exist to select and assess the efficiency of molecules against the coconut mite. The aim of this study was to develop a methodology that allows for the evaluation of the relative toxicity of acaricides to A. guerreronis through rapid laboratory procedures. We confined A. guerreronis on arenas made out of coconut leaflets and tested two application methods: immersing the leaf fragments in acaricides and spraying acaricides on the leaf fragments under a Potter spray tower. In the latter application method, we sprayed leaf fragments both populated with and devoid of mites. We evaluated the comparative toxicity of two populations (Itamaracá and Petrolina, Pernambuco, Brazil) by spraying on leaflets without mites and submitted the mortality data to probit analysis after 24 h of exposure. No difference was observed in the LC50, regardless of whether the leaflets were immersed or sprayed with acaricide (abamectin, chlorfenapyr or fenpyroximate). The toxicity of chlorfenapyr and fenpyroximate did not differ, irrespective of whether it was applied directly to the leaflet or to the mite; however, the toxicity of abamectin was higher when applied directly to the mite. Chlorpyrifos and abamectin toxicities were lower for the Petrolina population than for the Itamaracá population. Immersing and spraying coconut leaflets can be used to assess the mortality of A. guerreronis under laboratory conditions.  相似文献   

15.
《Journal of Asia》2023,26(1):102012
Atheloca bondari Heinrich is an opportunistic lepidopteran that uses necrosis caused by the mite Aceria guerreronis Keifer, the most important pest of the coconut palm, to access the meristematic region of coconuts. Because of this moth-mite positive association, pesticides used to control A. guerreronis (abamectin, azadirachtin, fenpyroximate, and pyridaben) may impact A. bondari caterpillar behavior and/or survival. Thus, we used three methodologies (toothpick, triangle, and mesocarp fragment) to evaluate mortality caused by abamectin, the most commonly used pesticide to control A. guerreronis. The toothpick method proved to be suitable for toxicity tests of A. bondari caterpillars. Subsequently, the mortality caused by these four pesticides was evaluated, and abamectin caused 100% mortality in A. bondari caterpillars. Abamectin showed higher toxicity than the other pesticides to A. bondari caterpillars, with LC50 and LC95 values of 1.35 and 3.64 mg/L, respectively. The preference test showed that A. bondari caterpillars infested pesticide-treated fruits in the same proportion as untreated fruits. In the behavioral test, A. bondari caterpillars showed lower locomotor speed when exposed to surfaces with abamectin, azadirachtin, and fenpyroximate residues. Our study presented that pesticides used to control A. guerreronis affect the behavior and survival of A. bondari caterpillars. We discuss how spraying these pesticides can indirectly control the population of A. bondari, reducing the impact of this moth on coconut production, and modifying the importance of this species as a pest of coconut palm.  相似文献   

16.
The citrus rust mite (CRM), Phyllocoptruta oleivora (Acari: Eriophyidae) is a cosmopolitan key pest of citrus, inflicting severe economic damage if not controlled. In Israel, CRM damages all citrus cultivars. International regulation and increasing control failures of CRM led growers to seek sustainable biological control solutions such as acarine biological control agents. Laboratory studies conducted in Israel have indicated that the indigenous predator species Amblyseius swirskii, Iphiseius degenerans, Typhlodromus athiasae and Euseius scutalis (all Acari: Phytoseiidae) can potentially control CRM. Our general objective in the present study was to bridge the gap of knowledge between laboratory studies and the lack of control efficacy of these species in commercial orchards. Predator augmentation in the field showed that although predator populations increased immediately following releases they later decreased and did not affect CRM populations. When A. swirskii augmentation was combined with a series of maize pollen applications, A. swirskii populations were enhanced substantially and continuously but again CRM populations were not affected. Growth chamber studies with CRM-infested seedlings, with or without a maize pollen supplement, indicated that pollen provisioning led to population increase of E. scutalis and A. swirskii but only E. scutalis significantly lowered CRM populations. Control with E. scutalis was confirmed in the field on CRM infested seedlings with pollen provisioned by adjacent flowering Rhodes grass. While experiments in mature citrus orchard showed that pollen supplement usually increased predator populations they also indicated that other factors such as intraguild interactions and pesticide treatments should be taken into account when devising CRM biological control programs.  相似文献   

17.
The coconut palm is an important crop in the sub arid coastal plain of Dhofar, Oman, for the high demand for its nut water and its use as ornamental plant. Damage of coconut fruits by the eriophyid mite Aceria guerreronis Keifer was first reported in that region in the late 1980s, but background information about the ecology of the pest in Oman was missing. Four surveys were conducted in different seasons from 2008 to 2009, to assess the distribution and prevalence of the coconut mite and its damage as well as the presence of natural enemies. Infestation by the coconut mite was conspicuous on most (99.7 %) palm trees, with 82.5 % damaged fruits. The average (±SE) density of coconut mites per fruit was 750 ± 56; this level of infestation led to the incidence of over 25 % of surface damage on more than half of the fruits. The mite appeared more abundant at the end of the cold season through the summer. No significant differences were observed between infestation levels on local varieties, hybrids and on dwarf varieties. Neoseiulus paspalivorus (De Leon), Cydnoseius negevi (Swirski & Amitai) and Amblyseius largoensis (Muma) were the predatory mites found under the bracts of over 30 % of the coconut fruits and on 68 % of the coconut trees. Considering all sampling dates and all varieties together, average (± SE) phytoseiid density was 1.4 ± 1.19 per fruit. Other mites found in the same habitat as A. guerreronis included the tarsonemids Steneotarsonemus furcatus De Leon and Nasutitarsonemus omani Lofego & Moraes. The pathogenic fungus Hirsutella thompsonii Fisher was rarely found infecting the coconut mite in Dhofar. Other fungal pathogens, namely Cordyceps sp. and Simplicillium sp., were more prevalent.  相似文献   

18.
Raoiella indica Hirst (Acari: Tenuipalpidae) is a phytophagous mite that recently invaded the Western Hemisphere. This mite is a multivoltine and gregarious species that can reach very high population densities and cause significant damage to various palm species (Arecaceae). The predatory mite Amblyseius largoensis (Muma) (Acari: Phytoseiidae) has been found associated with R. indica in Florida. This study evaluated A. largoensis for potential to control R. indica by (1) determining predator preferences among developmental stages of R. indica, and (2) estimating predator functional and numerical responses to varying densities of its most preferred prey-stage. Under no-choice conditions A. largoensis consumed significantly more eggs than other stages of R. indica. In choice tests A. largoensis showed a significant preference for R. indica eggs over all other prey stages. Amblyseius largoensis displayed a type II functional response showing an increase in number of prey killed with an increase in prey population density. Consumption of prey stabilized at approximately 45 eggs/day, the level at which oviposition by the predator was maximized (2.36?±?0.11 eggs/day; mean?±?SEM). Results of this study suggest that A. largoensis can play a role in controlling R. indica populations, particularly when prey densities are low.  相似文献   

19.
Synthetic pesticide use has been the dominant form of pest control since the 1940s. However, biopesticides are emerging as sustainable pest control alternatives, with prevailing use in organic agricultural production systems. Foremost among botanical biopesticides is the limonoid azadirachtin, whose perceived environmental safety has come under debate and scrutiny in recent years. Coconut production, particularly organic coconut production, is one of the agricultural systems in which azadirachtin is used as a primary method of pest control for the management of the invasive coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae). The management of this mite species also greatly benefits from predation by Neoseiulus baraki (Athias-Henriot) (Acari: Phytoseiidae). Here, we assessed the potential behavioral impacts of azadirachtin on the coconut mite predator, N. baraki. We explored the effects of this biopesticide on overall predator activity, female searching time, and mating behavior and fecundity. Azadirachtin impairs the overall activity of the predator, reducing it to nearly half; however, female searching was not affected. In contrast, mating behavior was compromised by azadirachtin exposure particularly when male predators were exposed to the biopesticide. Consequently, predator fecundity was also compromised by azadirachtin, furthering doubts about its environmental safety and selectivity towards biological control agents.  相似文献   

20.
Over the past 30 years the coconut mite Aceria guerreronis Keifer has emerged as one of the most important pests of coconut and has recently spread to most coconut production areas worldwide. The mite has not been recorded in the Indo-Pacific region, the area of origin of coconut, suggesting that it has infested coconut only recently. To investigate the geographical origin, ancestral host associations, and colonization history of the mite, DNA sequence data from two mitochondrial and one nuclear region were obtained from samples of 29 populations from the Americas, Africa and the Indo-ocean region. Mitochondrial DNA 16S ribosomal sequences were most diverse in Brazil, which contained six of a total of seven haplotypes. A single haplotype was shared by non-American mites. Patterns of nuclear ribosomal internal transcribed spacer (ITS) variation were similar, again with the highest nucleotide diversity found in Brazil. These results suggest an American origin of the mite and lend evidence to a previous hypothesis that the original host of the mite is a non-coconut palm. In contrast to the diversity in the Americas, all samples from Africa and Asia were identical or very similar, consistent with the hypothesis that the mite invaded these regions recently from a common source. Although the invasion routes of this mite are still only partially reconstructed, the study rules out coconut as the ancestral host of A. guerreronis, thus prompting a reassessment of efforts using quarantine and biological control to check the spread of the pest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号