首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characteristics of succinate transport were determined in basolateral and brush-border membrane vesicles (BLMV and BBMV, respectively) isolated in parallel from rabbit renal cortex. The uptake of succinate was markedly stimulated by the imposition of an inwardly directed Na+ gradient, showing an "overshoot" phenomenon in both membrane preparations. The stimulation of succinate uptake by an inwardly directed Na+ gradient was not significantly affected by pH clamp or inhibition of Na(+)-H+ exchange. The Na(+)-dependent and -independent succinate uptakes were not stimulated by an outwardly directed pH gradient. The Na dependence of succinate uptake exhibited sigmoidal kinetics, with Hill coefficients of 2.17 and 2.38 in BLMV and BBMV, respectively. The Na(+)-dependent succinate uptake by BLMV and BBMV was stimulated by a valinomycin-induced inside-negative potential. The Na(+)-dependent succinate uptake by BLMV and BBMV followed a simple Michaelis-Menten kinetics, with an apparent Km of 22.20 +/- 4.08 and 71.52 +/- 0.14 microM and a Vmax of 39.0 +/- 3.72 and 70.20 +/- 0.96 nmol/(mg.min), respectively. The substrate specificity and the inhibitor sensitivity of the succinate transport system appeared to be very similar in both membranes. These results indicate that both the renal brush-border and basolateral membranes possess the Na(+)-dependent dicarboxylate transport system with very similar properties but with different substrate affinity and transport capacity.  相似文献   

2.
Transport of [3H]tetraethylammonium, an organic cation, has been studied in brush-border and basolateral membrane vesicles isolated from rat kidney cortex. Some characteristics of carrier-mediated transport for tetraethylammonium were demonstrated in brush-border and basolateral membrane vesicles; the uptake was saturable, was stimulated by the countertransport effect, and showed discontinuity in an Arrhenius plot. In brush-border membrane vesicles, the presence of an H+ gradient ( [H+]i greater than [H+]o) induced a marked stimulation of tetraethylammonium uptake against its concentration gradient (overshoot phenomenon), and this concentrative uptake was completely inhibited by HgCl2. In contrast, the uptake of tetraethylammonium by basolateral membrane vesicles was unaffected by an H+ gradient. Tetraethylammonium uptake by basolateral membrane vesicles was significantly stimulated by a valinomycin-induced inside-negative membrane potential, while no effect of membrane potential was observed in brush-border membrane vesicles. These results suggest that tetraethylammonium transport across brush-border membranes is driven by an H+ gradient via an electroneutral H+-tetraethylammonium antiport system, and that tetraethylammonium is transported across basolateral membranes via a carrier-mediated system and this process is stimulated by an inside-negative membrane potential.  相似文献   

3.
The kinetic basis for trans-effects of intravesicular substrates on the uptake of the organic cation, tetraethylammonium (TEA), into rabbit renal brush-border membrane vesicles (BBMV) was studied. Preloading BBMV with 1, 2, or 4 mM TEA stimulated the initial rate of uptake and the total net accumulation of 0.1 mM [3H]TEA. The stimulatory effect of intravesicular TEA on the initial rate of uptake was a saturable function of the trans-TEA concentration, with a half-maximal effect noted at an intravesicular concentration of 0.28 mM. A 1 mM trans-concentration of TEA increased the Jmax of [3H]TEA uptake (from 4.3 to 6.8 nmol.mg-1.min-1) without affecting the apparent Kt. An outwardly directed H+ gradient also increased Jmax (to 10.7 nmol.mg-1.min-1), although the addition of an outwardly directed TEA gradient did not produce further increases in the rate of TEA uptake. External H+ acted as a competitive inhibitor of TEA uptake, and an increase in external [H+] (from 32 nM to 100 nM) produced an increase in the apparent Kt for TEA transport (from 0.12 to 0.26 mM) without affecting the Jmax. The results suggested that TEA and H+ compete for a common site or set of mutually exclusive sites on the cytoplasmic and luminal aspects of TEA/H+ exchanger in the renal brush border, and that these sites have a similar affinity for TEA.  相似文献   

4.
In rabbit intestinal brush-border membrane vesicles, Na+-independent D-glucose uptake in the presence of an inside-negative transmembrane potential was found to be stimulated by an imposed pH gradient. Na+-independent, pH-dependent and phlorizin-sensitive D-glucose-evoked potentials could be recorded from isolated toad intestine. The obtained data suggest that phlorizin-sensitive D-glucose carriers of intestinal brush-border membrane can interact with H+ when Na+ is absent.  相似文献   

5.
Basolateral membrane vesicles from rat jejunal enterocytes, especially purified of brush-border contamination, were used for Na+ uptake. The basolateral membrane vesicles are osmotically active and under our experimental conditions Na+ binding is much lower than transport. An outwardly directed proton gradient stimulates Na+ uptake at both 5 microM and 5 mM concentrations. The proton gradient effect can be inhibited completely by 2 mM amiloride and partially by either FCCP or NH4Cl (NH3 diffusion). Membrane potential effects can be excluded by having valinomycin plus K+ on both sides of the vesicles. These results suggest that there is an Na+/H+ exchanger in the basolateral membrane of rat enterocytes.  相似文献   

6.
L-Phe-L-Pro-L-Ala is a tripeptide which is hydrolysable almost exclusively by dipeptidyl peptidase IV in rabbit renal brush-border membrane vesicles. In order to delineate the mechanism of the transport of an intact tripeptide across the brush-border membrane, we studied the characteristics of the uptake of [3H]Phe-Pro-Ala in membrane vesicles in which the activity of dipeptidylpeptidase IV was completely inhibited by treatment with di-isopropyl fluorophosphate. In these vesicles, uptake of radiolabel from the tripeptide was found to be Na(+)-independent, but was greatly stimulated by an inwardly directed H+ gradient. The H(+)-gradient-dependent radiolabel uptake appeared to be an active process, because the time course of uptake exhibited an overshoot phenomenon. The process was also electrogenic, being stimulated by an inside-negative membrane potential. Under the uptake-measurement conditions there was no detectable hydrolysis of [3H]Phe-Pro-Ala in the incubation medium when di-isopropyl fluorophosphate-treated membrane vesicles were used. Analysis of intravesicular contents revealed that the radiolabel inside the vesicles was predominantly (greater than 90%) in the form of intact tripeptide. These data indicate that the uptake of radiolabel from [3H]Phe-Pro-Ala in the presence of an inwardly directed H+ gradient represents almost exclusively uptake of intact tripeptide. Uphill transport of the tripeptide was also demonstrable in the presence of an inwardly directed Na+ or K+ gradient, but only if nigericin was added to the medium. Under these conditions, nigericin, an ionophore for Na+, K+ and H+, was expected to generate a transmembrane H+ gradient. Uptake of Phe-Pro-Ala in the presence of a H+ gradient was inhibited by di- and tri-peptides, but not by free amino acids. It is concluded that tripeptide/H+ co-transport is the mechanism of Phe-Pro-Ala uptake in rabbit renal brush-border membrane vesicles.  相似文献   

7.
The present study was designed to investigate Cl- transport across rat ileal basolateral membranes. Basolateral membrane vesicles were prepared by a well-validated technique. The purity of the basolateral membrane vesicles was verified by marker enzyme studies and by studies of d-glucose and calcium uptake. Cl- uptake was studied by a rapid filtration technique. Neither an outwardly directed pH gradient, nor a HCO3- gradient, or their combination could elicit any stimulation of Cl- transport when compared with no gradient. 4,4-Diisothiocyanostilbene-2,2-disulfonic acid at 5 mM concentration did not inhibit Cl- uptake under gradient condition. Similarly, the presence of the combination of outwardly directed Na+ and HCO3- gradients did not stimulate Cl- uptake compared with the combination of K+ and HCO3- gradients or no HCO3- gradient. This is in contrast to our results in the brush border membranes, where an outwardly directed pH gradient caused an increase in Cl- uptake. Cl- uptake was stimulated in the presence of combined Na+ and K+ gradient. Bumetanide at 0.1 mM concentration inhibited the initial rate of Cl- uptake in the presence of combined Na+ and K+ gradients. Kinetic studies of bumetanide-sensitive Cl- uptake showed a Vmax of 5.6 +/- 0.7 nmol/mg protein/5 sec and a Km of 30 +/- 8.7 mM. Cl- uptake was stimulated by an inside positive membrane potential induced by the ionophore valinomycin in the setting of inwardly directed K+ gradient compared with voltage clamp condition. These studies demonstrate two processes for Cl- transport across the rat ileal basolateral membrane: one is driven by an electrogenic diffusive process and the second is a bumetanide-sensitive Na+/K+/2 Cl- process. Cl- uptake is not enhanced by pH gradient, HCO3- gradient, their combination, or outwardly directed HCO3- and Na+ gradients.  相似文献   

8.
In order to characterize the driving forces for the concentrative uptake of unconjugated bile acids by the hepatocyte, the effects of pH gradients on the uptake of [3H]cholate by rat basolateral liver plasma membrane vesicles were studied. In the presence of an outwardly directed hydroxyl gradient (pH 6.0 outside and pH 7.5 inside the vesicle), cholate uptake was markedly stimulated and the bile acid was transiently accumulated at a concentration 1.5- to 2-fold higher than at equilibrium ("overshoot"). In the absence of a pH gradient (pH 6.0 or 7.5 both inside and outside the vesicle), uptake was relatively slower and no overshoot was seen. Reductions in the magnitude of the transmembrane pH gradient were associated with slower initial uptake rates and smaller overshoots. Cholate uptake under pH gradient conditions was inhibited by furosemide and bumetanide but not by 4, 4'-diisothiocyano-2,2'-disulfonic stilbene (SITS), 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (DIDS), or probenecid. In the absence of a pH gradient, an inside-positive valinomycin-induced K+ diffusion potential caused a slight increase in cholate uptake which was insensitive to furosemide. Moreover, in the presence of an outwardly directed hydroxyl gradient, uphill cholate transport was observed even under voltage clamped conditions. These findings suggest that pH gradient-driven cholate uptake was not due to associated electrical potentials. Despite an identical pKa to that of cholate, an outwardly directed hydroxyl gradient did not drive uphill transport of three other unconjugated bile acids (deoxycholate, chenodeoxycholate, ursodeoxycholate), suggesting that a non-ionic diffusion mechanism cannot account for uphill cholate transport. In canalicular vesicles, although cholate uptake was relatively faster in the presence of a pH gradient than in the absence of a gradient, peak uptake was only slightly above that found at equilibrium under voltage clamped conditions. These findings suggest a specific carrier on the basolateral membrane of the hepatocyte which mediates hydroxyl/cholate exchange (or H+-cholate co-transport). A model for uphill cholate transport is discussed in which the Na+ pump would ultimately drive Na+/H+ exchange which in turn would drive hydroxyl/cholate exchange.  相似文献   

9.
Biotin transport was studied using brush-border and basolateral membrane vesicles isolated from rabbit kidney cortex. An inwardly directed Na+ gradient stimulated biotin uptake into brush-border membrane vesicles and a transient accumulation of the anion against its concentration gradient was observed. In contrast, uptake of biotin by basolateral membrane vesicles was found to be Na+-gradient insensitive. Generation of a negative intravesicular potential by valinomycin-induced K+ diffusion potentials or by the presence of Na+ salts of anions of different permeabilities enhanced biotin uptake by brush-border membrane vesicles, suggesting an electrogenic mechanism. The Na+ gradient-dependent uptake of biotin into brush-border membrane vesicles was saturable with an apparent Km of 28 microM. The Na+-dependent uptake of tracer biotin was significantly inhibited by 50 microM biotin, and thioctic acid but not by 50 microM L-lactate, D-glucose, or succinate. Finally, the existence in both types of membrane vesicles of a H+/biotin- cotransport system could not be demonstrated. These results are consistent with a model for biotin reabsorption in which the Na+/biotin- cotransporter in luminal membranes provides the driving force for uphill transport of this vitamin.  相似文献   

10.
The effect of membrane potential on the uptake of tryptamine, an organic cation, by rat intestinal brush-border membrane vesicles was studied. In the presence of an outwardly directed H(+)-gradient, the initial uptake of tryptamine was stimulated remarkably and the overshoot phenomenon was observed. In contrast, the uptake was depressed by an inwardly-directed H(+)-gradient. The effect of H(+)-gradient on the uptake of tryptamine was maintained in the presence of FCCP, whereas it vanished when voltage-clamped vesicles were used. Moreover, the uptake of tryptamine was linearly augmented with increase of the valinomycin-induced inside-negative K+ diffusion potential. These results suggest that tryptamine is taken up into intestinal brush-border membrane vesicles depends upon the ionic diffusion potential. The effect of several indole derivatives and amine compounds on the uptake of tryptamine was also examined. The uptake of tryptamine was inhibited by all amine compounds used, but anionic and zwitterionic compounds had no effect, suggesting that these amines interact on brush-border membrane and cause an inhibitory effect.  相似文献   

11.
Lin CJ  Chen CH  Liu FW  Kang JJ  Chen CK  Lee SL  Lee SS 《Life sciences》2006,79(2):144-153
The effects of aporphines and secoaporphines on glucose uptake by isolated intestinal brush-border membrane vesicles (BBMV) or basolateral membrane vesicles (BLMV) and glucose absorption during in situ intestinal perfusion were studied. Of the tested compounds, N-allylsecoboldine was the most potent glucose uptake inhibitor, with IC50 values of 159 microM and 121 microM, respectively, for uptake by BBMV and BLMV. While thaliporphine competitively inhibited glucose uptake by both membrane preparations, inhibition by N-allylsecoboldine was competitive using BBMV and noncompetitive using BLMV. In addition, N-allylsecoboldine significantly reduced both glucose absorption during in situ intestinal perfusion and blood glucose levels in the oral glucose tolerance test. The results demonstrate that levels of both aporphines and secoaporphines achievable by oral administration have an inhibitory effect on intestinal glucose uptake and suggest that the hypoglycemic effects of these compounds merit attention.  相似文献   

12.
Uptake of guanidine, an endogenous organic cation, into brush-border membrane vesicles isolated from human term placentas was investigated. Initial uptake rates were manyfold greater in the presence of an outward-directed H+ gradient ([pH]o greater than [pH]i) than in the absence of a H+ gradient ([pH]o = [pH]i). Guanidine was transiently accumulated inside the vesicles against a concentration gradient in the presence of the H+ gradient. The H+ gradient-dependent stimulation of guanidine uptake was not due to a H+-diffusion potential because an ionophore (valinomycin or carbonylcyanide p-trifluoromethoxyphenylhydrazone)-induced inside-negative membrane potential failed to stimulate the uptake. In addition, uphill transport of guanidine could be demonstrated even in voltage-clamped membrane vesicles. The H+ gradient-dependent uptake of guanidine was inhibited by many exogenous as well as endogenous organic cations (cis-inhibition) but not by cationic amino acids. The presence of unlabeled guanidine inside the vesicles stimulated the uptake of labeled guanidine (trans-stimulation). These data provide evidence for the presence of an organic cation-proton antiporter in human placental brush-border membranes. Kinetic analysis of guanidine uptake demonstrated that the uptake occurred via two saturable, carrier-mediated transport systems, one being a high affinity, low capacity type and the other a low affinity, high capacity type. Studies on the effects of various cations on the organic cation-proton antiporter and the Na+-H+ exchanger revealed that these two transport systems are distinct.  相似文献   

13.
Transport of glycylglycine into rabbit renal brush-border membrane vesicles was found to be Na+-independent, H+ gradient-dependent and electrogenic. Marked overshoot uptake of the dipeptide was observed when an inward-directed proton gradient and inside-negative potential difference were imposed simultaneously across the vesicular membranes. Saturable depolarization of vesicular membranes could be demonstrated with glycylglycine by use of a fluorescent cyanine dye, di-S-C3(5). The results indicate that glycylglycine is contransported with H+ across the membranes.  相似文献   

14.
We have investigated the transport characteristics of L-phenylalanyl-L-prolyl-L-alanine in renal brush-border membrane vesicles isolated from Japan Fisher 344 rats. This particular rat strain genetically lacks dipeptidyl peptidase IV. Owing to the absence of this enzyme, the tripeptide was found to be completely resistant to hydrolysis by the renal brush-border membrane vesicles. Uptake of the tripeptide into these membrane vesicles in the presence of an inwardly directed Na+ gradient was slightly greater than in the presence of a K+ gradient, but there was no evidence for active transport. On the contrary, uptake was very rapid in the presence of an inside-alkaline transmembrane pH gradient, and accumulation of the tripeptide inside the vesicles against a concentration gradient could be demonstrated under these conditions. The uptake was drastically reduced by dissipation of the pH gradient. The uptake was stimulated by an inside-negative membrane potential and inhibited by an inside-positive membrane potential. Moreover, the uptake was greater in voltage-clamped membrane vesicles than in control vesicles. Many di- and tripeptides inhibited this pH gradient-stimulated uptake of Phe-Pro-Ala. The apparent dissociation constant for the tripeptide was 48 microM. High performance liquid chromatography analysis of the intravesicular content at the peak of the overshoot revealed that the tripeptide was transported across the membrane almost entirely in the intact form. These data provide the first direct evidence for the presence of an electrogenic tripeptide-proton symport in renal brush-border membranes.  相似文献   

15.
The mechanisms of water transport across the rabbit renal proximal convoluted tubule were approached by measuring osmotic permeabilities and solute reflection coefficients of the brush-border and the basolateral membranes. Plasma and intracellular membrane vesicles were isolated from rabbit renal cortex by centrifugation on a Percoll gradient. Three major turbidity bands were obtained: a fraction of purified basolateral membranes (BLMV), the two others being brush-border (BBMV) and endoplasmic reticulum (ERMV) membrane vesicles. The osmotic permeability (Pf) of the three types of vesicle was measured using stop-flow techniques and their geometry was determined by quasi-elastic light scattering. Pf was equal to 123 +/- 8 microns/s (n = 10) for BBMV, 166 +/- 10 microns/s (n = 10) for BLMV and 156 +/- 9 microns/s (n = 4) for ERMV (T = 26 degrees C). A transcellular water permeability, per unit of apical surface area, of 71 microns/s was calculated considering that the luminal and the basolateral membranes act as two conductances in series. This value is in close agreement, after appropriate normalizations, with previously reported transepithelial water permeabilities obtained using in vitro microperfusion techniques thus supporting the hypothesis of a predominantly transcellular route for water flow across rabbit proximal convoluted tubule. The addition of 0.4 mM HgCl2, a sulfhydryl reagent, decreased Pf about 60% in three types of membrane providing evidence for the existence of proteic pathways. NaCl and KCl reflection coefficients were measured and found to be close to one for plasma and intracellular membranes suggesting that the water channels are not shared by salts.  相似文献   

16.
[3H]-fructose and [3H]-glucose transport activities were determined in brush border membrane vesicles (BBMV) and basolateral membrane vesicles (BLMV) from Limulus polyphemus (horseshoe crab) hepatopancreas. Glucose transport was equilibrative in the absence of sodium and sodium dependent in the presence of sodium in BBMV, suggesting GLUT-like and SGLT-like transport activity. Glucose transport by BLMV was equilibrative and sodium independent. Fructose uptake by BBMV and BLMV was equilibrative in the absence of sodium and sodium dependent in the presence of sodium. Western blot analysis using a rabbit anti-mouse SGLT-1 polyclonal antibody indicated the presence of a cross-reacting horseshoe crab BBMV protein of similar molecular weight to the mammalian SGLT1. Sequence alignment of the mouse SGLT-4 and SGLT1 with a translated, horseshoe crab-expressed sequence tag also indicated significant identity between species. Fructose and glucose uptake in the absence and presence of sodium by hepatopancreas BBMV and BLMV indicated the presence of sodium-dependent transport activity for each sugar that may result from the presence of transporters similar to those described for other species.  相似文献   

17.
Cl(-)-HCO3- exchange in rat renal basolateral membrane vesicles   总被引:1,自引:0,他引:1  
Pathways for HCO3- transport across the basolateral membrane were investigated using membrane vesicles isolated from rat renal cortex. The presence of Cl(-)-HCO3- exchange was assessed directly by 36Cl- tracer flux measurements and indirectly by determinations of acridine orange absorbance changes. Under 10% CO2/90% N2 the imposition of an outwardly directed HCO3- concentration gradient (pHo 6/pHi 7.5) stimulated Cl- uptake compared to Cl- uptake under 100% N2 in the presence of a pH gradient alone. Mediated exchange of Cl- for HCO3- was suggested by the HCO3- gradient-induced concentrative accumulation of intravesicular Cl-. Maneuvers designed to offset the development of ion-gradient-induced diffusion potentials had no significant effect on the magnitude of HCO3- gradient-driven Cl- uptake further suggesting chemical as opposed to electrical Cl(-)-HCO3- exchange coupling. Although basolateral membrane vesicle Cl- uptake was observed to be voltage sensitive, the DIDS insensitivity of the Cl- conductive pathway served to distinguish this mode of Cl- translocation from HCO3- gradient-driven Cl- uptake. No evidence for K+/Cl- cotransport was obtained. As determined by acridine orange absorbance measurements in the presence of an imposed pH gradient (pHo 7.5/pHi 6), a HCO3- dependent increase in the rate of intravesicular alkalinization was observed in response to an outwardly directed Cl- concentration gradient. The basolateral membrane vesicle origin of the observed Cl(-)-HCO3- exchange activity was verified by experiments performed with purified brush-border membrane vesicles. In contrast to our previous observations of the effect of Cl- on HCO3- gradient-driven Na+ uptake suggesting a basolateral membrane Na+-HCO3- for Cl- exchange mechanism, no effect of Na+ on Cl-HCO3- exchange was observed in the present study.  相似文献   

18.
The transport characteristics of aminocephalosporin antibiotics, possessing an alpha-amino group and a carboxyl group, in brush-border membranes isolated from rabbit small intestine have been studied by a rapid filtration technique. The uptake of cephradine by brush-border membrane vesicles was stimulated by the countertransport effect of dipeptides, which indicates the existence of a common carrier transport system. An inward H+ gradient ([pH]i = 7.5 to 8.4, [pH]o = 6.0) stimulated cephradine uptake against a concentration gradient (overshoot phenomenon), and this stimulation was reduced when the H+ gradient was subjected to rapid dissipation by the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone, a protonophore. A valinomycin-induced K+ diffusion potential (interior-negative) stimulated H+ gradient-dependent cephradine uptake without altering the equilibrium value. The uptake of other aminocephalosporins (cefadroxil, cefaclor, cephalexin) was also stimulated in the presence of an inward H+ gradient, while the uptake of cephalosporins without the alpha-amino group (cefazolin, cefotiam) was not changed in the presence or absence of the H+ gradient. These results suggest that the transport of aminocephalosporins can be driven actively by an inward H+ gradient via the dipeptide transport system in the intestinal brush-border membranes, and that the process results in the transfer of a positive charge.  相似文献   

19.
Previous work using human jejunal brush-border membrane vesicles has demonstrated the existence of a distinct transport system in man for acidic amino acids. This system is energized by an inwardly directed Na+ gradient and an outwardly directed K+ gradient. These studies further characterize the transport of L-glutamate in the human jejunal brush-border membrane vesicles. Efflux studies were performed by loading the brush-border membrane vesicles with radiolabeled L-glutamate and sodium chloride. Extravesicular K+ accelerated the efflux of L-glutamate when compared to extravesicular Na+ or choline, indicating that potassium serves to recycle the carrier. Unlabeled extravesicular L-glutamate (but not D-glutamate) also enhanced the efflux of radiolabeled L-glutamate demonstrating that there is a bidirectional similarity to the transport system. The effect of pH on the transport system was also investigated by varying the intravesicular and extravesicular pH from 5.5 to 9. A pH environment of 6.5 produced the highest initial uptake rates as well as the greatest overshoots for transport of L-glutamate into brush-border membrane vesicles. The imposition of an inwardly directed pH gradient (5.5 outside, 7.5 inside) accelerated both the influx and efflux of L-glutamate. These results demonstrate that the L-glutamate carrier system in human jejunum appears to have similar energizing characteristics in either direction across the brush-border membrane. In addition, the system operates at an optimal pH of 6.5 and protonation of the system may enhance its mobility.  相似文献   

20.
Summary Choline is a quaternary ammonium compound that is normally reabsorbed by the renal proximal tubule, despite its acknowledged role as a substrate for the renal organic cation (OC) secretory pathway. The basis for choline reabsorption was examined in studies of transport in rabbit renal brush-border membrane vesicles (BBMV). Although an outwardly directed H+ gradient (pH 6.0in 7.5out) stimulated uptake of tetraethylammonium (TEA), a model substrate of the OC/H+ exchanger in renal BBMV, it had no effect on uptake of 1 m choline. A 5 mm trans concentration gradient of choline did, however, drive countertransport of both TEA and choline, although trans TEA had no effect on choline accumulation in BBMV. A 20 mm concentration of unlabeled choline blocked uptake of both choline and TEA by >85%, whereas 20 mm TEA blocked only TEA uptake. The kinetics of choline uptake into vesicles preloaded with 1 mm unlabeled choline appeared to involve two, saturable transport processes, one of high affinity for choline (K t of 97 m) and a second of low affinity (K t of 10 mm), the latter presumably reflecting a weak interaction of choline with the OC/H+ exchanger. An inside-negative electrical PD stimulated the rate of uptake and supported the transient concentrative accumulation of choline in BBMV. The high affinity transporter showed a marked specificity for choline and closely related analogues. A model of the molecular determinants of substrate-transporter interaction is described. We conclude that the electrogenic high affinity pathway plays a central role in renal reabsorption of choline.We thank Dr. William Dantzler for helpful discussions. This work was supported by grants from the National Institutes of Health (PO1 DK41006) and the Arizona Disease Control Research Commission (82-0701).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号