首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Of the numerous two-component signal transduction systems found in bacteria, only a very few have proven to be essential for cell viability. Among these is the YycF (response regulator)-YycG (histidine kinase) system, which is highly conserved in and specific to the low-G+C content gram-positive bacteria. Given the pathogenic nature of several members of this class of bacteria, the YycF-YycG system has been suggested as a prime antimicrobial target. In an attempt to identify genes involved in regulation of this two-component system, a transposon mutagenesis study was designed to identify suppressors of a temperature-sensitive YycF mutant in Bacillus subtilis. Suppressors could be identified, and the prime target was the yycH gene located adjacent to yycG and within the same operon. A lacZ reporter assay revealed that YycF-regulated gene expression was elevated in a yycH strain, whereas disruption of any of the three downstream genes within the operon, yycI, yycJ, and yycK, showed no such effect. The concentrations of both YycG and YycF, assayed immunologically, remained unchanged between the wild-type and the yycH strain as determined by immunoassay. Alkaline phosphatase fusion studies showed that YycH is located external to the cell membrane, suggesting that it acts in the regulation of the sensor domain of the YycG sensor histidine kinase. The yycH strain showed a characteristic cell wall defect consistent with the previously suggested notion that the YycF-YycG system is involved in regulating cell wall homeostasis and indicating that either up- or down-regulation of YycF activity affects this homeostatic mechanism.  相似文献   

2.
3.
YycI and YycH are two membrane-anchored periplasmic proteins that regulate the essential Bacillus subtilis YycG histidine kinase through direct interaction. Here we present the crystal structure of YycI at a 2.9-A resolution. YycI forms a dimer, and remarkably the structure resembles that of the two C-terminal domains of YycH despite nearly undetectable sequence homology (10%) between the two proteins.  相似文献   

4.
Türck M  Bierbaum G 《PloS one》2012,7(1):e30403

Background

The YycFG two-component regulatory system (TCS) of Staphylococcus aureus represents the only essential TCS that is almost ubiquitously distributed in Gram-positive bacteria with a low G+C-content. YycG (WalK/VicK) is a sensor histidine-kinase and YycF (WalR/VicR) is the cognate response regulator. Both proteins play an important role in the biosynthesis of the cell envelope and mutations in these proteins have been involved in development of vancomycin and daptomycin resistance.

Methodology/Principal Findings

Here we present high yield expression and purification of the full-length YycG and YycF proteins as well as of the auxiliary proteins YycH and YycI of Staphylococcus aureus. Activity tests of the YycG kinase and a mutated version, that harbours an Y306N exchange in its cytoplasmic PAS domain, in a detergent-micelle-model and a phosholipid-liposome-model showed kinase activity (autophosphorylation and phosphoryl group transfer to YycF) only in the presence of elevated concentrations of alkali salts. A direct comparison of the activity of the kinases in the liposome-model indicated a higher activity of the mutated YycG kinase. Further experiments indicated that YycG responds to fluidity changes in its microenvironment.

Conclusions/Significance

The combination of high yield expression, purification and activity testing of membrane and membrane-associated proteins provides an excellent experimental basis for further protein-protein interaction studies and for identification of all signals received by the YycFGHI system.  相似文献   

5.
6.
The YycG/YycF essential two-component system (TCS), originally identified in Bacillus subtilis, is very highly conserved and appears to be specific to low-G+C gram-positive bacteria, including several pathogens such as Staphylococcus aureus. By studying growth of S. aureus cells where the yyc operon is controlled by an isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible promoter, we have shown that this system is essential in S. aureus during growth at 37 degrees C and that starvation for the YycG/YycF regulatory system leads to cell death. During a previous study of the YycG/YycF TCS of B. subtilis, we defined a potential YycF consensus recognition sequence, consisting of two hexanucleotide direct repeats, separated by five nucleotides [5'-TGT(A/T)A(A/T/C)-N(5)-TGT(A/T)A(A/T/C)-3']. A detailed DNA motif analysis of the S. aureus genome indicates that there are potentially 12 genes preceded by this sequence, 5 of which are involved in virulence. An in vitro approach was undertaken to determine which of these genes are controlled by YycF. The YycG and YycF proteins of S. aureus were overproduced in Escherichia coli and purified. Autophosphorylation of the YycG kinase and phosphotransfer to YycF were shown in vitro. Gel mobility shift and DNase I footprinting assays were used to show direct binding in vitro of purified YycF to the promoter region of the ssaA gene, encoding a major antigen and previously suggested to be controlled by YycF. YycF was also shown to bind specifically to the promoter regions of two genes, encoding the IsaA antigen and the LytM peptidoglycan hydrolase, in agreement with the proposed role of this system in controlling virulence and cell wall metabolism.  相似文献   

7.
8.
Okajima T  Doi A  Okada A  Gotoh Y  Tanizawa K  Utsumi R 《FEBS letters》2008,582(23-24):3434-3438
A response regulator YycF and its cognate sensor kinase YycG constitute the two-component signal transduction system essential for growth of Gram-positive bacteria with a low GC content. We have determined the X-ray crystal structure of the effector domain of Bacillus subtilis YycF involved in DNA binding. The structure, containing a winged helix-turn-helix motif, was found to be very similar to that of the response regulator PhoB from Escherichia coli. Specific binding of YycF to the PhoB-regulated alkaline phosphatase promoter was also demonstrated.  相似文献   

9.
The YYCFG two-component signal transduction system (TCSTS) has been shown to be essential to the viability of several gram-positive bacteria. However, the function of the gene pair remains unknown. Interestingly, while both components are essential to Staphylococcus aureus and Bacillus subtilis, only the response regulator (YYCF) is essential to Streptococcus pneumoniae. To study this essential TCSTS further, the S. pneumoniae and S. aureus truncated YycG histidine kinase and full-length YycF response regulator proteins were characterized at a biochemical level. The recombinant proteins from both organisms were expressed in Escherichia coli and purified. The YycG autophosphorylation activities were activated by ammonium. The apparent K(m )(ATP) of S. aureus YycG autophosphorylation was 130 microM and S. pneumoniae was 3.0 microM. Each had similar K(cat )values of 0.036 and 0.024 min(-1), respectively. Cognate phosphotransfer was also investigated indicating different levels of the phosphorylated YycG intermediates during the reaction. The S. pneumoniae YycG phosphorylated intermediate was not detectable in the presence of its cognate YycF, while phosphorylated S. aureus YycG and YycF were detected concurrently. In addition, noncognate phosphotransfer was demonstrated between the two species. These studies thoroughly compare the essential YycFG TCSTS from the two species at the biochemical level and also establish methods for assaying the activities of these antibacterial targets.  相似文献   

10.
Two-component signal transduction systems (TCS) are an important mechanism by which bacteria sense and respond to their environment. Although each two-component system appears to detect and respond to a specific signal(s), it is now evident that they do not always act independently of each other. In this paper we present data indicating regulatory links between the PhoPR two-component system that participates in the cellular response to phosphate limitation, and the essential YycFG two-component system in Bacillus subtilis. We show that the PhoR sensor kinase can activate the YycF response regulator during a phosphate limitation-induced stationary phase, and that this reaction occurs in the presence of the cognate YycG sensor kinase. Phosphorylation of YycF by PhoR also occurs in vitro, albeit at a reduced level. However, the reciprocal cross-phosphorylation does not occur. A second level of interaction between PhoPR and YycFG is indicated by the fact that cells depleted for YycFG have a severely deficient PhoPR-dependent phosphate limitation response and that YycF can bind directly to the promoter of the phoPR operon. YycFG-depleted cells neither activate expression of phoA and phoPR nor repress expression of the essential tagAB and tagDEF operons upon phosphate limitation. This effect is specific to the PhoPR-dependent phosphate limitation response because PhoPR-independent phosphate limitation responses can be initiated in YycFG-depleted cells.  相似文献   

11.
Adaptation of bacteria to the prevailing environmental and nutritional conditions is often mediated by two-component signal transduction systems (TCS). The Bacillus subtilis YycFG TCS has attracted special attention as it is essential for viability and its regulon is poorly defined. Here we show that YycFG is a regulator of cell wall metabolism. We have identified five new members of the YycFG regulon: YycF activates expression of yvcE, lytE and ydjM and represses expression of yoeB and yjeA. YvcE(CwlO) and LytE encode endopeptidase-type autolysins that participate in peptidoglycan synthesis and turnover respectively. We show that a yvcE lytE double mutant strain is not viable and that cells lacking LytE and depleted for YvcE exhibit defects in lateral cell wall synthesis and cell elongation. YjeA encodes a peptidoglycan deacetylase that modifies peptidoglycan thereby altering its susceptibility to lysozyme digestion and YdjM is also predicted to have a role in cell wall metabolism. A genetic analysis shows that YycFG essentiality is polygenic in nature, being a manifestation of disrupted cell wall metabolism caused by aberrant expression of a number of YycFG regulon genes.  相似文献   

12.
13.
The highly conserved WalK/WalR (also known as YycG/YycF) two-component system is specific to low-G+C gram-positive bacteria. While this system is essential for cell viability, both the nature of its regulon and its physiological role have remained mostly uncharacterized. We observed that, unexpectedly, Staphylococcus aureus cell death induced by WalKR depletion was not followed by lysis. We show that WalKR positively controls autolytic activity, in particular that of the two major S. aureus autolysins, AtlA and LytM. By using our previously characterized consensus WalR binding site and carefully reexamining the genome annotations, we identified nine genes potentially belonging to the WalKR regulon that appeared to be involved in S. aureus cell wall degradation. Expression of all of these genes was positively controlled by WalKR levels in the cell, leading to high resistance to Triton X-100-induced lysis when the cells were starved for WalKR. Cells lacking WalKR were also more resistant to lysostaphin-induced lysis, suggesting modifications in cell wall structure. Indeed, lowered levels of WalKR led to a significant decrease in peptidoglycan biosynthesis and turnover and to cell wall modifications, which included increased peptidoglycan cross-linking and glycan chain length. We also demonstrated a direct relationship between WalKR levels and the ability to form biofilms. This is the first example in S. aureus of a regulatory system positively controlling autolysin synthesis and biofilm formation. Taken together, our results now define this signal transduction pathway as a master regulatory system for cell wall metabolism, which we have accordingly renamed WalK/WalR to reflect its true function.  相似文献   

14.
The Bacillus subtilis YycFG two-component signal transduction system is essential for cell viability, and the YycH protein is part of the regulatory circuit that controls its activity. The crystal structure of YycH was solved by two-wavelength selenium anomalous dispersion data, and was refined using 2.3 A data to an R-factor of 25.2%. The molecule is made up of three domains, and has a novel three-dimensional structure. The N-terminal domain features a calcium binding site and the central domain contains two conserved loop regions.  相似文献   

15.
Mitogen activated protein kinase (MAPK) signal transduction pathways are ubiquitous among eukaryotic organisms with evolutionary conserved modules. Although generally classified as osmotic and cell wall integrity pathways, functional divergences have been observed for HOG1- and SLT2-related MAPK pathways. Here we show that the osmotic signal transduction cascade is involved in cell wall integrity in the phytopathogenic ascomycete Botrytis cinerea. The deletion mutants of the upstream histidine kinase Bos1 and of the MAPK Sak1 showed modified tolerance to cell wall degrading enzymes and cell wall interfering agents, as well as increased staining of β1-3 glucan and chitin compared to the wild-type. The Sak1 MAPK was phosphorylated upon cell wall challenging. Sak1 interfered with the phosphorylation status of the SLT2 type MAPK Bmp3 hinting to cross talk between both MAPK pathways. All signal transduction components interfered with the expression of melanin biosynthesis genes in dark and bright, suggesting a coordinated control of melanin biosynthesis.  相似文献   

16.
The response regulator YycF is essential for cell growth in gram-positive bacteria including Bacillus subtilis, Staphylococcus aureus and Streptococcus pneumoniae. To study the function of YycF in the essential process, we characterized a YycF (H215P) mutation that caused temperature-sensitive growth in B. subtilis. The response regulators YycF and YycF (H215P) were analyzed using circular dichroism spectroscopy, whose T(m) values were 56.0 and 45.9 degrees C, respectively, suggesting that YycF (H215P) significantly affects the protein structure with an increase in temperature. Furthermore, using the gel mobility shift assay and DNase I footprinting, we investigated the effect of YycF (H215P) on binding to the YycF box of ftsAZ operon of B. subtilis. The replacement of the histidine 215 with proline resulted in a decrease of the DNA-binding ability of YycF in vitro. In vivo, using Escherichia coli two-hybrid and homodimerization assays, we clarified that His 215 of YycF plays a crucial role in the homodimerization of the protein. Thus the essential genes involved in growth of B. subtilis appear to be regulated by the homodimer of YycF. These results suggest that the YycF dimerization is an excellent target for the discovery of novel antibiotics.  相似文献   

17.
To identify a novel class of antibiotics, we have developed a high-throughput genetic system for targeting the homodimerization (HD system) of histidine kinase (HK), which is essential for a bacterial signal transduction system (two-component system, TCS). By using the HD system, we screened a chemical library and identified a compound, I-8-15 (1-dodecyl-2-isopropylimidazole), that specifically inhibited the dimerization of HK encoded by the YycG gene of Staphylococcus aureus and induced concomitant bacterial cell death. I-8-15 also showed antibacterial activity against MRSA (methicillin-resistant S. aureus) and VRE (vancomycin-resistant Enterococcus faecalis) with MICs at 25 and 50 microg/ml, respectively.  相似文献   

18.
Ma Y  Jiang W  Liu Q  Ryuko S  Kuno T 《PloS one》2011,6(8):e23422
We have been studying calcineurin signal transduction pathway in fission yeast Schizosaccharomyces pombe (S. pombe) by developing a genetic screen for mutants that show hypersensitivity to the immunosuppressive calcineurin inhibitor FK506 (tacrolimus). In the present study, to identify nonessential genes that are functionally related to the calcineurin signaling pathway, we performed a genome-wide screen of 3004 haploid deletion strains and confirmed 72 deletion strains to be FK506 sensitive. These 72 genes are classified into nine functional groups to include membrane trafficking (16 genes), signal transduction (10 genes), ubiquitination (8 genes), chromatin remodeling (6 genes), cytokinesis (4 genes), ribosomal protein (3 genes), RNA binding protein (3 genes), and a variety of other known functions (17 genes) or still unknown functions (5 genes) in the biological system. In our previous screening of FK506-sensitive mutants we isolated several membrane-trafficking mutants showing defective cell wall integrity. Here, we further examined the vacuolar fusion, the v-SNARE synaptobrevin Syb1 localization, and the sensitivity to the β-glucan synthase inhibitor micafungin in these 72 FK506-sensitive strains. Results showed that 25 deletion strains exhibited abnormal vacuole fusion, 19 deletion strains exhibited Syb1 mislocalization, and 14 deletion strains exhibited both abnormal vacuole fusion and Syb1 mislocalization, while 42 deletion strains showed both normal vacuole fusion and Syb1 localization. Likewise, 16 deletion strains showed sensitivity to micafungin. Altogether, our present study indicates that calcineurin mediates a plethora of physiological processes in fission yeast, and that calcineurin is extensively involved in cross-talk between signaling pathways.  相似文献   

19.
Disruption of normal protein trafficking in the Escherichia coli cell envelope (inner membrane, periplasm, outer membrane) can activate two parallel, but distinct, signal transduction pathways. This activation stimulates the expression of a number of genes whose products function to fold or degrade the mislocalized proteins. One of these signal transduction pathways is a two-component regulatory system comprised of the histidine kinase CpxA and the response regulator, CpxR. In this study we characterized gain-of-function Cpx* mutants in order to learn more about Cpx signal transduction. Sequencing demonstrated that the cpx* mutations cluster in either the periplasmic, the transmembrane, or the H-box domain of CpxA. Intriguingly, most of the periplasmic cpx* gain-of-function mutations cluster in the central region of this domain, and one encodes a deletion of 32 amino acids. Strains harboring these mutations are rendered insensitive to a normally activating signal. In vivo and in vitro characterization of maltose-binding-protein fusions between the wild-type CpxA and a representative cpx* mutant, CpxA101, showed that the mutant CpxA is altered in phosphotransfer reactions with CpxR. Specifically, while both CpxA and CpxA101 function as autokinases and CpxR kinases, CpxA101 is devoid of a CpxR-P phosphatase activity normally present in the wild-type protein. Taken together, the data support a model for Cpx-mediated signal transduction in which the kinase/phosphatase ratio is elevated by stress. Further, the sequence and phenotypes of periplasmic cpx* mutations suggest that interactions with a periplasmic signaling molecule may normally dictate a decreased kinase/phosphatase ratio under nonstress conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号