首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solid phase assay systems such as enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance (SPR), and overlay gels are used to study processes of protein-protein interactions. The common principle of all these methods is that they monitor the binding between soluble and surface-immobilized molecules. Following the use of bovine serum albumin (BSA)-peptide conjugates or isolated synthetic peptides and the above-mentioned solid phase assay systems, the results of the current work demonstrate that positively charged peptides can interact with each other. Both the ELISA and SPR methods demonstrated that the binding process reached saturation with K(d) values ranging between 1 and 14 nM. No interaction was observed between BSA conjugates bearing positively charged peptides and conjugates bearing negatively charged peptides or with pure BSA molecules, strengthening the view that interaction occurs only between positively charged peptides. However, interactions between peptides in solution were not observed by nuclear magnetic resonance (NMR) or by native gel electrophoresis. It appears that for positively charged molecules to interact, one of the binding partners must be immobilized to a surface, a process that may lead to the exposure of otherwise masked groups or atoms. We discuss the relevance of our findings for the use of solid phase assay systems to study interactions between biomolecules.  相似文献   

2.
Cell membranes provide an environment for several types of molecular processes and we are attempting to mimic the cell membranes' environment on a chromatography solid support. Chromatography solid supports utilizing lecithin as the bonded phase were synthesized and the HPLC behavior of hydrophilic peptides evaluated. A diC14 lecithin containing a terminal carboxy group on the C2 fatty acid chain was amidated with the surface amines of Nucleosil-300 (7NH2) silica particles. Based on elemental analysis, lecithin was coupled to Nucleosil-300 (7NH2) at a surface density near that of lecithin found in biological membranes and this novel chromatographic support material is denoted as Nucleosil-lecithin, the prototype immobilized artificial membrane. Infrared difference spectra of Nucleosil-lecithin minus Nucleosil-300 (7NH2) clearly showed amide I (1653.1 cm-1) and amide II (1550.9 cm-1) bands, giving direct spectroscopic evidence for the amide linkage. Spectral deconvolution resolved two peaks for the amide I band, and three peaks for the amide II band. This demonstrates lecithin interchain amide hydrogen bonding and/or hydrogen bonds between the lecithin amide link and unreacted silica surface amines. Nucleosil-lecithin as a solid phase mimics membranes and can be used to study the interactions of biomolecules with membranes. Our primary objective is to develop HPLC methods for studying the interaction between cell membranes and peptide sequences found near the interfaces of cell membranes. A frequency distribution of amino acids bracketing approximately 400 transmembrane peptide sequences showed Cys to be the least frequently occurring amino acid at this putative interfacial membrane region. Hydrophilic peptide analogs bearing Cys were used as model compounds to test Nucleosil-lecithin solid supports. Small peptides, six to eight amino acids in length, containing Cys bind approximately 2X tighter to Nucleosil-lecithin compared to identical peptides without the Cys residue. Thus, Cys at the interface of cells may stabilize protein-lipid interactions.  相似文献   

3.
Membrane proteins play many critical roles in cells, mediating flow of material and information across cell membranes. They have evolved to perform these functions in the environment of a cell membrane, whose physicochemical properties are often different from those of common cell membrane mimetics used for structure determination. As a result, membrane proteins are difficult to study by traditional methods of structural biology, and they are significantly underrepresented in the protein structure databank. Solid-state Nuclear Magnetic Resonance (SSNMR) has long been considered as an attractive alternative because it allows for studies of membrane proteins in both native-like membranes composed of synthetic lipids and in cell membranes. Over the past decade, SSNMR has been rapidly developing into a major structural method, and a growing number of membrane protein structures obtained by this technique highlights its potential. Here we discuss membrane protein sample requirements, review recent progress in SSNMR methodologies, and describe recent advances in characterizing membrane proteins in the environment of a cellular membrane.  相似文献   

4.
Eosinophil cationic protein (ECP) is a highly stable, cytotoxic ribonuclease with the ability to enter and disrupt membranes that participates in innate immune defense against parasites but also kills human cells. We have used NMR spectroscopy to characterize the binding of ECP to membrane and heparin mimetics at a residue level. We believe we have identified three Arg-rich surface loops and Trp35 as crucial for membrane binding. Importantly, we have provided evidence that the interaction surface of ECP with heparin mimetics is extended with respect to that previously described (fragment 34-38). We believe we have identified new sites involved in the interaction for the first time, and shown that the N-terminal α-helix, the third loop, and the first and last β-strands are key for heparin binding. We have also shown that a biologically active ECP N-terminal fragment comprising the first 45 residues (ECP1-45) retains the capacity to bind membrane and heparin mimetics, thus neither the ECP tertiary structure nor its high conformational stability are required for cytotoxicity.  相似文献   

5.
The dynamics of biomolecules in the plasma membrane is of fundamental importance to understanding cellular processes. Cellular signaling often starts with extracellular ligand binding to a membrane receptor, which then transduces an intracellular signal. Ligand binding and receptor-complex activation often involve a complex rearrangement of proteins in the membrane, which results in changes in diffusion properties. Two widely used methods to characterize biomolecular diffusion are single-particle tracking (SPT) and imaging total internal reflection fluorescence correlation spectroscopy (ITIR-FCS). Here, we compare the results of recovered diffusion coefficients and mean-square displacements of the two methods by simulations of free, domain-confined, or meshwork diffusion. We introduce, to our knowledge, a new method for the determination of confinement radii from ITIR-FCS data. We further establish and demonstrate simultaneous SPT/ITIR-FCS for direct comparison within living cells. Finally, we compare the results obtained by SPT and ITIR-FCS for the receptor tyrosine kinase MET. Our results show that SPT and ITIR-FCS yield complementary information on diffusion properties of biomolecules in cell membranes.  相似文献   

6.
This review reports the significance of bilayer lipid membranes on a solid support (sBLM) for the construction of biosensors. The methods of formation of lipid membranes on different solid supports including different metals (silver, gold, stainless steel), agar and conducting polymers are presented. Several examples of the application of electrostriction and dielectric relaxation methods for the study of mechanical properties and dynamics of solid supported bilayers have been shown. We demonstrated that these methods are useful for determination of the binding of enzymes and antibodies to sBLM, for the study of hybridization of nucleic acids on membrane surfaces and for the study of physical properties of modified supported membranes.  相似文献   

7.
The components of biological membranes are present in a physical mixture. The nonrandom ways that the molecules of lipids and proteins mix together can strongly influence the association of proteins with each other, and the chemical reactions that occur in the membrane, or that are mediated by the membrane. A particular type of nonrandom mixing is the separation of compositionally distinct phases. Any such phase separation would result in preferential partition of some proteins and lipids between the coexisting phases, and thus would influence which proteins could be in contact, and whether a protein could find its target. Phase separation in a plasma membrane would also influence the binding of molecules from outside the cell to the membrane, including recognition proteins on viruses, bacteria, and other cells. The concept of these and other events associated with membrane phase separation are sometimes grouped together as the “raft model” of biological membranes. Several types of experiments are aimed at detecting and characterizing membrane phase separation. Visualizing phase separation has special value, both because the immiscibility is so decisively determined, and also because the type of phase can often be identified. The fluorescence microscope has proven uniquely useful for yielding images of separated phases, both in certain cell preparations, and especially in models of cell membranes. Here we discuss ways to prepare useful model membranes for image studies, and how to avoid some of the artifacts that can plague these studies.  相似文献   

8.
The membrane-buffer partition coefficient of tetracaine was measured by direct ultraviolet spectrophotometry in dimyristoylphosphatidylcholine unilamellar liposomes at temperatures above and below the main phase transition. The partition coefficients of uncharged tetracaine to solid-gel (18 degrees C) and liquid-crystal (30 degrees C) membranes were 6.9 x 10(4) and 1.2 x 10(5), respectively. Despite the general assumption that local anesthetic binding to the solid membrane is negligible, this study showed that the solid membrane binding amounts to 57.5% of the liquid membrane binding. Binding of the charged form to the liquid or solid membrane was not detectable under the present experimental condition of 0.03 mM tetracaine bulk concentration. The present method measures metachromasia of local anesthetics when bound to lipid membranes. Its advantage is that the separation of the vesicles from the solution is not required. A linearized equation is presented that estimates the partition coefficient or binding constant graphically from a linear plot of the absorbance data. The method is applicable for estimation of drug partition when a measurable spectral change occurs due to complex formation.  相似文献   

9.
Membrane proteins and lipids play roles in regulating biological functions of cells. However, the analysis of interactions between membrane proteins and lipids in biological membranes remains challenging. Native membranes typically contain heterogenous lipid mixtures and low amounts of membrane proteins. This review presents recent developments in membrane mimetics and complementary mass spectrometry approaches for the investigation of membrane protein–lipid interactions after protein expression and purification. Furthermore, it is exemplified how delipidation knowledge on membrane mimetics can be used to gain insights into the role of lipids for protein structure and function. Because every technology has its strengths and weaknesses, it becomes apparent that integrated research approaches will facilitate the investigation of complex membrane environments in the future.  相似文献   

10.
The Ser/Thr kinase target of rapamycin (TOR) is a central controller of cellular growth and metabolism. Misregulation of TOR signaling is involved in metabolic and neurological disorders and tumor formation. TOR can be inhibited by association of a complex of rapamycin and FKBP12 to the FKBP12-rapamycin binding (FRB) domain. This domain was further proposed to interact with phosphatidic acid (PA), a lipid second messenger present in cellular membranes. Because mammalian TOR has been localized at various cellular membranes and in the nucleus, the output of TOR signaling may depend on its localization, which is expected to be influenced by the interaction with complex partners and regulators in response to cellular signals. Here, we present a detailed characterization of the interaction of the FRB domain with PA and how it is influenced by the surrounding membrane environment. On the basis of nuclear magnetic resonance- and circular dichroism-monitored binding studies using different neutral and negatively charged lipids as well as different membrane mimetics (micelles, bicelles, and liposomes), the FRB domain may function as a conditional peripheral membrane protein. However, the data for the isolated domain just indicate an increased affinity for negatively charged lipids and membrane patches but no specific preference for PA or PA-enriched regions. The membrane-mimetic environment induces strong conformational changes that largely maintain the α-helical secondary structure content but presumably disperse the helices in the lipidic environment. Consistent with overlapping binding surfaces for different lipids and the FKBP12-rapamycin complex, binding of the inhibitor complex protects the FRB domain from interactions with membrane mimetics at lower lipid concentrations.  相似文献   

11.
Isoxazoline containing RGD mimetics were rapidly synthesized on a solid phase to optimize linkers, regioisomers of isoxazoline scaffolds, and exosite binding groups to yield lead alphavbeta3 antagonists.  相似文献   

12.
Phospholipid bilayer membranes at the interface between a substrate and an aqueous phase, supported by or tethered to the solid surface via a polymer cushion, a peptide-, protein-, or oligosaccharide-coupling layer have reached a stage at which they are important as a novel model membrane system but also offer potential for practical applications (e.g. for biosensing purposes with membrane-integral receptors). We briefly summarize some of the recent progress made in the structural characterization of the build-up of these rather complex interfacial architectures, in the functionalization of the pure lipid matrix by the reconstitution of proteins, and in the lateral patterning of the membranes as a prerequisite for the construction of membrane chips for massive parallel monitoring of binding events.  相似文献   

13.
When solutions of two different polymers are mixed, phase separation often occurs even at low concentrations of polymers. One polymer usually collects in one phase and the other polymer in the other phase. When water is used as solvent, two aqueous, immiscible, phases are obtained. The same holds for aqueous mixtures of a salt and a polymer. Such aqueous two-phase systems (ATPS) are very useful for separation of high-molecular-weight biomolecules such as proteins and nucleic acids and also for cells, cell organelles, and membrane vesicles. The phase systems can be made highly selective and they are also mild toward biomolecules and cell particles. In this review we describe how ATPS can be used for fragmentation and separation analyses of biological membranes and how this can be used for mapping of the photosynthetic membrane, the thylakoid, of green leaves.  相似文献   

14.
Membrane association of the hepatitis C virus NS5A protein is required for viral replication. This association is dependent on an N-terminal amphipathic helix (AH) within NS5A and is restricted to a subset of host cell intracellular membranes. The mechanism underlying this specificity is not known, but it may suggest a novel strategy for developing specific antiviral therapy. Here we have probed the mechanistic details of NS5A AH-mediated binding to both cell-derived and model membranes by use of biochemical membrane flotation and quartz crystal microbalance (QCM) with dissipation. With both assays, we observed AH-mediated binding to model lipid bilayers. When cell-derived membranes were coated on the quartz nanosensor, however, significantly more binding was detected, and the QCM-derived kinetic measurements suggested the existence of an interacting receptor in the target membranes. Biochemical flotation assays performed with trypsin-treated cell-derived membranes exhibited reduced AH-mediated membrane binding, while membrane binding of control cytochrome b5 remained unaffected. Similarly, trypsin treatment of the nanosensor coated with cellular membranes abolished AH peptide binding to the cellular membranes but did not affect the binding of a control lipid-binding peptide. These results therefore suggest that a protein plays a critical role in mediating and stabilizing the binding of NS5A's AH to its target membrane. These results also demonstrate the successful development of a new nanosensor technology ideal both for studying the interaction between a protein and its target membrane and for developing inhibitors of that interaction.  相似文献   

15.
The latent birefringence of lymphocyte membranes of various species may readily be studied and analysed by various topo-optical reactions. The membranes of glutaraldehyde-fixed and PBS-washed lymphocytes show continuous birefringence with thiazine- and quinoline dyes. According to polarization optical analysis thiazine dye-stained cells are radially positive, whereas quinoline dye-stained cells are radially negative spherites, i.e. thiazine dye molecules are in a perpendicular, quinoline dye molecules in a parallel orientation relative to the membrane surface. These findings suggest that in lymphocyte membranes glycoproteins are primarily responsible for the topo-optical reactions. The actual conformational state of the glycoprotein components is a decisive factor not only in dye binding but also in the orientation of dye molecules. Heparin treatment directs attention to an important interaction between heparin and membrane glycoproteins. With the aid of the critical electrolyte concentration (CEC) technique we were able to demonstrate an ultrastructural differences between human erythrocyte and human lymphocyte membranes. After this procedure the birefringence of erythrocyte membranes was lost, whereas that of lymphocyte membranes did not change. There were no differences between the topo-optical reactions of T and B lymphocytes.  相似文献   

16.
Investigation of lipid lateral mobility in biological membranes and their artificial models provides information on membrane dynamics and structure; methods based on optical microscopy are very convenient for such investigations. We focus on fluorescence correlation spectroscopy (FCS), explain its principles and review its state of the art versions such as 2-focus, Z-scan or scanning FCS, which overcome most artefacts of standard FCS (especially those resulting from the need for an external calibration) making it a reliable and versatile method. FCS is also compared to single particle tracking and fluorescence photobleaching recovery and the applicability and the limitations of the methods are briefly reviewed. We discuss several key questions of lateral mobility investigation in planar lipid membranes, namely the influence which membrane and aqueous phase composition (ionic strength and sugar content), choice of a fluorescent tracer molecule, frictional coupling between the two membrane leaflets and between membrane and solid support (in the case of supported membranes) or presence of membrane inhomogeneities has on the lateral mobility of lipids. The recent FCS studies addressing those questions are reviewed and possible explanations of eventual discrepancies are mentioned.  相似文献   

17.
Magic-angle spinning solid-state NMR experiments are well suited to investigating the structures and mechanisms of important proteins that are inaccessible to X-ray crystallography and solution NMR spectroscopy, including membrane proteins and disease-related protein aggregates. Good progress has been made in the development of methods for the complete structure determination of small (<20 kDa) solid proteins using uniformly 13C, 15N-labeled samples. Studies of selectively labeled proteins focusing on labeled active sites have yielded insights into the mechanisms of enzymes and of membrane proteins involved in energy and signal transduction. Studies of selectively labeled synthetic peptides have yielded structural models for biomedically important systems, including amyloid fibrils and surface-associated peptides involved in biomineralization and cell adhesion. Novel NMR and biochemical methods are being developed to target solid-state NMR experiments within large proteins and whole cells. These approaches are being used to investigate mechanisms of transmembrane signaling by membrane receptors and to characterize binding interactions between antibiotics and bacterial cell walls. Thus, solid-state NMR is proving to be a valuable biophysical tool for probing structure and dynamics in a wide range of biomolecules.  相似文献   

18.
The FATC domain is shared by all members of the family of phosphatidylinositol-3 kinase-related kinases (PIKKs). It has been shown that the FATC domain plays an important role for the regulation of each PIKK. However, other than an involvement in protein-protein interactions, a common principle for the action of the FATC domain has not been detected. A detailed characterization of the structure and lipid binding properties of the FATC domain of the Ser/Thr kinase target of rapamycin (TOR) revealed that it contains a redox-sensitive membrane anchor in its C terminus. Because the C-terminal regions of the FATC domains of all known PIKKs are rather hydrophobic and especially rich in aromatic residues, we examined whether the ability to interact with lipids and membranes might be a general property. Here, we present the characterization of the interactions with lipids and different membrane mimetics for the FATC domains of human DNA-PKcs, human ATM, human ATR, human SMG-1, and human TRRAP by NMR and CD spectroscopy. The data indicate that all of these can interact with different membrane mimetics and may have different preferences only for membrane properties such as surface charge, curvature, and lipid packing. The oxidized form of the TOR FATC domain is well structured overall and forms an α-helix that is followed by a disulfide-bonded loop. In contrast, the FATC domains of the other PIKKs are rather unstructured in the isolated form and only significantly populate α-helical secondary structure upon interaction with membrane mimetics.  相似文献   

19.
Solid phase synthetic methodology has been developed in our laboratory to incorporate an affinity label (a reactive functionality such as isothiocyanate or bromoacetamide) into peptides (Leelasvatanakij and Aldrich J Peptide Res 56, 80, 2000), and we have used this synthetic strategy to prepare affinity label derivatives of a variety of opioid peptides. To date side reactions have been detected only in two cases, both involving intramolecular cyclization. We have identified several peptide-based affinity labels for δ opioid receptors that exhibit wash-resistant inhibition of binding to these receptors and are valuable pharmacological tools to study opioid receptors. Even in cases where the peptide derivatives do not bind covalently to their target receptor, studying their binding has revealed subtle differences in receptor interactions with particular opioid peptide residues, especially Phe residues in the N-terminal “message” sequences. Solid phase synthetic methodology for the incorporation of other labels (e.g. biotin) into the C-terminus of peptides has also been developed in our laboratory (Kumar and Aldrich Org Lett 5, 613, 2003). These two synthetic approaches have been combined to prepare peptides containing multiple labels that can be used as tools to study peptide ligand-receptor interactions. These solid phase synthetic methodologies are versatile strategies that are applicable to the preparation of labeled peptides for a variety of targets in addition to opioid receptors.  相似文献   

20.
We have studied the binding of liposomes containing dinitrophenylated lipid to rat basophil leukemia cells armed with monoclonal anti-dinitrophenyl IgE. The liposomes were either "fluid" at 37 degrees C (dimyristoylphosphatidylcholine or an equimolar binary mixture dipalmitoylphosphatidylcholine and cholesterol) or "solid" (dipalmitoylphosphatidylcholine, distearoylphosphatidylcholine, or dibehanoylphosphatidylcholine). We have also studied the immune mediated degranulation of these cells induced by the above lipid membrane targets. In some cases both studies were carried out with liposomes containing various surface densities of lipid haptens. From these studies we conclude that freely mobile nonaggregated lipid haptens in bilayer membrane targets can trigger efficient serotonin release from rat basophil leukemia cells in the presence of specific antihapten IgE. Solid target membranes are also effective as stimulators of serotonin release. The release of serotonin depends strongly on the surface density of lipid haptens over a narrow range of surface densities. These studies with lipid membrane targets having well defined physical properties indicate the need for generalized molecular models of receptor-mediated cell triggering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号