首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Quinolinic acid is an excitotoxic kynurenine pathway metabolite, the concentration of which increases in human brain during immune activation. The present study compared quinolinate responses to systemic and brain immune activation in gerbils and rats. Global cerebral ischemia in gerbils, but not rats, increased hippocampus indoleamine-2,3-dioxygenase activity and quinolinate levels 4 days postinjury. In a rat focal ischemia model, small increases in quinolinate concentrations occurred in infarcted regions on days 1, 3, and 7, although concentrations remained below serum values. In gerbils, systemic immune activation by an intraperitoneal injection of endotoxin (1 mg/kg of body weight) increased quinolinate levels in brain, blood, lung, liver, and spleen, with proportional increases in lung indoleamine-2,3-dioxygenase activity at 24 h postinjection. In rats, however, no significant quinolinate content changes occurred, whereas lung indoleamine-2,3-dioxygenase activity increased slightly. Gerbil, but not rat, brain microglia and peritoneal monocytes produced large quantities of [13C6]-quinolinate from l -[13C6]tryptophan. Gerbil astrocytes produced relatively small quantities of quinolinate, whereas rat astrocytes produced no detectable amounts. These results demonstrate that the limited capacity of rats to replicate elevations in brain and blood quinolinic acid levels in response to immune activation is attributable to blunted increases in local indoleamine-2,3-dioxygenase activity and a low capacity of microglia, astrocytes, and macrophages to convert l -tryptophan to quinolinate.  相似文献   

2.
The kynurenine pathway is the major tryptophan degradation routes generating bioactive compounds important in physiology and diseases. Depending on cell type it is initiated enzymatically by tryptophan-2,3-dioxygenase (TDO) or indoleamine-2,3-dioxygenase 1 and 2 (IDO1 and IDO2) to yield N-formylkynurenine as the precursor of further metabolites. Herein, we describe an accurate high-pressure liquid chromatography coupled with a diode array detector (HPLC-DAD) method to serve for IDO1 activity determination in human cancer cells cultured in vitro. Enzymatic activity was expressed as the rate of ʟ-kynurenine generation by 1 mg of proteins obtained from cancer cells. Our approach shows the limit of detection and limit of quantification at 12.9 and 43.0 nM Kyn, respectively. Applicability of this method was demonstrated in different cells (ovarian and breast cancer)exposed to various conditions and has successfully passed the validation process. This approach presents a useful model to study the role of kynurenine pathway in cancer biology.  相似文献   

3.
The activity and expression of indoleamine 2,3-dioxygenase together with L-tryptophan transport has been examined in cultured human breast cancer cells. MDA-MB-231 but not MCF-7 cells expressed mRNA for indoleamine 2,3-dioxygenase. Kynurenine production by MDA-MB-231 cells, which was taken as a measure of enzyme activity, was markedly stimulated by interferon-gamma (1000 units/ml). Accordingly, L-tryptophan utilization by MDA-MB-231 cells was enhanced by interferon-gamma. 1-Methyl-DL-tryptophan (1 mM) inhibited interferon-gamma induced kynurenine production by MBA-MB-231 cells. Kynurenine production by MCF-7 cells remained at basal levels when cultured in the presence of interferon-gamma. L-Tryptophan transport into MDA-MB-231 cells was via a Na(+)-independent, BCH-sensitive pathway. It appears that system L (LAT1/CD98) may be the only pathway for l-tryptophan transport into these cells. 1-Methyl-D,L-tryptophan trans-stimulated l-tryptophan efflux from MDA-MB-231 cells and thus appears to be a transported substrate of system L. The results suggest that system L plays an important role in providing indoleamine-2,3-dioxygenase with its main substrate, L-tryptophan, and suggest a mechanism by which estrogen receptor-negative breast cancer cells may evade the attention of the immune system.  相似文献   

4.
目的:通过细胞培养和在体实验探讨吲哚胺2,3-双加氧酶(indoleamine 2,3-dioxygenase,IDO)基因转染后对肝癌细胞凋亡的影响及相关细胞免疫机制的研究.方法:提取健康人外周血中的T细胞利用细胞培养和基因转染技术将T细胞和肝癌细胞混合培养.实验分为6组:根据是否加入D-1-MT分为未干预组和干预组...  相似文献   

5.
The activity and expression of indoleamine 2,3-dioxygenase together with l-tryptophan transport has been examined in cultured human breast cancer cells. MDA-MB-231 but not MCF-7 cells expressed mRNA for indoleamine 2,3-dioxygenase. Kynurenine production by MDA-MB-231 cells, which was taken as a measure of enzyme activity, was markedly stimulated by interferon-γ (1000 units/ml). Accordingly, l-tryptophan utilization by MDA-MB-231 cells was enhanced by interferon-γ. 1-Methyl-dl-tryptophan (1 mM) inhibited interferon-γ induced kynurenine production by MBA-MB-231 cells. Kynurenine production by MCF-7 cells remained at basal levels when cultured in the presence of interferon-γ. l-Tryptophan transport into MDA-MB-231 cells was via a Na+-independent, BCH-sensitive pathway. It appears that system L (LAT1/CD98) may be the only pathway for l-tryptophan transport into these cells. 1-Methyl-d,l-tryptophan trans-stimulated l-tryptophan efflux from MDA-MB-231 cells and thus appears to be a transported substrate of system L. The results suggest that system L plays an important role in providing indoleamine-2,3-dioxygenase with its main substrate, l-tryptophan, and suggest a mechanism by which estrogen receptor-negative breast cancer cells may evade the attention of the immune system.  相似文献   

6.
Accumulation of the neurotoxin quinolinic acid within the brain occurs in a broad spectrum of patients with inflammatory neurologic disease and may be of neuropathologic significance. The production of quinolinic acid was postulated to reflect local induction of indoleamine 2,3-dioxygenase by cytokines in reactive cells and inflammatory cell infiltrates within the central nervous system. To test this hypothesis, macaques received an intraspinal injection of poliovirus as a model of localized inflammatory neurologic disease. Seventeen days later, spinal cord indoleamine 2,3-dioxygenase activity and quinolinic acid concentrations in spinal cord and cerebrospinal fluid were both increased in proportion to the degree of inflammatory responses and neurologic damage in the spinal cord, as well as the severity of motor paralysis. The absolute concentrations of quinolinic acid achieved in spinal cord and cerebrospinal fluid exceeded levels reported to kill spinal cord neurons in vitro. Smaller increases in indoleamine 2,3-dioxygenase activity and quinolinic acid concentrations also occurred in parietal cortex, a poliovirus target area. In frontal cortex, which is not a target for poliovirus, indoleamine 2,3-dioxygenase was not affected. A monoclonal antibody to human indoleamine 2,3-dioxygenase was used to visualize indoleamine 2,3-dioxygenase predominantly in grey matter of poliovirus-infected spinal cord, in conjunction with local inflammatory lesions. Macrophage/monocytes in vitro synthesized [13C6]quinolinic acid from [13C6]L-tryptophan, particularly when stimulated by interferon-gamma. Spinal cord slices from poliovirus-inoculated macaques in vitro also converted [13C6]L-tryptophan to [13C6]quinolinic acid. We conclude that local synthesis of quinolinic acid from L-tryptophan within the central nervous system follows the induction of indoleamine-2,3-dioxygenase, particularly within macrophage/microglia. In view of this link between immune stimulation and the synthesis of neurotoxic amounts of quinolinic acid, we propose that attenuation of local inflammation, strategies to reduce the synthesis of neuroactive kynurenine pathway metabolites, or drugs that interfere with the neurotoxicity of quinolinic acid offer new approaches to therapy in inflammatory neurologic disease.  相似文献   

7.
Accumulation of l -kynurenine and quinolinic acid (QUIN) in the brain occurs after either ischemic brain injury or after systemic administration of pokeweed mitogen. Although conversion of l -[13C6]tryptophan to [13C6]-QUIN has not been demonstrated in brain either from normal gerbils or from gerbils given pokeweed mitogen, direct conversion in brain tissue does occur 4 days after transient cerebral ischemia. Increased activities of enzymes distal to indoleamine-2,3-dioxygenase may determine whether l -kynurenine is converted to QUIN. One day after 10 min of cerebral ischemia, the activities of kynureninase and 3-hydroxy-3,4-dioxygenase were increased in the hippocampus, but local QUIN levels and the activities of the indoleamine-2,3-dioxygenase and kynurenine-3-hydroxylase were unchanged. By days 2 and 4 after ischemia, however, the activities of all of these enzymes in the hippocampus as well as QUIN levels were significantly increased. Kynurenine aminotransferase activity in the hippocampus was unchanged on days 1 and 2 after ischemia but was decreased on day 4, at a time when local kynurenic acid levels were unchanged. A putative precursor of QUIN, [13C6]anthranilic acid, was not converted to [13C6]-QUIN in the hippocampus of either normal or 4-day postischemic gerbils. Gerbil macrophages stimulated by endo-toxin in vitro converted l -[13C6]tryptophan to [13Ce]QUIN. Kinetic analysis of kynurenine-3-hydroxylase activity in the cerebral cortex of postischemic gerbils showed that Vmax increased, without changes in Km. Systemic administration of pokeweed mitogen increased indoleamine-2,3-dioxygenase and kynureninase activities in the brain without significant changes in kynurenine-3-hydroxylase or 3-hydroxyanthranilate-3,4-dioxygenase activities. Increases in kynurenine-3-hydroxylase activity, in conjunction with induction of indoleamine-2,3-dioxygenase, kynureninase, and 3-hydroxyanthranilate-3,4-dioxygenase in macro-phage infiltrates at the site of brain injury, may explain the ability of postischemic hippocampus to convert l -[13C6]tryptophan to [13C6]QUIN.  相似文献   

8.
Many bacteria biosynthesize 3,4-dihydroxyphenylacetate 2,3-dioxygenases for growth on aromatic acids, but gram-negative organisms have been most extensively studied. A gram-positive strain containing 2,3-dioxygenase activity was identified as Arthrobacter strain Mn-1. The 2,3-dioxygenase from strain Mn-1 was purified to homogeneity by fast protein liquid chromatography with a Mono Q anion-exchange column. Rabbit polyclonal antidioxygenase antibodies were prepared. Ouchterlony double-diffusion and Western blotting (immunoblotting) protocols were used to probe the distribution of the Mn-1 dioxygenase antigen in soil bacteria. Fourteen 2,3-dioxygenase-containing Bacillus and Pseudomonas strains did not contain immunologically cross-reactive proteins. Six of eight Arthrobacter strains contained 2,3-dioxygenase activity, and all of them produced cross-reactive proteins. The data presented here suggest that a unique type of dioxygenase is geographically widespread but is taxonomically confined to Arthrobacter soil bacteria.  相似文献   

9.
Gamma interferon (IFN-gamma)-mediated indoleamine-2,3-dioxygenase (IDO) activity in human astrocytoma cells and in native astrocytes was found to be responsible for the inhibition of herpes simplex virus replication. The effect is abolished in the presence of excess amounts of L-tryptophan. Both IFN-alpha and IFN-beta restricted herpes simplex virus replication in both cell types, but (in contrast to the results seen with IFN-gamma) the addition of an excess amount of L-tryptophan did not inhibit the induced antiviral effect.  相似文献   

10.
P E Olson  B Qi  L Que  Jr    L P Wackett 《Applied microbiology》1992,58(9):2820-2826
Many bacteria biosynthesize 3,4-dihydroxyphenylacetate 2,3-dioxygenases for growth on aromatic acids, but gram-negative organisms have been most extensively studied. A gram-positive strain containing 2,3-dioxygenase activity was identified as Arthrobacter strain Mn-1. The 2,3-dioxygenase from strain Mn-1 was purified to homogeneity by fast protein liquid chromatography with a Mono Q anion-exchange column. Rabbit polyclonal antidioxygenase antibodies were prepared. Ouchterlony double-diffusion and Western blotting (immunoblotting) protocols were used to probe the distribution of the Mn-1 dioxygenase antigen in soil bacteria. Fourteen 2,3-dioxygenase-containing Bacillus and Pseudomonas strains did not contain immunologically cross-reactive proteins. Six of eight Arthrobacter strains contained 2,3-dioxygenase activity, and all of them produced cross-reactive proteins. The data presented here suggest that a unique type of dioxygenase is geographically widespread but is taxonomically confined to Arthrobacter soil bacteria.  相似文献   

11.
12.
13.
S-Benzylisothiourea 3a was discovered by its ability to inhibit indoleamine-2,3-dioxygenase (IDO) in our screening program. Subsequent optimization of the initial hit 3a lead to the identification of sub-μM inhibitors 3r and 10h, both of which suppressed kynurenine production in A431 cells. Synthesis and structure–activity relationship of S-benzylisothiourea analogues as small-molecule inhibitors of IDO are described.  相似文献   

14.
Studies were undertaken to compare and contrast the two-dimensional protein profiles of epithelial and stromal cells from hyperplastic human prostate to establish the protein composition of the two major cellular components of the prostate. Epithelial and stromal cells were isolated from human prostate obtained from patients undergoing open prostatectomy for benign prostatic hyperplasia (BPH). Proteins, isolated from the two cell populations and separated by two-dimensional (2D) electrophoresis, were analyzed by silver staining, fluorography of [35S]-methionine-labeled proteins, and immunoprotein blotting. Isolated prostatic epithelial cells, but not stromal cells, contained cytokeratin polypeptides 5, 6, 7, 8, 13, 14, 15, 16, 17, 18, and 19. Although vimentin could not be identified in silver stained 2D gels and fluorographs of cultured prostatic epithelial cells, a low level of immunoreactivity was noted following immunoblot analysis of epithelial cells proteins by the use of an anti-vimentin polyclonal. Vimentin was prominently expressed in cultured prostatic stromal cells and could be identified on silver stained 2D gels, fluorographs, and immunoblots of stroma-derived proteins. In addition, stromal marker proteins SM1, SM2, and SM3 were identified in 2D gels of stromal cells to distinguish them from epithelial cells. These studies demonstrate (1) the two-dimensional protein profile and cytokeratin polypeptide composition of cultured epithelial cells from hyperplastic human prostate and (2) the 2D protein profile of cultured prostatic stromal cells and identification of specific stromal marker proteins.  相似文献   

15.

Introduction  

Sentinel lymph nodes (SLNs) of melanoma patients show evidence of tumor-induced immune dysfunction. Our previous works have shown that IL-10 and IFNγ co-regulate indoleamine-2,3-dioxygenase (IDO)-expressing immunosuppressive dendritic cells (DCs) in melanoma SLNs. The goal of this study is to examine the relationship between melanoma SLN tumor burden and the degree of SLN immune dysfunction as a model to study tumor-induced immune dysfunction. We hypothesize that SLN tumor burden correlates with the degree of SLN immune dysfunction.  相似文献   

16.
BACKGROUND: In inflammatory bowel disease (IBD), cytokine levels (such as interleukin-1 (IL-1)) are elevated. We have shown previously that IL-1 activates phospholipid signaling pathways in intestinal epithelial cells (EEC), leading to increased ceramide levels. AIM: To determine whether ceramide induces apoptosis in IEC. METHODS: Apoptosis was evaluated by annexin-V binding or Hoechst nuclear staining. Levels of bcl-2, bcl-x, bax, p53 and p21 were determined by Western blotting, and celi cycle analysis was determined by flow cytometry. RESULTS: IL-1 increased ceramide accumulation in a time-dependent and concentration-dependent manner with a peak response at 4 h, with [IL-1] = 30 ng/ml. Neither IL-1 nor ceramide induced apoptosis in EEC, but they increased bcl-2 levels and decreased bax and p21 levels without affecting bcl-x and p53 levels. They also caused a slight but significant increase in the G2/M phase. These data suggest a role for ceramide in IBD and suggest a possible mechanism for the enhanced tumorigenic activity in IBD patients.  相似文献   

17.
The degradation pathways of benzoate at high concentration in Pseudomonas putida P8 were directly elucidated through mass spectrometric identification of some key catabolic enzymes. Proteins from P. putida P8 grown on benzoate or succinate were separated using two-dimensional gel electrophoresis. For cells grown on benzoate, eight distinct proteins, which were absent in the reference gel patterns from succinate-grown cells, were found. All the eight proteins were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry as catabolic enzymes involved in benzoate degradation. Among them, CatB (EC5.5.1.1), PcaI (EC2.8.3.6), and PcaF (EC2.3.1.174) were the enzymes involved in the ortho-cleavage pathway; DmpC (EC1.2.1.32), DmpD (EC3.1.1.-), DmpE (EC4.2.1.80), DmpF (EC1.2.1.10), and DmpG (EC4.1.3.-) were the meta-cleavage pathway enzymes. In addition, enzyme activity assays showed that the activities of both catechol 1,2-dioxygenase (C12D; EC1.13.11.1) and catechol 2,3-dioxygenase (C23D; EC1.13.11.2) were detected in benzoate-grown P. putida cells, undoubtedly suggesting the simultaneous expression of both the ortho- and the meta-cleavage pathways in P. putida P8 during the biodegradation of benzoate at high concentration.  相似文献   

18.
U1-snRNA is an integral part of the U1 ribonucleoprotein pivotal for pre-mRNA splicing. Toll-like receptor (TLR) signaling has recently been associated with immunoregulatory capacities of U1-snRNA. Using lung A549 epithelial/carcinoma cells, we report for the first time on interferon regulatory factor (IRF)-3 activation initiated by endosomally delivered U1-snRNA. This was associated with expression of the IRF3-inducible genes interferon-β (IFN-β), CXCL10/IP-10 and indoleamine 2,3-dioxygenase. Mutational analysis of the U1-snRNA-activated IFN-β promoter confirmed the crucial role of the PRDIII element, previously proven pivotal for promoter activation by IRF3. Notably, expression of these parameters was suppressed by bafilomycin A1, an inhibitor of endosomal acidification, implicating endosomal TLR activation. Since resiquimod, an agonist of TLR7/8, failed to stimulate A549 cells, data suggest TLR3 to be of prime relevance for cellular activation. To assess the overall regulatory potential of U1-snRNA-activated epithelial cells on cytokine production, co-cultivation with peripheral blood mononuclear cells (PBMC) was performed. Interestingly, A549 cells activated by U1-snRNA reinforced phytohemagglutinin-induced interleukin-10 release by PBMC but suppressed that of tumor necrosis factor-α, indicating an anti-inflammatory potential of U1-snRNA. Since U1-snRNA is enriched in apoptotic bodies and epithelial cells are capable of performing efferocytosis, the present data in particular connect to immunobiological aspects of apoptosis at host/environment interfaces.  相似文献   

19.
20.
INTRODUCTION: Apolipoprotein A-IV (apoA-IV), an intestinally and cerebrally synthesized satiety factor and anti-atherogenic plasma apolipoprotein, was recently identified as an anti-inflammatory protein. In order to elucidate whether intestinal apoA-IV exerts similar repair function as its hepatic homologue apolipoprotein A-V (apoA-V), apoA-IV-interactive proteins were searched and in vitro functional studies were performed with apoA-IV overexpressing cells. ApoA-IV was also analyzed in the intestinal mucosa of patients with inflammatory bowel diseases (IBD), together with other genes involved in epithelial junctional integrity. METHODS: A yeast-two-hybrid screening was used to identify apoA-IV-interactors. ApoA-IV was overexpressed in Caco-2 and HT-29 mucosal cells for colocalization and in vitro epithelial permeability studies. Mucosal biopsies from quiescent regions of colon transversum and terminal ileum were subjected to DNA-microarray analysis and pathway-related data mining. RESULTS: Four proteins interacting with apoA-IV were identified, including apolipoprotein B-100, alpha1-antichymotrypsin, cyclin C, and the cytosolic adaptor alpha-catenin, thus linking apoA-IV to adherens junctions. Overexpression of apoA-IV was paralleled with a differentiated phenotype of intestinal epithelial cells, upregulation of junctional proteins, and decreased paracellular permeability. Colocalization between alpha-catenin and apoA-IV occurred exclusively in junctional complexes. ApoA-IV was downregulated in quiescent mucosal tissues from patients suffering from IBD. In parallel, only a distinct set of junctional genes was dysregulated in non-inflamed regions of IBD gut. CONCLUSIONS: ApoA-IV may act as a stabilizer of adherens junctions interacting with alpha-catenin, and is likely involved in the maintenance of junctional integrity. ApoA-IV expression is significantly impaired in IBD mucosa, even in non-inflamed regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号