首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aromatic amino acid hydroxylase (AAAH) genes and insulin-like genes form part of an extensive paralogy region shared by human chromosomes 11 and 12, thought to have arisen by tetraploidy in early vertebrate evolution. Cloning of a complementary DNA (cDNA) for an amphioxus (Branchiostoma floridae) hydroxylase gene (AmphiPAH) allowed us to investigate the ancestry of the human chromosome 11/12 paralogy region. Molecular phylogenetic evidence reveals that AmphiPAH is orthologous to vertebrate phenylalanine (PAH) genes; the implication is that all three vertebrate AAAH genes arose early in metazoan evolution, predating vertebrates. In contrast, our phylogenetic analysis of amphioxus and vertebrate insulin-related gene sequences is consistent with duplication of these genes during early chordate ancestry. The conclusion is that two tightly linked gene families on human chromosomes 11 and 12 were not duplicated coincidentally. We rationalize this paradox by invoking gene loss in the AAAH gene family and conclude that paralogous genes shared by paralogous chromosomes need not have identical evolutionary histories.  相似文献   

2.
3.
Phenylalanine hydroxylase (PAH) and tyrosine hydroxylase (TH) are consecutive enzymes in the metabolic pathway leading to the production of catecholamine neurotransmitters. A comparison of recently available sequence data of these enzymes in the rat indicates about 70% homology in the 3' coding regions. We have localized TH by in situ hybridization to human chromosome region 11p15. Consideration of this assignment and that of PAH to chromosome 12, together with the known distribution of other pairs of related genes on these two chromosomes, provides convincing evidence of their ancestral relationship and suggests a role for gene duplication in the diversification of metabolic pathways in the vertebrate ancestors of mammals.  相似文献   

4.
5.
6.
We characterized the genes of the male-specific mouse steroid 16 alpha-hydroxylase (C-P-45016 alpha) and the female-specific mouse steroid 15 alpha-hydroxylase (P-45015 alpha) within two distinct gene families. In spite of the high structural identities within each family, the expression of the hydroxylase genes is uniquely regulated. Moreover, the other family members encode the P-450s which are structurally very similar to the hydroxylases but are not able to catalyze steroid hydroxylase activities. For example, only a single amino acid substitution creates steroid 15 alpha-hydroxylase activity in another family-member P-450coh, which catalyzes coumarin 7-hydroxylase but little steroid hydroxylase activity. It appears, therefore, that the mouse P-450 gene families evolved through gene duplication and selective mutation to create new P-450s structurally as well as to establish novel regulatory elements for the gene expressions.  相似文献   

7.
CPP-like genes are members of a small family which features the existence of two similar Cys-rich domains termed CXC domains in their protein products and are distributed widely in plants and animals but do not exist in yeast. The members of this family in plants play an important role in development of reproductive tissue and control of cell division. To gain insights into how CPP-like genes evolved in plants, we conducted a comparative phylogenetic and molecular evolutionary analysis of the CPP-like gene family in Arabidopsis and rice. The results of phylogeny revealed that both gene loss and species-specific expansion contributed to the evolution of this family in Arabidopsis and rice. Both intron gain and intron loss were observed through intron/exon structure analysis for duplicated genes. Our results also suggested that positive selection was a major force during the evolution of CPP-like genes in plants, and most amino acid residues under positive selection were disproportionately located in the region outside the CXC domains. Further analysis revealed that two CXC domains and sequences connecting them might have coevolved during the long evolutionary period.  相似文献   

8.

Background  

Histone acetyltransferases (HATs) play critical roles in the regulation of chromatin structure and gene expression. Arabidopsis genome contains 12 HAT genes, but the biological functions of many of them are still unknown. In this work, we studied the evolutionary relationship and cellular functions of the two Arabidopsis HAT genes homologous to the MYST family members.  相似文献   

9.
10.
The proteins harboring RING finger motif(s) have been shown to mediate protein–protein interactions that are relevant to a variety of cellular processes. In an effort to elucidate the evolutionary dynamics of the rice RING finger protein family, we have attempted to determine their genomic locations, expression diversity, and co-expressed genes via in silico analysis and semi-quantitative RT–PCR. A total of 425 retrieved genes appear to be distributed over all 12 of the chromosomes of rice with different distributions, and are reflective of the evolutionary dynamics of the rice genome. A genome-wide dataset harboring 155 gene expression omnibus sample plates evidenced some degree of differential evolutionary fates between members of RING-H2 and RING-HC types. Additionally, responses to abiotic stresses, such as salinity and drought, demonstrated that some degree of expression diversity existed between members of the RING finger protein genes. Interestingly, we determined that one RING-H2 finger protein gene (Os04g51400) manifested striking differences in expression patterns in response to abiotic stresses between leaf and culm-node tissues, further revealing responses highly similar to the majority of randomly selected co-expressed genes. The gene network of genes co-expressed with Os04g51400 may suggest some role in the salt response of the gene. These findings may shed further light on the evolutionary dynamics and molecular functional diversity of these proteins in complex cellular regulations.  相似文献   

11.
Despite a great deal of interest, the evolutionary origins and roles of sex remain unclear. Recently, we showed that in the multicellular green alga, Volvox carteri, sex is a response to increased levels of reactive oxygen species (ROS), which could be indicative of the ancestral role of sex as an adaptive response to stress-induced ROS. To provide additional support for the suggestion that sex evolved as a response to oxidative stress, this study addresses the hypothesis that genes involved in sexual induction are evolutionarily related to genes associated with various stress responses. In particular, this study investigates the evolutionary history of genes specific to the sexual induction process in V. carteri--including those encoding the sexual inducer (SI) and several SI-induced extracellular matrix (ECM) proteins. Surprisingly, (i) a highly diversified multigene family with similarity to the V. carteri SI and SI-induced pherophorin family is present in its unicellular relative, Chlamydomonas reinhardtii (which lacks both a SI and an ECM) and (ii) at least half of the 12 identified gene members are induced (as inferred from reported expressed sequence tags) under various stress conditions. These findings suggest an evolutionary connection between sex and stress at the gene level, via duplication and/or co-option.  相似文献   

12.
The 72- and 92-kDa type IV collagenases are members of a group of secreted zinc metalloproteases. Two members of this family, collagenase and stromelysin, have previously been localized to the long arm of chromosome 11. Here we assign both of the two type IV collagenase genes to human chromosome 16. By sequencing, the 72-kDa gene is shown to consist of 13 exons, 3 more than have been reported for the other members of this gene family. The extra exons encode the amino acids of the fibronectin-like domain which has so far been found in only the 72- and 92-kDa type IV collagenase. The evolutionary relationship among the members of this gene family is discussed.  相似文献   

13.
14.
The albumin gene family arose in a series of duplication events which gave rise to symmetry in its structure. The four genes are tandemly linked on human chromosome 4q in the order: 5'ALB-5'AFP-5'ALF-5'DBP-centromere, and their introns display a symmetrical and repetitive pattern that is shared by members of the gene family. These repetitive motifs provide an internal reference, allowing observations of evolutionary changes within a single line (human) of evolutionary descent. The four genes and three intergenic regions between them increase in size as they get closer to the centromere. An invasion by multiple repetitive DNA elements may account, in part, for this expansion.  相似文献   

15.
16.
17.
Li M  Liu J  Zhang C 《PloS one》2011,6(10):e26999

Background

The mitogen activated protein kinases (MAPK) family pathway is implicated in diverse cellular processes and pathways essential to most organisms. Its evolution is conserved throughout the eukaryotic kingdoms. However, the detailed evolutionary history of the vertebrate MAPK family is largely unclear.

Methodology/Principal Findings

The MAPK family members were collected from literatures or by searching the genomes of several vertebrates and invertebrates with the known MAPK sequences as queries. We found that vertebrates had significantly more MAPK family members than invertebrates, and the vertebrate MAPK family originated from 3 progenitors, suggesting that a burst of gene duplication events had occurred after the divergence of vertebrates from invertebrates. Conservation of evolutionary synteny was observed in the vertebrate MAPK subfamilies 4, 6, 7, and 11 to 14. Based on synteny and phylogenetic relationships, MAPK12 appeared to have arisen from a tandem duplication of MAPK11 and the MAPK13-MAPK14 gene unit was from a segmental duplication of the MAPK11-MAPK12 gene unit. Adaptive evolution analyses reveal that purifying selection drove the evolution of MAPK family, implying strong functional constraints of MAPK genes. Intriguingly, however, intron losses were specifically observed in the MAPK4 and MAPK7 genes, but not in their flanking genes, during the evolution from teleosts to amphibians and mammals. The specific occurrence of intron losses in the MAPK4 and MAPK7 subfamilies might be associated with adaptive evolution of the vertebrates by enhancing the gene expression level of both MAPK genes.

Conclusions/Significance

These results provide valuable insight into the evolutionary history of the vertebrate MAPK family.  相似文献   

18.
B Mentrup  W Weidemann 《Gene》1999,237(1):29-33
Prohormone or proprotein convertases are members of the subtilisin family of serine proteases. They are involved in the activation of precursor molecules by endoproteolytic cleavage at basic amino acid residues. Among the different members of this prohormone convertase family, the prohormone convertase 2 (PC2) is almost exclusively expressed in endocrine and neuroendocrine tissues and plays an important role in the endoproteolytic processing of prohormones. Here we describe the exon-intron organization of the PC2 gene from the insect Lucilia cuprina by characterization of PCR-amplified genomic DNA fragments. The insect PC2 gene contains 12 exons with an estimated size of over 14.5 kb. The exon sizes range from 38 bp to > 448 bp. All identified intron-exon boundaries are consistent with the GT-AG-rule. A comparison of the genomic structures of the thus far known prohormone convertase genes with that of the insect PC2 gene revealed a conservation of the positions of most introns interrupting the exons coding for the amino-terminal and catalytic domains. This conservation is consistent with the suggestion of a common evolutionary origin for the prohormone convertase gene family.  相似文献   

19.
20.
Primary Structure of Neuromedin U from the Rat   总被引:2,自引:1,他引:1  
A single human gene has been described to encode multiple tyrosine hydroxylase (TH) mRNAs. The study of this variation has been extended by S1 mapping experiments and by analysis of the 5' region of the TH gene. Four different mRNAs were found to originate solely from alternative splicing of two exons. Comparison of the 5' flanking regions of human and rat genes discloses several highly conserved segments, likely to play an important role in the regulation of TH gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号