首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Steryl glucosides are characteristic lipids of plant membranes. The biosynthesis of these lipids is catalyzed by the membrane-bound UDP-glucose:sterol glucosyltransferase (EC 2.4.1.173). The purified enzyme (Warnecke and Heinz, Plant Physiol 105 (1994): 1067–1073) has been used for the cloning of a corresponding cDNA from oat (Avena sativa L.). Amino acid sequences derived from the amino terminus of the purified protein and from peptides of a trypsin digestion were used to construct oligonucleotide primers for polymerase chain reaction experiments. Screening of oat and Arabidopsis cDNA libraries with amplified labeled DNA fragments resulted in the isolation of sterol glucosyltransferase-specific cDNAs with insert lengths of ca. 2.3 kb for both plants. These cDNAs encode polypeptides of 608 (oat) and 637 (Arabidopsis) amino acid residues with molecular masses of 66 kDa and 69 kDa, respectively. The first amino acid of the purified oat protein corresponds to the amino acid 133 of the deduced polypeptide. The absence of these N-terminal amino acids reduces the molecular mass to 52 kDa, which is similar to the apparent molecular mass of 56 kDa determined for the purified protein. Different fragments of these cDNAs were expressed in Escherichia coli. Enzyme assays with homogenates of the transformed cells exhibited sterol glucosyltransferase activity.  相似文献   

2.
Squalene synthase (SQS: EC 2.5.1.21) is a potential branch point regulatory enzyme and represents the first committed step to diverge the carbon flux from the main isoprenoid pathway towards sterol biosynthesis. In the present study, cloning and characterization of Withania somnifera squalene synthase (WsSQS) cDNA was investigated subsequently followed by its heterologous expression and preliminary enzyme activity. Two different types of WsSQS cDNA clones (WsSQS1and WsSQS2) were identified that contained an open reading frames of 1,236 and 1,242 bp encoding polypeptides of 412 and 414 amino acids respectively. Both WsSQS isoforms share 99 % similarity and identity with each other. WsSQS deduced amino acids sequences, when compared with SQS of other plant species, showed maximum similarity and identity with Capsicum annuum followed by Solanum tuberosum and Nicotiana tabacum. To obtain soluble recombinant enzymes, 24 hydrophobic amino acids were deleted from the carboxy terminus and expressed as 6X His-Tag fusion protein in Escherichia coli. Approximately 43 kDa recombinant protein was purified using Ni-NTA affinity chromatography and checked on SDS-PAGE. Preliminary activity of the purified enzymes was determined and the products were analyzed by gas chromatograph-mass spectrometer (GC-MS). Quantitative real-time PCR (qRT-PCR) analysis showed that WsSQS expresses more in young leaves than mature leaves, stem and root.  相似文献   

3.
4.
5.
Purification and cDNA cloning of rat 6-pyruvoyl-tetrahydropterin synthase   总被引:2,自引:0,他引:2  
6-Pyruvoyl-tetrahydropterin synthase, which catalyzes the second step in the biosynthesis of tetrahydrobiopterin, was purified approximately 18,000-fold to apparent homogeneity from rat liver. The molecular mass of the native enzyme was estimated to be 83 kDa by gel filtration. The enzyme showed a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis corresponding to a molecular mass of 17 kDa. Up to 24 residues of the NH2-terminal sequence were determined by Edman degradation, which released a single amino acid at each step. These results indicate that the enzyme consists of identical subunits. The purified enzyme was digested with lysyl endopeptidase or V8 protease, and 11 peptide fragments were isolated. On the basis of the sequences of these peptides, oligonucleotides were synthesized and used to screen a rat liver cDNA library, and one cDNA clone was isolated. The complete nucleotide sequence of the 1176-base pair cDNA was then determined. The deduced amino acid sequence contained 144 amino acid residues, but a NH2-terminal four-amino acid sequence was not found in the purified protein. Therefore, the mature protein consists of 140 amino acids. A single mRNA band of 1.3 kilobases was obtained by RNA blot analysis of rat liver. The predicted amino acid sequence of 6-pyruvoyl-tetrahydropterin synthase was compared with the Protein Sequence Database of the National Biomedical Research Foundation, revealing significant local similarity to large T antigens from the polyomavirus family.  相似文献   

6.
7.
Complementary DNA clones encoding rat kidney histamine N-methyltransferase have been isolated using synthetic oligonucleotide probes based on partial amino acid sequences of tryptic peptides of the purified enzyme. The 1.3-kilobase cDNA consisted of a 5'-noncoding region of 8 nucleotides, a coding region of 885 nucleotides, and a 3'-noncoding region of 369 nucleotides. The encoded protein of 295 amino acid residues had a calculated molecular weight of 33,940.2. After introduction of a prokaryotic expression vector containing the isolated cDNA, Escherichia coli cells expressed histamine N-methyltransferase activity. The enzyme expressed in these cells was isolated and purified as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, whose mobility was identical to the natural enzyme purified from rat kidney. The recombinant enzyme had Vmax and Km values for both histamine and S-adenosylmethionine identical to those of the natural enzyme. All of the inhibitors of the natural enzyme tested showed similar Ki values on both recombinant and natural enzyme.  相似文献   

8.
In the present study, the xylA gene encoding a thermostable xylose (glucose) isomerase was cloned from Streptomyces chibaensis J-59. The open reading frame of xylA (1167 bp) encoded a protein of 388 amino acids with a calculated molecular mass of about 43 kDa. The XylA showed high sequence homology (92% identity) with that of S. olivochromogenes. The xylose (glucose) isomerase was expressed in Escherichia coli and purified. The purified recombinant XylA had an apparent molecular mass of 45 kDa, which corresponds to the molecular mass calculated from the deduced amino acid and that of the purified wild-type enzyme. The N-terminal sequences (14 amino acid residues) of the purified protein revealed that the sequences were identical to that deduced from the DNA sequence of the xylA gene. The optimum temperature of the purified enzyme was 85 degrees C and the enzyme exhibited a high level of heat stability.  相似文献   

9.
Recently, the two Mr forms of caldesmon (Mr's in the range of 120-150kDa and 70-80kDa as judged by SDS-PAGE) have been identified. h-Caldesman (high Mr 120-150kDa caldesmon) is predominantly expressed in smooth muscles, and l-caldesmon (low Mr 70-80kDa caldesmon) in non-muscle cells. In this paper, we report the nucleotide sequence of chick embryo gizzard h-caldesmon cDNA and its translation into amino acid sequence. This sequence predicts a protein of 771 amino acids with a Mr of 88,743. The central portion of this sequence is composed of a 10-fold repeat of conserved amino acid sequence containing 13-15 amino acids. Further, a recombinant protein produced in Escherichia coli containing the full-length h-caldesmon cDNA has been characterized. Although the Mr of h-caldesmon predicted from amino acid sequence is 88,743, native and recombinant proteins show the same mol. wt. with 150kDa as measured by SDS-PAGE. This discrepancy may be due to the acidic amino acid-rich sequences at the N-terminal and central portions. A recombinant protein produced in E. coli possesses calmodulin-, F-actin- and tropomyosin-binding abilities in common with the native h-caldesmon.  相似文献   

10.
11.
In order to produce a recombinant rhamnogalacturonase from the basidiomycete Irpex lacteus using a molecular approach, PCR primers were designed based on a sequence alignment of four known ascomycete rhamnogalacturonases. Using 5' and 3' rapid amplification of cDNA ends (RACE) experiments, a 1,437-bp full-length cDNA containing an open reading frame of 1,329 bp was isolated. The corresponding putative protein sequence is of 443 amino acids and contains a secretion signal sequence of 22 amino acids. The theoretical mass of this protein is 44.6 kDa with a theoretical isoelectric point of 6.2. The amino acid sequence shared not only significant identities with ascomycete and basidiomycete putative rhamnogalacturonases but also complete similarity with peptides obtained from a recently purified rhamnogalacturonase from I. lacteus. The recombinant protein was successfully expressed in active form in Pichia pastoris. SDS-PAGE assay demonstrated that the recombinant enzyme was secreted in the culture medium and had a molar mass of 56 kDa. This recombinant rhamnogalacturonan hydrolase exhibited a pH optimum between 4.5 and 5 and a temperature optimum between 40°C and 50°C, which correspond to that of the native rhamnogalacturonase from I. lacteus. The study of its specificity through reaction products analysis showed that it was highly tolerant to the presence of acetyl groups on its substrate, even more than the native enzyme.  相似文献   

12.
Quinolizidine alkaloids from the curare adjuvant Clathrotropis glaucophylla   总被引:1,自引:0,他引:1  
The bark of Clathrotropis glaucophylla (Fabaceae) is used as admixture of curare arrow poison by the Yanomami; Amerindians in Venezuela. A new quinolizidine alkaloid (QA), (-)-13alpha-hydroxy-15alpha-(1-hydroxyethyl)-anagyrine [(-)-clathrotropine], was isolated from the alkaloid extract of C. glaucophylla bark, together with eleven known QAs: (-)-anagyrine, (-)-thermopsine, (-)-baptifoline, (-)-epibaptifoline, (-)-rhombifoline, (-)-tinctorine, (-)-cytisine, (-)-N-methylcytisine, (-)-lupanine, (-)-6alpha-hydroxylupanine and (+)-5,6-dehydrolupanine. The isolation and structure elucidation were performed with the aid of chromatographic (TLC, HPLC and CC) and spectroscopic (UV and 1D/2D NMR) methods, and mass spectrometry. To our knowledge, this is the first time quinolizidine alkaloids have been isolated from an arrow poison ingredient. It is also the first report on Clathrotropis species being used for preparation of arrow poison.  相似文献   

13.
A protein hydrolyzing hydroxycinnamoyl-CoA esters has been purified from tobacco stem extracts by a series of high pressure liquid chromatography steps. The determination of its N-terminal amino acid sequence allowed design of primers permitting the corresponding cDNA to be cloned by PCR. Sequence analysis revealed that the tobacco gene belongs to a plant acyltransferase gene family, the members of which have various functions. The tobacco cDNA was expressed in bacterial cells as a recombinant protein fused to glutathione S-transferase. The fusion protein was affinity-purified and cleaved to yield the recombinant enzyme for use in the study of catalytic properties. The enzyme catalyzed the synthesis of shikimate and quinate esters shown recently to be substrates of the cytochrome P450 3-hydroxylase involved in phenylpropanoid biosynthesis. The enzyme has been named hydroxycinnamoyl-CoA: shikimate/quinate hydroxycinnamoyltransferase. We show that p-coumaroyl-CoA and caffeoyl-CoA are the best acyl group donors and that the acyl group is transferred more efficiently to shikimate than to quinate. The enzyme also catalyzed the reverse reaction, i.e. the formation of caffeoyl-CoA from chlorogenate (5-O-caffeoyl quinate ester). Thus, hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyltransferase appears to control the biosynthesis and turnover of major plant phenolic compounds such as lignin and chlorogenic acid.  相似文献   

14.
When the inhalation anesthetic halothane was administered to rats, a 58 kDa protein in the liver became covalently labeled by the trifluoroacetyl chloride metabolite of halothane. The amino acid sequences of the N-terminal and of several internal peptide fragments of the protein were 99% homologous to that of the deduced amino acid sequence of a cDNA reported to correspond to phosphatidylinositol-specific phospholipase C-alpha. The purified trifluoroacetylated 58 kDa protein or native 58 kDa protein, however, did not have phosphatidylinositol-specific phospholipase C activity. We conclude that the reported cDNA of phosphatidylinositol-specific phospholipase C-alpha may encode for a microsomal protein of unknown function.  相似文献   

15.
16.
UDP-N-acetylglucosamine: beta-D-mannoside beta-1,4N-acetylglucosaminyltransferase III (GnT-III: EC 2.4.1.144) catalyzes the addition of N-acetylglucosamine in beta 1-4 linkage to the beta-linked mannose of the trimannosyl core of N-linked sugar chains. The enzyme has been purified over 153,000-fold in 1.5% yield from a Triton X-100 extract of rat kidney by fractionation procedures utilizing QAE-Sepharose, Cu(2+)-chelating Sepharose, and affinity chromatography on UDP-hexanolamine and substrate-conjugated Sepharose. The purified protein migrates as one major and one minor band with apparent molecular masses of 62 kDa and 52 kDa, respectively. The purified enzyme was digested with trypsin, and the amino acid sequences of four peptides were determined. Oligonucleotide primers were designed according to those amino acid sequences and used in the polymerase chain reaction. Screening for the cDNA for GnT-III was carried out by plaque hybridization using a rat kidney cDNA library (lambda gt10) and a polymerase chain reaction product as the probe. Rat kidney GnT-III has 536 amino acids and three putative N-glycosylation sites. There is no sequence homology to other previously cloned glycosyltransferases, but the enzyme appears to be a type II transmembrane protein like the other glycosyltransferases. The GnT-III activity in transiently transfected COS-1 cells was found to be about 500-3600-fold as compared to that in non- or mock-transfected cells.  相似文献   

17.
Isolation of a cDNA coding for human galactosyltransferase   总被引:7,自引:0,他引:7  
Human milk galactosyltransferase (EC 2.4.1.22) was purified to homogeneity using affinity chromatography. Edman degradation was used to determine the amino acid sequences of eight peptide fragments isolated from the purified enzyme. A 60-mer "optimal" oligonucleotide probe that corresponded to the amino acid sequence of one of the galactosyltransferase peptide fragments was constructed and used to screen a lambda gt10 cDNA library. Two hybridization-positive recombinant phages, each with a 1.7 Kbp insert, were detected among 3 X 10(6) recombinant lambda gt10 phages. Sequencing of one of the cDNA inserts revealed a 783 bp galactosyltransferase coding sequence. The remainder of the sequence corresponded to the 3'-region of the mRNA downstream from the termination codon.  相似文献   

18.
Alkaline phosphatase gene of the bacterium, Bacillus licheniformis MTCC 1483 was cloned and successfully expressed in Escherichia coli BL21 (DE3). Sequence analysis revealed an open reading frame of 1662 bp encoding a 553 amino acid protein with a molecular mass of 62 kDa, as determined by SDS-PAGE. The recombinant enzyme was purified using Ni-NTA affinity column and the purified enzyme showed a specific activity of 24890 U/mg protein, which is the highest value among any other bacterial recombinant alkaline phosphatases reported so far. The enzyme exhibited optimum activity at 50°C and pH 10.0 and showed high thermostability. The recombinant alkaline phosphatase from B. licheniformis MTCC 1483 exhibited a dephosphorylation efficiency of 92.9% to dephosphorylate linear DNA fragments. The recombinant enzyme with high catalytic efficiency and thermostability has the potential for applications in clinical diagnostics which require enzyme stability against thermal deactivation during preparation or labeling procedures.  相似文献   

19.
The XL-I form of xenobiotic-metabolizing medium-chain fatty acid:CoA ligase was previously purified to apparent homogeneity from bovine liver mitochondria, and the amino acid sequence of a short segment of the enzyme was determined. This sequence was used to develop a probe for screening a bovine cDNA library from which a 1.6 kb cDNA was isolated. This cDNA was sequenced and found to contain the code for the known amino acid sequence. The complete open reading frame was not present in this cDNA, but it was estimated to code for approximately 75% of the XL-I sequence. The XL-III ligase was purified to apparent homogeneity from bovine liver mitochondria. The enzyme eluted from a gel filtration column as a single peak with an apparent molecular weight of ca. 55,000. It ran as a single band on SDS-polyacrylamide gel electrophoresis (SDS-PAGE) with an apparent molecular weight of 62 kDa. N-Terminal sequence analysis of the enzyme gave no sequence, which indicates a blocked N-terminus. The enzyme was chemically cleaved using CNBr. The resulting peptides were separated by SDS-PAGE. The cleavage pattern revealed two large peptides of ca. 21 and 25 kDa, plus several smaller peptides including a prominent 6 kDa peptide. The N-terminus of the 6, 21, and 25 kDa peptides was sequenced and the 21 and 25 kDa sequences were identical indicating incomplete cleavage. The sequences were used to design probes for screening a bovine liver cDNA library. This resulted in the isolation of a 2,065 bp cDNA. This cDNA was sequenced and found to contain the initiation and termination codons, as well as the requisite amino acid sequences. The open reading frame coded for a 64,922 Da protein. The sequence of XL-III cDNA was markedly different from that of XL-I, indicating the genetic uniqueness of the two ligases. They are, however, 64% homologous, which suggests a common evolutionary origin.  相似文献   

20.
The original cDNA sequence reported for the murine DNA methyltransferase (MTase) was not full length. Recently, additional cDNA sequences have been reported that lie upstream of the original and contain an extended open reading frame with three additional ATGs in frame with the coding region [Tucker et al . (1996) Proc. Natl. Acad. Sci. USA , 93, 12920-12925; Yoder et al . (1996) J. Biol. Chem . 271, 31092-31097]. Genomic DNA upstream of this ATG contains two more ATGs in frame and no obvious splice site. We have constructed, and expressed in baculovirus, MTase clones that begin at each of these four ATGs and examined their properties. Constructs beginning with any of the first three ATGs as their initiator methionines give a predominant DNA MTase band of approximately 185 kDa on SDS-PAGE corresponding to translational initiation at the third ATG. The fourth ATG construct gives a much smaller protein band of 173 kDa. The 185 kDa protein was purified by HPLC, characterized by mass spectrometry and has a measured molecular mass of 184 +/- 0.5 kDa. All of these MTases were functional in vitro and steady state kinetic analysis showed that the recombinant proteins exhibit similar kinetic properties irrespective of their length. The homogeneous recombinant enzyme from the fourth ATG construct shows a 2.5-fold preference for a hemi-methylated DNA substrate as compared to an unmethylated substrate, whereas the 185 kDa protein is equally active on both substrates. The kinetic properties of the recombinant enzyme are similar to those reported for the native MTase derived from murine erythroleukemia cells. The new clones are capable of yielding large quantities of intact MTases for further structural and functional studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号