首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
 A candidate-gene approach to analyse the resistance of plants to phytopathogenic fungi is presented. The resistance of sunflower (Helianthus annuus L.) to downy mildew (Plasmopara halstedii) shows a gene-for-gene interaction (monogenic resistance), whereas resistance to white rot (Sclerotinia sclerotiorum) is quantitative, with different levels of resistance for different plant parts. By homology cloning, probes were obtained homologous to some plant resistance genes (nucleotide binding site-like, NBS, genes and serine-threonine protein kinase-like, PK, genes). These clones were used as probes for linkage mapping of the corresponding genes. It was demonstrated that at least three NBS-like loci are located on linkage-group 1, in the region where downy mildew resistance loci have been described. Quantitative trait loci for S. sclerotiorum resistance to penetration or extension of the mycelium in different tissues were studied in three crosses. Major QTLs for resistance were found on linkage group 1, with up to 50% of the phenotypic variability explained by peaks at the map position of the PK locus, 25 cM from the downy mildew loci. Received: 24 September 1997 / Accepted: 21 October 1997  相似文献   

4.
5.
Aside from polyploidy, transposable elements are the major drivers of genome size increases in plants. Thus, understanding the diversity and evolutionary dynamics of transposable elements in sunflower (Helianthus annuus L.), especially given its large genome size (~3.5 Gb) and the well‐documented cases of amplification of certain transposons within the genus, is of considerable importance for understanding the evolutionary history of this emerging model species. By analyzing approximately 25% of the sunflower genome from random sequence reads and assembled bacterial artificial chromosome (BAC) clones, we show that it is composed of over 81% transposable elements, 77% of which are long terminal repeat (LTR) retrotransposons. Moreover, the LTR retrotransposon fraction in BAC clones harboring genes is disproportionately composed of chromodomain‐containing Gypsy LTR retrotransposons (‘chromoviruses’), and the majority of the intact chromoviruses contain tandem chromodomain duplications. We show that there is a bias in the efficacy of homologous recombination in removing LTR retrotransposon DNA, thereby providing insight into the mechanisms associated with transposable element (TE) composition in the sunflower genome. We also show that the vast majority of observed LTR retrotransposon insertions have likely occurred since the origin of this species, providing further evidence that biased LTR retrotransposon activity has played a major role in shaping the chromatin and DNA landscape of the sunflower genome. Although our findings on LTR retrotransposon age and structure could be influenced by the selection of the BAC clones analyzed, a global analysis of random sequence reads indicates that the evolutionary patterns described herein apply to the sunflower genome as a whole.  相似文献   

6.
Apical segments of embryonic axes of sunflower (Helianthus annuus L.) embryos were submitted to co-culture experiments with a disarmed strain of Agrobacterium tumefaciens, harbouring a plasmid coding for the marker enzyme -glucuronidase. The expression patterns of this marker were analysed at different developmental stages of the regenerated shoots. The results are consistent with the hypothesis that transformed shoots originate from transformation events that have occurred within the existing meristems. Two of the resulting chimaeric plants have been analysed in detail, and some representative gene integration patterns are presented.  相似文献   

7.
Samples of fresh pollen grains, collected from capitula in full bloom from two genotypes of sunflower (Helianthus annuus L.) and characterized by a different color, i.e., white‐cream (WC) and orange (O), were analyzed by the HS‐SPME (headspace solid phase microextraction)/GC/MS technique. This study defined for the first time the fingerprint of the sunflower pollen, separated from the disc flowers, to define its contribution to the inflorescence aroma. In the GC/MS fingerprints of the WC and O genotypes, 61 and 62 volatile compounds were identified, respectively. Monoterpene hydrocarbons (34% in O vs. 28% in WC) and sesquiterpene hydrocarbons (37% in O vs. 31% in WC) were ubiquitous in all samples analyzed and represented the main chemical classes. α‐Pinene (21% in O vs. 20% in WC) and sabinene (11% in O vs. 6% in WC) were the dominant volatiles, but also a full range of aliphatic hydrocarbons and their oxygenated derivatives gave a decisive contribution to the aroma composition (10% in O vs. 12% in WC). In addition, dendrolasin (3% in O vs. 4% in WC) and some minor constituents such as (E)‐hex‐2‐en‐1‐ol (0.4% in O vs. 0.1% in WC) were pointed out not only for their contribution to the pollen scent, but also for their well‐known role in the plant ecological relationships. Having evaluated two pollen morphs with different carotenoid‐based colors, the study sought to highlight also the presence of some volatile precursors or derivatives of these pigments in the aroma. However, the pollen aroma of the two selected genotypes made a specific chemical contribution to the sunflower inflorescence scent without any influence on carotenoid derivatives.  相似文献   

8.
9.
10.
The cultivated sunflower (Helianthus annuus L.) is one of the most important oil crops in the world. The importance of sunflower oil in human nutrition and in the chemical industry makes the sunflower a major research interest. An essential element for genomic libraries is the preparation of high molecular weight (HMW) DNA. We developed 2 methods for isolating HMW sunflower DNA. We prepared the DNA from nuclei and from protoplasts isolated from mesophyll tissue with the enzymes cellulase RS and pectolyase Y23. The HMW DNA was digested with restriction endonucleases. The ethidium bromide-stained gel suggested the DNA to be completely digested. These results were confirmed by Southern analysis using a radiolabeled RFLP marker. Both methods made it possible to generate sufficient quantities of megabase-size sunflower DNA suitable for bacterial artificial chromosome (BAC) cloning.  相似文献   

11.
A full-length cDNA encoding a putative diacylglycerol acyltransferase (DGAT; EC 2.3.1.20) was obtained from sunflower (Helianthus annuus L.) seeds. The 1524-bp open reading frame of this cDNA, designated as HaDGAT1, encodes a protein of 507 amino acids with a molecular mass of 58.5 kDa showing high homology to DGAT1 enzymes of other plants. The protein characters, such as a predicted structure with a long N-terminal hydrophilic domain followed by 9 transmembrane domains, acyl-CoA-binding signature, diacylglycerol (DAG)-binding and putative endoplasmic reticulum retrieval motifs (ER-DIR), also indicated that HaDGAT belongs to the DGAT1 family. HaDGAT1 is expressed in all plant tissues especially in developing seeds. Expression of recombinant HaDGAT1 in yeast showed an 1.76-fold increase of total fatty acids, especially unsaturated fatty acids such as palmitoleic acid (enhanced by 86.6%) and oleic acid (enhanced by 81.6%).  相似文献   

12.
Abstract. The diurnal cycling of leaf water potential (Ψleaf) in field-grown sunflower ( Helianthus annuus ) was used to investigate the cause of water deficitinduced limitation of net photosynthesis. Daily midafternoon decreases in Ψleaf of up to 1.5 MPa and in net photosynthesis of up to 50% were typical for irrigated sunflower during seed filling. These midafternoon values were lowered an additional 0.6 to 0.8 MPa by prolonged drought treatment. There was a nearly linear relationship between the decline in net photosynthesis and reductions in leaf conductance over the course of the day. Thus, it was unexpected to find that the low, midafternoon rates of photosynthesis were associated with the highest intercellular CO2 concentrations. These and other observations suggest that the daily decline in photosynthesis represents a 'down regulation' of the biochemical demand for CO2 that is coordinated with the diurnally developing need to conserve water, thus establishing a balanced limitation of photosynthesis involving both stomatal and non-stomatal factors. There were no indications that either short term (i.e. diurnal declines in Ψleaf) or long term (i.e. drought treatment) water deficits caused any damage or malfunctioning of photosynthesis. Rather, both the daily declines in photosynthesis and the nearly 25% decrease in leaf area induced by prolonged drought appeared to be well-controlled adaptive responses by field-grown sunflower plants to limited water availability.  相似文献   

13.
Summary Sunflower hypocotyl protoplasts (Helianthus annuus L.) from 5 PIONEER genotypes (PT024, SMF3, EMIL, HA300*PT024, VK5F) and 1 public line (RHa 274) formed colonies at frequencies of up to 60% when plated in 0.25ml agarose beads in a modified L4 medium (Lenée and Chupeau 1986) containing 3mg/l NAA, 1mg/l BA and 0.1mg/l 2,4-D, and 1000mg/l casamino acids. Protoplast-derived colonies grew slowly into calli. Organogenesis was obtained from callus of PT024 on a MS medium containing NAA and BA at 1mg/l and GA at 0.1mg/l. Freshly excised shoots were induced to root by an IAA treatment. Regenerated plants were transferred to the greenhouse and seed was harvested within 7 months of the initial protoplast isolation.Abbreviations BA 6-benzylaminopurine - NAA -naphtaleneacetic acid - GA gibberellic acid - IAA indole-3-acetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - MS Murashige and Skoog mineral elements - B5 Gamborg mineral elements  相似文献   

14.
15.
Summary.  Methyl-jasmonate (MeJA) has been proposed to be involved in the evocation of defense reactions, as the oxidative burst in plants, substituting the elicitors or enhancing their effect. 48 h dark- and sterilely cultured (axenic) aeroponic sunflower seedling roots excised and treated with different concentrations of MeJA showed a strong and quick depression of the H+ efflux rate, 1.80 μM MeJA totally stopping it for approximately 90 min and then reinitiating it again at a lower rate than controls. These results were wholly similar to those obtained with nonsterilely cultured roots and have been interpreted as mainly based on H+ consumption for O2 •− dismutation to H2O2. Also K+ influx was strongly depressed by MeJA, even transitorily reverting to K+ efflux. These results were consistent with those associated to the oxidative burst in plants. MeJA induced massive H2O2 accumulation in the middle lamella and intercellular spaces of both the root cap cells and the inside tissues of the roots. The native acidic extracellular peroxidase activity of the intact (nonexcised) seedling roots showed a sudden enhancement (by about 52%) after 5 min of MeJA addition, maintained for approximately 15 min and then decaying again to control rates. O2 uptake by roots gave similar results. These and other results for additions of H2O2 or horseradish peroxidase, diphenylene iodonium, and sodium diethyldithiocarbamate trihydrate to the reaction mixture with roots were all consistent with the hypothesis that MeJA induced an oxidative burst, with the generation of H2O2 being necessary for peroxidase activity. Results with peroxidase activity of the apoplastic fluid were in accordance with those of the whole root. Finally, MeJA enhanced NADH oxidation and inhibited hexacyanoferrate(III) reduction by axenic roots, and diphenylene iodonium cancelled out these effects. Redox activities by CN- preincubated roots were also studied. All these results are consistent with the hypothesis that MeJA enhanced the NAD(P)H oxidase of a redox chain linked to the oxidative burst, so enhancing the generation of O2 •− and H2O2, O2 uptake, and peroxidase activity by roots. Received July 12, 2002; accepted October 2, 2002; published online May 21, 2003 RID="*"  相似文献   

16.
A cDNA-encoding a peroxidase (Helianthus annuus POX (HaPOX)1) was isolated and characterized from the roots of sunflower seedlings. This gene exhibited homology with other peroxidases from several higher-plant species, and its expression in the root growth was particularly abundant during cell expansion. To elucidate the precise functions of HaPOX1 in sunflower root, we examined its expression pattern in response to several plant growth regulators. Expression of HaPOX1 is down-regulated by abscisic acid (ABA), whereas indole-3-acetic acid (IAA) induced its expression. These results suggest that HaPOX1 expression is differentially regulated by phytohormonal components of signaling cascades. Since IAA appears to participate in the regulation of HaPOX1 expression, we postulate that the peroxidase encoded by HaPOX1 may be involved in the reactions that promote cell elongation during the early stage of root growth.  相似文献   

17.
BACKGROUND AND AIMS: Plant lateral organs such as leaves arise from a group of initial cells within the flanks of the shoot apical meristem (SAM). Alterations in the initiation of lateral organs are often associated with changes in the dimension and arrangement of the SAM as well as with abnormal hormonal homeostasis. A mutation named stem fasciated (stf) that affects various aspects of plant development, including SAM shape and auxin level, was characterized in sunflower (Helianthus annuus). METHODS: F1, F2 and F3 generations were obtained through reciprocal crosses between stf and normal plants. For the genetic analysis, a chi2 test was used. Phenotypic observations were made in field-grown and potted plants. A histological analysis of SAM, hypocotyl, epicotyl, stem and root apical meristem was also conducted. To evaluate the level of endogenous indole-3-acetic acid (IAA), a capillary gas chromatography-mass spectrometry-selected ion monitoring analysis was performed. KEY RESULTS: stf is controlled by a single nuclear recessive gene. stf plants are characterized by a dramatically increased number of leaves and vascular bundles in the stem, as well as by a shortened plastochron and an altered phyllotaxis pattern. By histological analysis, it was demonstrated that the stf phenotype is related to an enlarged vegetative SAM. Microscopy analysis of the mutant's apex also revealed an abnormal enlargement of nuclei in both central and peripheral zones and a disorganized distribution of cells in the L2 layer of the central zone. The stf mutant showed a high endogenous free IAA level, whereas auxin perception appeared normal. CONCLUSIONS: The observed phenotype and the high level of auxin detected in stf plants suggest that the STF gene is necessary for the proper initiation of primordia and for the establishment of a phyllotactic pattern through control of both SAM arrangement and hormonal homeostasis.  相似文献   

18.
Hypocotyl-derived callus from the Helianthus annuus L. inbred line SS415B regenerated significantly more plants if the seedlings were grown in the light. The difference between light- and dark-grown seedlings was not correlated with differences in seedling ethylene production, but seemed to be due to a difference in sensitivity to ethylene at a specific time during seedling growth. Treating 3-day-old dark-grown seedlings with 10 μ M aminoethoxyvinylglycine (AVG) effectively inhibited ethylene production for at least 7 days. Hypocotyl callus derived from AVG-treated seedlings gave the same amount of regeneration as callus from light-grown seedlings. Promotion of regeneration by AVG was not seen unless the 3-day-old seedlings were grown for 4 additional days prior to culturing hypocotyl explants. The effects of AVG could be reversed by treatment with 1-aminocyclopropane-1-carboxylic acid (ACC) during these 4 days. After the 4 days, ACC was no longer effective.  相似文献   

19.
During sunflower (Helianthus annuus L.) seed formation there was an active period of lipid biosynthesis between 12 and 28 days after flowering (DAF). The maximum in-vitro acyl-acyl carrier protein (ACP) thioesterase activities (EC 3.1.2.14) were found at 15 DAF, preceding the largest accumulation of lipid in the seed. Data from the apparent kinetic parameters, V max and K m, from seeds of 15 and 30 DAF, showed that changes in acyl-ACP thioesterase activity are not only quantitative, but also qualitative, since, although the preferred substrate was always oleoyl-ACP, the affinity for palmitoyl-ACP decreased, whereas that for stearoyl-ACP increased with seed maturation. Bisubstrate assays carried out at 30 DAF seemed to indicate that the total activity found in mature seeds is due to a single enzyme with 100/75/15 affinity for oleoyl-ACP/stearoyl-ACP/palmitoyl-ACP. In contrast, at 15 DAF, enzymatic data together with partial sequences from cDNAs indicated the presence of at least two enzymes with different properties, a FatA-like thioesterase, with a high affinity for oleoyl-ACP, plus a FatB-like enzyme, with preference for long-chain saturated fatty acids, both being expressed during the active lipid biosynthesis period. Competition assays carried out with CAS-5, a mutant with a higher content of palmitic acid in the seed oil, indicated that a modified FatA-type thioesterase is involved in the mutant phenotype. Received: 17 December 1999 / Accepted: 25 February 2000  相似文献   

20.
Two high-palmitic acid sunflower (Helianthus annuus L.) mutants, CAS-5 and CAS-12, have been biochemically characterised. The enzymatic activities found to be responsible for the mutant characteristics are β-keto-acyl-acyl carrier protein synthetase II (KASII; EC 2.3.1.41) and acyl-acyl carrier protein thioesterase (EC 3.1.2.14). Our data suggest that the high-palmitic acid phenotype observed in both mutant lines is due to the combined effect of a lower KASII activity and a higher thioesterase activity with respect to palmitoyl-acyl carrier protein (16:0-ACP). The level of the latter enzyme appeared to be insufficient to hydrolyse the produced 16:0-ACP completely. As a consequence of this, three new fatty acids appear: palmitoleic acid (16:1 Δ9), asclepic acid (18:1 Δ11), and palmitolinoleic acid (16:2 Δ9 Δ12). These fatty acids should be synthesised from palmitoyl-ACP or a derivative by the action of the stearoyl-ACP desaturase, fatty acid synthetase II and oleoyl-phosphatidylcholine desaturase, respectively. Received: 11 July 1998 / Accepted: 10 October 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号