首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative stress of mitochondrial origin, i.e. elevated mitochondrial superoxide production, belongs to major factors determining aging and oxidative-stress-related diseases. Antioxidants, such as the mitochondria-targeted coenzyme Q, MitoQ10, may prevent or cure these pathological conditions. To elucidate pro- and anti-oxidant action of MitoQ10, we studied its effects on HepG2 cell respiration, mitochondrial network morphology, and rates of superoxide release (above that neutralized by superoxide dismutase) to the mitochondrial matrix (Jm). MitoSOX Red fluorescence confocal microscopy monitoring of Jm rates showed pro-oxidant effects of 3.5-fold increased Jm with MitoQ10. MitoQ10 induced fission of the mitochondrial network which was recovered after 24 h. In rotenone-inhibited HepG2 cells (i.e., already under oxidative stress) MitoQ10 sharply decreased rotenone-induced Jm, but not together with the Complex II inhibitor thenoyltrifluoroacetone. Respiration of HepG2 cells and isolated rat liver mitochondria with MitoQ10 increased independently of rotenone. The increase was prevented by thenoyltrifluoroacetone. These results suggest that MitoQ10 accepts electrons prior to the rotenone-bound Q-site, and the Complex II reverse mode oxidizes MitoQ10H2 to regenerate MitoQ10. Consequently, MitoQ10 has a pro-oxidant role in intact cells, whereas it serves as an antioxidant when Complex I-derived superoxide generation is already elevated due to electron flow retardation. Moreover, unlike mitochondrial uncoupling, MitoQ10 exerted its antioxidant role when Complex I proton pumping was retarded by a hydrophobic amiloride, 5-(N-ethyl-N-isopropyl) amiloride. Consequently, MitoQ10 may be useful in the treatment of diseases originating from impairment of respiratory chain Complex I due to oxidatively damaged mitochondrial DNA, when its targeted delivery to pathogenic tissues is ensured.  相似文献   

2.
The glyceollin inhibition of electron transport by isolated soybean and corn mitochondria was similar to that of rotenone, acting at site I between the internal NADH dehydrogenase and coenzyme Q. Coupled state 3 malate oxidation was inhibited by glyceollin and rotenone with apparent Ki values of about 15 and 5 micromolar, respectively. Carbonylcyanide m-chlorophenyl hydrazone uncoupled state 4 malate oxidation was also inhibited by glyceollin and rotenone, but uncoupled succinate and exogenous NADH state 4 oxidation was only slightly inhibited by both compounds. Glyceollin also inhibited ferricyanide reduction with malate as the electron donor, with an apparent Ki of 5.4 micromolar, but failed to inhibit such reduction with succinate or externally added NADH as electron donors. Glyceollin did not inhibit state 4 oxidation of malate, succinate, or exogenous NADH. Glyceollin did not act as a classical uncoupler or as an inhibitor of oxidative phosphorylation.  相似文献   

3.
The possible existence of a malonate-sensitive dicarboxylate-mediated electron shuttle between microsomal NAD-linked fatty acid α-oxidation and the mitochondrial electron transport chain in uncoupled fresh potato slices was investigated. Uncoupled slice respiration is inhibited by benzylmalonate and butylmalonate, inhibitors of dicarboxylate transport into mitochondria. Uncoupled slice respiration is also inhibited by rotenone, an indication of intramitochondrial NADH oxidation. Since fatty acid α-oxidation per se is rotenone insensitive, rotenone and benzylmalonate inhibition of the oxidation of carboxyl-labeled myristate in slices points to a dicarboxylic acid shuttle linking microsomal fatty acid a-oxidation with intramitochondrial NADH dehydrogenase.
Malonute inhibits both respiration and 14CO2, release from carboxyl-labeled myristate in fresh uncoupled slices, as do inhibitors of dicarboxylate transport. Mitochondrial studies show that malonate inhibits malate oxidation but not malate dehydrogenase per se. Furthermore, malonate inhibits malate transport more severely than malate oxidation. Accordingly, mulonate inhibition of uncoupled slice respiration in the absence of tricarboxylic acid cycle activity is attributed to its interference with mitochondrial malate transport, and its consequent curtailment of a putative malate-OAA shuttle linked to cytosolic NAD-mediated fatty acid α-oxidation.  相似文献   

4.
《Free radical research》2013,47(4-6):317-327
This study examines the possible role of Coenzyme Q (CoQ. ubiquinone) in the control of mitochondrial electron transfer. The CoQ concentration in mitochondria from different tissues was investigated by HPLC. By analyzing the rates of electron transfer as a function of total CoQ concentration, it was calculated that, at physiological CoQ concentration NADH cytochrome c reductase activity is not saturated. Values for theoretical Vmax could not be reached experimentally for NADH oxidation, because of the limited mis-cibility of CoQ10 with the phospholipids. On the other hand, it was found that CoQ3 could stimulate α-glycerophosphate cytochrome c reductase over three-fold. Electron transfer being a diffusion-coupled process. we have investigated the possibility of its being subjected to diffusion control. A reconstruction study of Complex I and Complex III in liposomes showed that NADH cytochrome c reductase was not affected by changing the average distance between complexes by varying the protein: lipid ratios. The results of a broad investigation on ubiquinol cytochrome c reductase in bovine heart submitochondrial particles indicated that the enzymic rate is not diffusion-controlled by ubiquinol. whereas the interaction of cytochrome c with the enzyme is clearly diffusion-limited  相似文献   

5.
《BBA》2022,1863(2):148518
The kinetics and efficiency of mitochondrial oxidative phosphorylation (OxPhos) can depend on the choice of respiratory substrates. Furthermore, potential differences in this substrate dependency among different tissues are not well-understood. Here, we determined the effects of different substrates on the kinetics and efficiency of OxPhos in isolated mitochondria from the heart and kidney cortex and outer medulla (OM) of Sprague-Dawley rats. The substrates were pyruvate+malate, glutamate+malate, palmitoyl-carnitine+malate, alpha-ketoglutarate+malate, and succinate±rotenone at saturating concentrations. The kinetics of OxPhos were interrogated by measuring mitochondrial bioenergetics under different ADP perturbations. Results show that the kinetics and efficiency of OxPhos are highly dependent on the substrates used, and this dependency is distinctly different between heart and kidney. Heart mitochondria showed higher respiratory rates and OxPhos efficiencies for all substrates in comparison to kidney mitochondria. Cortex mitochondria respiratory rates were higher than OM mitochondria, but OM mitochondria OxPhos efficiencies were higher than cortex mitochondria. State 3 respiration was low in heart mitochondria with succinate but increased significantly in the presence of rotenone, unlike kidney mitochondria. Similar differences were observed in mitochondrial membrane potential. Differences in H2O2 emission in the presence of succinate±rotenone were observed in heart mitochondria and to a lesser extent in OM mitochondria, but not in cortex mitochondria. Bioenergetics and H2O2 emission data with succinate±rotenone indicate that oxaloacetate accumulation and reverse electron transfer may play a more prominent regulatory role in heart mitochondria than kidney mitochondria. These studies provide novel quantitative data demonstrating that the choice of respiratory substrates affects mitochondrial responses in a tissue-specific manner.  相似文献   

6.
Addition of NAD+ to purified potato (Solanum tuberosum L.) mitochondria respiring α-ketoglutarate and malate in the presence of the electron transport inhibitor rotenone, stimulated O2 uptake. This stimulation was prevented by incubating mitochondria with N-4-azido-2-nitrophenyl-aminobutyryl-NAD+ (NAP4-NAD+), an inhibitor of NAD+ uptake, but not by 1 mm EGTA, an inhibitor of external NADH oxidation. NAD+-stimulated malate-cytochrome c reductase activity, and reduction of added NAD+ by intact mitochondria, could be duplicated by rupturing the mitochondria and adding a small quantity to the cuvette. The extent of external NAD+ reduction was correlated with the amount of extra mitochondrial malate dehydrogenase present. Malate oxidation by potato mitochondria depleted of endogenous NAD+ by storing on ice for 72 hours, was completely dependent on added NAD+, and the effect of NAD+ on these mitochondria was prevented by incubating them with NAP4-NAD+. External NAD+ reduction by these mitochondria was not affected by NAP4-NAD+. We conclude that all effects of exogenous NAD+ on plant mitochondrial respiration can be attributed to net uptake of the NAD+ into the matrix space.  相似文献   

7.
The aim was to test the hypothesis that rotenone-insensive electron transport (bypass of complex I) may underlie rapid state 4 (ADP-limited) mitochondrial respiration. A comparison of mitochondria from soybean ( Glycine max L. cv. Bragg) cotyledons and nodules showed that ADP-sufficient (state 3) malate plus pyruvate oxidation by mitochondria from 7-day-old cotyledons was inhibited 50% by rotenone and state 4 rates were rapid, whereas nodule mitochondria were 80% inhibited by rotenone and had slower state 4 rates of malate plus pyruvate oxidation. Respiration of malate alone (pH 7.6) by cotyledon mitochondria was slow, especially in the absence of ADP; subsequent addition of pyruvate dramatically increased state 4 oxygen uptake concomitant with a rapid rise in mitochondrial NADH (determined by fluorimetry). Rotenone had no effect on this increased rate of state 4 respiration. The rate of malate oxidation by nodule mitochondria was relatively rapid compared with cotyledon mitochondria. The addition of pyruvate in state 4 caused a slow increase in matrix NADH and only a slight stimulation of oxygen uptake. Rotenone inhibited state 4 malate plus pyruvate oxidation by 50% in these mitochondria. From a large number of cotyledon and nodule mitochondrial preparations, a close correlation was found between the rate of state 4 oxygen uptake and rotenone-resistance. During cotyledon development increased rotenone-resistance was associated with an increase in the alternative oxidase. Addition of pyruvate to cotyledon mitochondria, during state 4 oxidation of malate in the presence of antimycin A, significantly stimulated O2 uptake and also almost eliminated respiratory control. Such combined operation of the rotenone-insensitive bypass and the alternative oxidase in vivo will significantly affect the extent to which adenylates control the rate of electron transport.  相似文献   

8.
Tumor cells favor abnormal energy production via aerobic glycolysis and show resistance to apoptosis, suggesting the involvement of mitochondrial dysfunction. The differences between normal and cancer cells in their energy metabolism provide a biochemical basis for developing new therapeutic strategies. The energy blocker 3-bromopyruvate (3BP) can eradicate liver cancer in animals without associated toxicity, and is a potent anticancer towards glioblastoma cells. Since mitochondria are 3BP targets, in this work the effects of 3BP on the bioenergetics of normal rat brain mitochondria were investigated in vitro, in comparison with the anticancer agent lonidamine (LND). Whereas LND impaired oxygen consumption dependent on any complex of the respiratory chain, 3BP was inhibitory to malate/pyruvate and succinate (Complexes I and II), but preserved respiration from glycerol-3-phosphate and ascorbate (Complex IV). Accordingly, although electron flow along the respiratory chain and ATP levels were decreased by 3BP in malate/pyruvate- and succinate-fed mitochondria, they were not significantly influenced from glycerol-3-phosphate- or ascorbate-fed mitochondria. LND produced a decrease in electron flow from all substrates tested. No ROS were produced from any substrate, with the exception of 3BP-induced H2O2 release from succinate, which suggests an antimycin-like action of 3BP as an inhibitor of Complex III. We can conclude that 3BP does not abolish completely respiration and ATP synthesis in brain mitochondria, and has a limited effect on ROS production, confirming that this drug may have limited harmful effects on normal cells.  相似文献   

9.
Cytokinin modification of mitochondrial function   总被引:3,自引:2,他引:1       下载免费PDF全文
Miller CO 《Plant physiology》1982,69(6):1274-1277
6-Benzylaminopurine, 6-(Δ2-isopentenylamino)purine, 6-furfurylaminopurine, rotenone, and antimycin A inhibited oxidation of NADH by mitochondrial sonicates or submitochondrial particles (but not by intact mitochondria) from pea (Pisum sativum L., cult. Alaska) stems and mung bean (Vigna radiata L. Wilczak) hypocotyls. The above purine cytokinins can interfere with electron transport from NADH to the cytochrome system in the inner mitochondrial membrane. Adenine did not inhibit oxidation by sonicated mitochondria, and zeatin was almost ineffective. Zeatin scarcely inhibited state 3 malate respiration by intact mitochondria, but the O-formyl and O-n-propionyl esters of zeatin and the O-acetyl ester of 2-chlorozeatin were more active. Perhaps zeatin is ineffective because it does not get into the inner membranes of the isolated mitochondria, whereas the esters and other cytokinins mentioned above do. N-4-(2-chloropyridyl)-N′-Phenylurea, which has cytokinin-like effects on plant growth and development, inhibited NADH oxidation by sonicated mitochondria. It also inhibited malate, succinate, and NADH oxidation by intact mitochondria; in contrast, the latter two oxidations were not decreased by purine cytokinins.  相似文献   

10.
Certain phytopathogenic fungi are able to express alternative NADH- and quinol-oxidising enzymes that are insensitive to inhibitors of the mitochondrial respiratory Complexes I and III. To assess the extent to which such enzymes confer tolerance to respiration-targeted fungicides, an understanding of mitochondrial electron transfer in these species is required. An isolation procedure has been developed which results in intact, active and coupled mitochondria from the wheat pathogen Septoria tritici, as evidenced by morphological and kinetic data. Exogenous NADH, succinate and malate/glutamate are readily oxidised, the latter activity being only partly (approx. 70%) sensitive to rotenone. Of particular importance was the finding that azoxystrobin (a strobilurin fungicide) potently inhibits fungal respiration at the level of Complex III. In some S. tritici strains investigated, a small but significant part of the respiratory activity (approx. 10%) is insensitive to antimycin A and azoxystrobin. Such resistant activity is sensitive to octyl gallate, a specific inhibitor of the plant alternative oxidase. This enzyme, however, could not be detected immunologically. On the basis of the above findings, a conceptual mitochondrial electron transfer chain is presented. Data are discussed in terms of developmental and environmental regulation of the composition of this chain.  相似文献   

11.
It has been postulated that 1-methyl-4-phenylpyridinium (MPP+) blocks mitochondrial respiration by combining at the same site as rotenone, a potent inhibitor of NADH oxidation in mitochondria, known to act at the junction of NADH dehydrogenase and coenzyme Q (CoQ). The present experiments show that MPP+ and two of its analogs indeed act in a concentration dependent manner to prevent the binding of [14C]-rotenone to submitochondrial particles (ETP) and significantly decrease the inhibition of electron transport caused by rotenone. It therefore appears that MPP+ binds at the same site as rotenone or an adjacent site, supporting the hypothesis that its neurotoxic action is due to the inhibition of mitochondrial respiration.  相似文献   

12.
Hampp R 《Plant physiology》1985,79(3):690-694
The effect of TP (triosephosphates:glyceraldehyde-3 phosphate, GAP, +dihydroxyacetone phosphate, DHAP) on respiration, phosphorylation and matrix ATP/ADP ratios of isolated oat mesophyll mitochondria was investigated. With both malate and NADH, a 50% inhibition of state 3-phosphorylation was induced by about 15 to 20 millimolar GAP and 30 to 40 millimolar DHAP. However, the nature of the inhibition appeared to be different with the two respiratory substrates. In the presence of NADH, TP did not inhibit the rate of state 3 (addition of ADP) O2 consumption. In fact, depending on concentration, TP gradually increased the rates measured without ADP towards those seen under state 3, acting as uncouplers. When malate was the substrate for respiration, state 3 rates were decreased. The effect was comparable to that of rotenone and could be abolished by the addition of NADH. These observations indicate a dual action of TP: inhibition of electron transport around site I and uncoupling. In any case, the intramitochondrial ATP/ADP ratio decreased upon addition of TP. The effective TP concentrations as well as the changes in mitochondrial ATP/ADP ratios were comparable to results on changes of compartmental pool sizes of adenylates and other metabolites during dark/light transition of oat mesophyll protoplasts (R. Hampp, M. Goller, H. Füllgraf, and I. Eberle 1985 Plant Cell Physiol 24: 99). The possible role of TP in the regulation of mitochondrial respiration in the light, as well as modes of interference, are discussed.  相似文献   

13.
Intact but fragile mitochondria were isolated from unsporulated oocysts of Eimeria tenella. The mitochondria respired in response to succinate, malate plus pyruvate, and L-ascorbate at rates of 1.00, 0.40, and 0.25 mu1 O2/min/mg protein, respectively. Spectrophotometric analyses of the cytochromes in mitochondria and whole oocysts revealed b-type and o-type cytochromes, at roughly similar levels, but no cytochrome c could be detected. The mitochondrial respiration was inhibited by cyanide, azide, carbon monoxide, antimycin A, and 2-heptyl-4-hydroxyquinoline-N-oxide, but was relatively resistant to rotenone and amytal. The quinolone coccidiostats buquinolate, amquinate, methyl benzoquate, and decoquinate were identified as very powerful inhibitiors of succinate and malate plus pyruvate supported respiration in E. tenella mitochondria. None of these four drugs exhibited any inhibitory effect on chicken liver mitochondria. Only 3 pmol of the quinolones per mg mitochondrial protein was needed to achieve 50% inhibition. The inhibition could not be reversed by coenzymes Q6 or Q10. Since the quinolones did not affect L-ascorbate-supported respiration or the activities of submitochondrial succinate dehydrogenase and NADH dehydrogenase, the site of action of the quinolone coccidiostats was tentatively identified as probably near cytochrome b in E. tenella mitochondria. Mitochondria isolated from an E. tenella amquinate-resistant mutant were much less susceptible to quinolone coccidiostats; 50% inhibition was attained by 300 pmol of the drugs/mg mitochondrial protein. The results suggest that the mechanisms of action of quinolone coccidiostats is by inhibiting the cytochrome-mediated electron transport in the mitochondria of coccidia. 2-Hydroxynaphthoquinone coccidiostats were identified as inhibitors of mitochondrial respiration of both E. tenella and chicken liver. They inhibited submitochondrial succinate dehydrogenase and NADH dehydrogenase of E. tenella, and remained equally active against the mitochondrial function of E. tenella amquinolate-resistant mutant.  相似文献   

14.
Inside-out submitochondrial particles from both potato (Solanum tuberosum L. cv. Bintje) tubers and pea (Pisum sativum L. cv. Oregon) leaves possess three distinct dehydrogenase activities: Complex I catalyzes the rotenone-sensitive oxidation of deamino-NADH, NDin(NADPH) catalyzes the rotenone-insensitive and Ca2+-dependent oxidation of NADPH and NDin(NADH) catalyzes the rotenone-insensitive and Ca2+-independent oxidation of NADH. Diphenylene iodonium (DPI) inhibits complex I, NDin(NADPH) and NDin (NADH) activity with a Ki of 3.7, 0.17 and 63 µM, respectively, and the 400-fold difference in Ki between the two NDin made possible the use of DPI inhibition to estimate NDin (NADPH) contribution to malate oxidation by intact mitochondria. The oxidation of malate in the presence of rotenone by intact mitochondria from both species was inhibited by 5 µM DPI. The maximum decrease in rate was 10–20 nmol O2 mg?1 min?1. The reduction level of NAD(P) was manipulated by measuring malate oxidation in state 3 at pH 7.2 and 6.8 and in the presence and absence of an oxaloacetate-removing system. The inhibition by DPI was largest under conditions of high NAD(P) reduction. Control experiments showed that 125 µM DPI had no effect on the activities of malate dehydrogenase (with NADH or NADPH) or malic enzyme (with NAD+ or NADP+) in a matrix extract from either species. Malate dehydrogenase was unable to use NADP+ in the forward reaction. DPI at 125 µM did not have any effect on succinate oxidation by intact mitochondria of either species. We conclude that the inhibition caused by DPI in the presence of rotenone in plant mitochondria oxidizing malate is due to inhibition of NDin(NADPH) oxidizing NADPH. Thus, NADP turnover contributes to malate oxidation by plant mitochondria.  相似文献   

15.
  • 1.1. Treatment of isolated rat liver mitochondria with methyl methacrylate (MM) produced membrane disruption as evidenced by the release of citrate synthase, and changes in the ultrastructure of mitochondria.
  • 2.2. At concentration 0.1%, MM uncoupled oxidative phosphorylation as evidenced by stimulation of state 4 respiration supported either by pyruvate plus malate or succinate (+rotenone) and ATP-ase activity in intact mitochondria.
  • 3.3. At concentration 1% MM stimulated ATP-ase activity in intact mitochondria and succinate (+rotenone) oxidation at state 4 and was without effect on this substrate oxidation at state 3.
  • 4.4. MM inhibited pyruvate plus malate oxidation either at state 3 or in the presence of uncoupling agents.
  • 5.5. MM inhibited the NADH oxidase of electron transport particles at a concentration which failed to inhibit either succinic oxidase or the NADH-ferricyanide reductase activity.
  • 6.6. The data presented suggest that in the isolated mitochondria MM inhibits NADH oxidation in the vicinity of the rotenone sensitive site of complex I.
  • 7.7. The general conclusion is that MM may block an electron transport and to uncouple oxidative phosphorylation in rat liver mitochondria. The overall in vitro effect would be to prevent ATP synthesis which could result in cell death under in vivo conditions.
  相似文献   

16.
We compared NAD-dependent state 4 and state 3 respiration, NADH oxidation and Complex I specific activity in liver mitochondria from 4- and 30-month-old rats. All the activities examined were significantly decreased with aging. In both groups of animals, the flux control coefficients measured by rotenone titration indicated that Complex I is largely rate controlling upon NADH aerobic oxidation while, in state 3 respiration, it shares the control with other steps in the pathway. Moreover, we observed a trend wherein flux control coefficients of Complex I became higher with age. This indication was strengthened by examining the rotenone inhibition thresholds showing that Complex I becomes more rate controlling, over all the examined activities, during aging. Our results point out that age-related alterations of the mitochondrial functions are also present in tissues considered less prone to accumulate mitochondrial DNA mutations.  相似文献   

17.
Polarographical determination of oxygen concentration has shown that in rats with experimental hepatitis induced by combined ethanol and CCl4 administration for 4 weeks, the functioning of the hepatocyte mitochondrial respiratory chain is impaired. Development of liver pathology was accompanied by adipose dystrophy, fibrosis, and an increase of triglycerides and lipid peroxidation products in the liver tissue. The endogenous respiration rate in hepatocytes isolated from the pathologically altered liver was 34% higher than in the control. Cell respiration was not stimulated by the addition of the substrates malate and pyruvate with digitonine. An uncoupler of oxidation and phosphorylation, 2,4-dinitrophenol, increased the hepatocyte oxygen consumption rate by 37%, while addition of the inhibitor of the I complex, rotenone, decreased cell respiration in pathologically altered hepatocytes by 27%. The states 3 (V3) and 4 (V4) of mitochondrial respiration with malate + glutamate as substrates were found to be higher by 70% and 56%, respectively, as compared with the control level. When using malate + glutamate or succinate as substrates, V3 and Vd (dinitrophenol respiration) in the toxic hepatitis hepatocyte mitochondria did not differ from the control, which indicates no uncoupling occurred of the oxidation and phosphorylation processes. Cytochrome c oxidase activity was elevated (+80%) as compared with the control. Administration of the hypolipidemic agent symvastatin simultaneously with ethanol and CCl4 resulted in a reduction of the degree of liver adipose dystrophy, prevented activation of lipid peroxidation, and decreased the hepatocyte endogenous respiration rate. Addition of malate + pyruvate, dinitrophenol or rotenone produced oxygen consumption changes similar to those in the control. However, in mitochondria isolated from the pathologically altered liver, symvastatin induced an uncoupling effect on the respiratory chain in the presence of the substrates malate + glutamate, but did not change the cytochrome c oxidase activity. We suggest that functioning of the NCCR complex in the hepatocyte mitochondria of animals with experimental toxic hepatitis is impaired, which leads to an intensive superoxide anion production at the level of this complex. Under these conditions, the defect of the NADH-coenzyme Q-oxidoreductase is compensated by functioning of other complexes of the respiratory chain (SCCR, coenzyme Q-cytochrome c-reductase, cytochrome c oxidase, and ATP-synthase activities).  相似文献   

18.
Isolated mitochondria respiring on physiological substrates, both in state 4 and 3, are reported to be or not to be a source of reactive oxygen species (ROS). The cause of these discrepancies has been investigated. As protein concentration was raised in in vitro assays at 37°C, the rate of H2O2 release by rat heart mitochondria supplemented with pyruvate/malate or with succinate (plus rotenone) was shown to increase (0.03–0.15?mg?protein/ml), to decrease (0.2–0.5?mg?protein/ml) and to be negligible (over 0.5?mg?protein/ml). The inhibition of mitochondrial respiration (with rotenone or antimycin A) or the increase in the oxygen concentration dissolved in the assay medium allowed an enhancement of ROS production rate throughout the studied range of protein concentrations. In mitochondria respiring in state 3 on pyruvate/malate or on succinate (plus rotenone), ROS release vanished for protein concentrations over 0.5 or 0.2?mg/ml, respectively. However, ROS production rates measured with low protein concentrations (below 0.1?mg/ml) or in oxygen-enriched media were similar or even slightly higher in the active respiratory state 3 than in the resting state 4 for both substrates. Consequently, these findings indicate that isolated mitochondria, respiring in vitro under conditions of forward electron transport, release ROS with Complex I- and II-linked substrates in the resting condition (state 4) and when energy demand is maximal (state 3), provided that there is sufficient oxygen dissolved in the medium.  相似文献   

19.
We compared NAD-dependent state 4 and state 3 respiration, NADH oxidation and Complex I specific activity in liver mitochondria from 4- and 30-month-old rats. All the activities examined were significantly decreased with aging. In both groups of animals, the flux control coefficients measured by rotenone titration indicated that Complex I is largely rate controlling upon NADH aerobic oxidation while, in state 3 respiration, it shares the control with other steps in the pathway. Moreover, we observed a trend wherein flux control coefficients of Complex I became higher with age. This indication was strengthened by examining the rotenone inhibition thresholds showing that Complex I becomes more rate controlling, over all the examined activities, during aging. Our results point out that age-related alterations of the mitochondrial functions are also present in tissues considered less prone to accumulate mitochondrial DNA mutations.  相似文献   

20.
The paper considers the effects of bedaquiline (BDQ), an antituberculous preparation of the new generation, on rat liver mitochondria. It was shown that 50?μM BDQ inhibited mitochondrial respiration measured with substrates of complexes I and II (glutamate/malate and succinate/rotenone systems respectively) in the states V3 and VDNP. At the same time, at concentrations below 50?μM, BDQ slightly stimulated respiration with substrates of complex I in the state V2. BDQ was also found to suppress, in a dose-dependent manner, the activity of complex II and the total activity of complexes II?+?III of the mitochondrial transport chain. It was discovered that at concentrations up to 10?μM, BDQ inhibited H2O2 production in mitochondria. BDQ (10–50?μM) suppressed the opening of Ca2+-dependent CsA-sensitive mitochondrial permeability transition pore. The latter was revealed experimentally as the inhibition of Ca2+/Pi-dependent swelling of mitochondria, suppression of cytochrome c release, and an increase in the Ca2+ capacity of the organelles. BDQ also decreased the rate of mitochondrial energy-dependent K+ transport, which was evaluated by the energy-dependent swelling of mitochondria in a K+ buffer and DNP-induced K+ efflux from the organelles. The possible mechanisms of BDQ effect of rat liver mitochondria are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号