首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diabetes-induced changes in glucose formation, intracellular and mitochondrial glutathione redox states as well as hydroxyl free radicals (HFR) generation have been investigated in rabbit kidney-cortex tubules. In contrast to renal tubules of control animals, diabetes-evoked increase in glucose formation in the presence of either aspartate+glycerol+octanoate or malate as gluconeogenic precursors (for about 50%) was accompanied by a diminished intracellular glutathione reduced form (GSH)/glutathione oxidised one (GSSG) ratio by about 30-40%, while the mitochondrial GSH/GSSG ratio was not altered. However, a relationship between the rate of gluconeogenesis and the intracellular glutathione redox state was maintained in renal tubules of both control and diabetic rabbits, as concluded from measurements in the presence of various gluconeogenic precursors. Moreover, diabetes resulted in both elevation of the glutathione reductase activity in rabbit kidney-cortex and acceleration of renal HFR generation (by about 2-fold). On the addition of melatonin, the hormone exhibiting antioxidative properties, the control values of HFR production were restored, suggesting that this compound might be beneficial during diabetes therapy. In view of the data, it seems likely that diabetes-induced increase in HFR formation in renal tubules might be responsible for a diminished intracellular glutathione redox state despite elevated glutathione reductase activity and accelerated rate of gluconeogenesis, providing glucose-6-phosphate for NADPH generation via pentose phosphate pathway.  相似文献   

2.
Antidiabetic action of inorganic selenium compounds is commonly accepted. Since in diet selenium mainly exists as selenoamino acids, potential hypoglycemic properties of methylselenocysteine (MSC) were investigated in four groups of rabbits: untreated and MSC-treated control animals as well as alloxan-diabetic and MSC-treated diabetic rabbits. MSC (at a dose of 1 mg/kg body weight) was administered daily for 3 weeks via intraperitoneal injection. The data show, that in MSC-treated control animals plasma glucose concentration was diminished, while plasma urea and creatinine levels as well as urine albumin content were elevated and necrotic changes occurred in kidney-cortex. Decreased GSH/GSSG ratios in blood, liver and kidney-cortex were accompanied by increased glutathione peroxidase and glutathione reductase activities and a diminished renal γ-glutamylcysteine synthetase activity. Death of 50% of control animals was preceded by a dramatic decline in blood glucose concentration. Surprisingly, in MSC-treated diabetic rabbits, plasma glucose levels were either normalized or significantly decreased. Blood and liver GSH/GSSG ratios were increased and renal functions were markedly improved, as indicated by a diminished albuminuria and attenuated histological changes characteristic of diabetes. However, after administration of MSC to diabetic rabbits plasma urea and creatinine levels as well as renal GSH/GSSG ratios were not altered. In view of MSC-induced marked accumulation of selenium in kidneys and liver of control rabbits, accompanied by a decline in blood glucose level, disturbance of glutathione homeostasis and kidney-injury, application of MSC in chemotherapy needs a careful evaluation. On the contrary, MSC supplementation might be beneficial for diabetes therapy due to an improvement of both glycemia and renal function.  相似文献   

3.
Diabetes-induced changes in glucose formation, intracellular and mitochondrial glutathione redox states as well as hydroxyl free radicals (HFR) generation have been investigated in rabbit kidney-cortex tubules. In contrast to renal tubules of control animals, diabetes-evoked increase in glucose formation in the presence of either aspartate + glycerol + octanoate or malate as gluconeogenic precursors (for about 50%) was accompanied by a diminished intracellular glutathione reduced form (GSH)/glutathione oxidised one (GSSG) ratio by about 30–40%, while the mitochondrial GSH/GSSG ratio was not altered. However, a relationship between the rate of gluconeogenesis and the intracellular glutathione redox state was maintained in renal tubules of both control and diabetic rabbits, as concluded from measurements in the presence of various gluconeogenic precursors. Moreover, diabetes resulted in both elevation of the glutathione reductase activity in rabbit kidney-cortex and acceleration of renal HFR generation (by about 2-fold). On the addition of melatonin, the hormone exhibiting antioxidative properties, the control values of HFR production were restored, suggesting that this compound might be beneficial during diabetes therapy. In view of the data, it seems likely that diabetes-induced increase in HFR formation in renal tubules might be responsible for a diminished intracellular glutathione redox state despite elevated glutathione reductase activity and accelerated rate of gluconeogenesis, providing glucose-6-phosphate for NADPH generation via pentose phosphate pathway. (Mol Cell Biochem 261: 91–98, 2004)  相似文献   

4.
The action of selegiline, a selective and irreversible inhibitor of monoamine oxidase B, commonly applied in the therapy of Parkinson's disease, on glucose formation was investigated in isolated rabbit hepatocytes and kidney-cortex tubules, maintaining the whole body glucose homeostasis via gluconeogenic pathway activity. An intensive hepatic metabolism of selegiline resulted in formation of selegiline-N-oxide, desmethylselegiline, methamphetamine and amphetamine, whereas during slow degradation of the drug in freshly isolated renal tubules selegiline-N-oxide was mainly produced. At 100 μM concentration selegiline markedly diminished glucose synthesis in isolated renal tubules incubated with dihydroxyacetone or alanine + glycerol + octanoate (by about 60 and 30%, respectively), while at 5 μM concentration a similar degree of inhibition was achieved in renal tubules grown in primary culture under the same conditions (about 40 and 60%, respectively). Moreover, desmethylselegiline and selegiline-N-oxide considerably diminished glucose production in renal tubules whereas selegiline and its metabolites did not affect gluconeogenesis in hepatocytes. Contrary to control animals, following selegiline administration to alloxan-diabetic rabbits for 8 days (10 mg kg−1 body wt. daily) the blood glucose and serum creatinine levels were significantly diminished, suggesting a decrease in renal gluconeogenesis and improvement of kidney functions.

Since in renal tubules selegiline induced a decline in the intracellular levels of gluconeogenic intermediates and ATP content accompanied by a decrease in oxygen consumption in both kidney-cortex and hepatic mitochondria it seems possible that its inhibitory action on renal gluconeogenesis might result from an impairment of mitochondrial function, while an intensive selegiline metabolism in hepatocytes causes decrease of its concentration and in consequence no inhibition of gluconeogenesis. In view of these observations it is likely that an increased risk of selegiline-induced hypoglycemia might be expected particularly in patients exhibiting an impairment of liver function and following transdermal administration of this drug, i.e. under conditions of increased serum selegiline concentrations.  相似文献   


5.
Effects of various cAMP analogues on gluconeogenesis in isolated rabbit kidney tubules have been investigated. In contrast to N(6),2'-O-dibutyryladenosine-3',5'-cyclic monophosphate (db-cAMP) and cAMP, which accelerate renal gluconeogenesis, 8-bromoadenosine-3',5'-cyclic monophosphate (Br-cAMP) and 8-(4-chlorophenylthio)-cAMP (pCPT-cAMP) inhibit glucose production. Stimulatory action of cAMP and db-cAMP may be evoked by butyrate and purinergic agonists generated during their extracellular and intracellular metabolism resulting in an increase in flux through fructose-1,6-bisphosphatase and in consequence acceleration of the rate of glucose formation. On the contrary, Br-cAMP is poorly metabolized in renal tubules and induces a fall of flux through glyceraldehyde-3-phosphate dehydrogenase. The contribution of putative extracellular cAMP receptors to the inhibitory Br-cAMP action is doubtful in view of a decline of glucose formation in renal tubules grown in the primary culture supplemented with forskolin. The presented data indicate that in contrast to hepatocytes, in kidney-cortex tubules an increased intracellular cAMP level results in an inhibition of glucose production.  相似文献   

6.
Effect of vanadyl acetylacetonate (VAc), tungstate and molybdate on gluconeogenesis has been studied in isolated hepatocytes and kidney-cortex tubules. In renal tubules of control and alloxan-diabetic animals, the rank order of the metal-compounds-induced (i) inhibition of glucose formation from alanine+glycerol+octanoate or aspartate+glycerol+octanoate, (ii) decrease in the mitochondrial membrane potential (delta psim), (iii) increase in the hydroxyl free radicals (HFR) generation and (iv) decline in glucose-6-phosphatase activity was the following: VAc > tungstate > molybdate. Moreover, in contrast to VAc, both tungstate and molybdate at 100 microM concentration did not practically decrease glucose production in hepatocytes isolated from diabetic rabbits, and significantly increased the rate of lactate formation in renal tubules. N-acetylcysteine at 2 mM concentration partially attenuated vanadium-induced alterations in glucose formation, delta psim and the cellular glutathione redox state, whereas 0.1 mM melatonin did not abolish vanadium-induced changes in gluconeogenesis despite attenuation of vanadium effects on HFR formation and delta psim decline. However, similarly to control rabbits, following 6 days of intraperitoneal administration of both VAc (1.275 mg V/kg body weight daily) and melatonin (1 mg/kg body weight daily) to alloxan-diabetic animals, vanadium-induced elevated serum creatinine and urea levels were decreased, indicating the beneficial effect of melatonin on diabetes- and vanadium-induced nephrotoxicity in rabbits. As serum glucose levels were also significantly diminished by vanadium+melatonin treatment of diabetic animals, the combination therapy of vanadium compounds and melatonin needs a careful evaluation.  相似文献   

7.
NADPH oxidase, catalysing superoxide radical (O2?) formation, is considered as a main source of reactive oxygen species in kidneys and its increased activity is supposed to be involved in the development of diabetic nephropathy. The aim of this study was to investigate the effect of NADPH oxidase inhibitor, apocynin, on renal gluconeogenesis, which is an important source of endogenous glucose under diabetic conditions.The following observations were made during the experiments performed on isolated renal proximal tubules of control and alloxan diabetic rabbits: (1) apocynin (200 μM) inhibited the rate of glucose synthesis by 45–80%, depending on the substrate applied; (2) the rate of glucose production was also significantly diminished in the presence of TEMPOL (5 mM), a superoxide radical scavenger, suggesting that the decrease in O2? formation might be involved in apocynin-evoked gluconeogenesis inhibition; (3) the activities of phosphoenolpyruvate carboxykinase (PEPCK) and/or aldolase were lowered in the presence of either apocynin or TEMPOL, as concluded from the intracellular levels of gluconeogenic intermediates. The data from in vivo experiments indicated that apocynin treatment (2 g/l of drinking water): (1) significantly (by about 30%) attenuated serum glucose concentration in diabetic rabbits and did not affect glycaemia in control animals; (2) normalized diabetes-stimulated rate of glucose synthesis and slightly inhibited gluconeogenesis in control rabbits; (3) normalized diabetes-increased activity of mitochondrial PEPCK and lowered cytosolic PEPCK activity by about 20% below the value for untreated control animals; (4) slightly decreased the activity of mitochondrial PEPCK and did not change the activity of cytosolic one in control rabbits.Thus, it is concluded that: (1) the inhibition of NADPH oxidase might contribute to lowered rate of renal gluconeogenesis, probably due to decreasing PEPCK activity; (2) inhibition of renal gluconeogenesis is involved in apocynin hypoglycaemic action in vivo; (3) apocynin might be beneficial for diabetes treatment.  相似文献   

8.
Primary rabbit hepatocytes from 6 week old female New Zealand White rabbits (3.0 x 10(6) viable hepatocytes per treatment) were incubated for 24 h or 48 h with two basic variants of the selenium and vitamin E free DMEM/F12-HAM nutrition medium containing 2.5% or 10% fetal calf serum (FCS). Selenium and vitamin E concentrations of the media were varied by the addition of 0, 10, 50 and 100 ng Se/mL medium as sodium selenite and 100 microg alpha-tocopheryl acetate/mL. Lactic dehydrogenase (LDH) leakage of the hepatocytes was not influenced by the various selenium concentrations of the media, whereas vitamin E addition significantly inhibited LDH release. The activity of cellular glutathione peroxidase (GPx1) was markedly induced by increasing the selenium supplementation of the culture media. Vitamin E supply further enhanced GPx1 induction. In hepatocytes cultivated at the lower serum concentration (2.5% FCS), increasing the selenite concentration of the media raised GPx1 and reduced the intracellular levels of the reduced tripeptide glutathione (GSH). No vectored relation between the selenium concentration of the media and the activity of superoxide dismutase (SOD) could be observed. After both incubation periods (24 h and 48 h) SOD activity was significantly higher in the cytosol of hepatocytes grown in media containing 10% FCS as compared to cells incubated at the 2.5% FCS level. Furthermore, SOD activity was reduced by the addition of vitamin E to the media. In conclusion the results indicate an effective metabolism of rabbit hepatocytes for selenite even in amounts as low as nanograms. A general cytoprotective role for vitamin E can be shown by its ability to decrease LDH leakage and by the reduction of SOD activity.  相似文献   

9.
The therapeutic potential of taurine was investigated under diabetic conditions. Alloxan diabetic rabbits were treated daily for three weeks with 1% taurine in drinking water. The following parameters were measured: 1) serum glucose, urea, creatinine and hydroxyl free radical (HFR) levels; 2) blood glutathione redox state; 3) urine albumin concentration; 4) hepatic and renal HFR levels, GSH/GSSG ratios and the activities of catalase, superoxide dismutase and the enzymes of glutathione metabolism; 5) renal NADPH oxidase activity; 6) the rates of renal and hepatic gluconeogenesis. Histological studies of kidneys were also performed. Taurine administration to diabetic rabbits resulted in 30% decrease in serum glucose level and the normalisation of diabetes-elevated rate of renal gluconeogenesis. It also decreased serum urea and creatinine concentrations, attenuated diabetes-evoked decline in GSH/GSSG ratio and abolished hydroxyl free radicals accumulation in serum, liver and kidney cortex. Animals treated with taurine exhibited elevated activities of hepatic gamma-glutamylcysteine syntetase and renal glutathione reductase and catalase. Moreover, taurine treatment evoked the normalisation of diabetes-stimulated activity of renal NADPH oxidase and attenuated both albuminuria and glomerulopathy characteristic of diabetes. In view of these data, it is concluded that: 1) diminished rate of renal gluconeogenesis seems to contribute to hypoglycaemic effect of taurine; 2) taurine-induced increase in the activities of catalase and the enzymes of glutathione metabolism is of importance for antioxidative action of this amino acid and 3) taurine nephroprotective properties might result from diminished renal NADPH oxidase activity. Thus, taurine seems to be beneficial for the therapy of both diabetes and diabetic nephropathy.  相似文献   

10.
Suspensions of freshly isolated rat hepatocytes and renal tubular cells contain high levels of reduced glutathione (GSH), which exhibits half-lives of 3-5 and 0.7-1 h, respectively. In both cells types the availability of intracellular cysteine is rate limiting for GSH biosynthesis. In hepatocytes, methionine is actively converted to cysteine via the cystathionine pathway, and hepatic glutathione biosynthesis is stimulated by the presence of methionine in the medium. In contrast, extracellular cystine can support renal glutathione synthesis; several disulfides, including cystine, are rapidly taken up by renal cells (but not by hepatocytes) and are reduced to the corresponding thiols via a GSH-linked reaction sequence catalyzed by thiol transferase and glutathione reductase (NAD(P)H). During incubation, hepatocytes release both GSH and glutathione disulfide (GSSG) into the medium; the rate of GSSG efflux is markedly enhanced during hydroperoxide metabolism by glutathione peroxidase. This may lead to GSH depletion and cell injury; the latter seems to be initiated by a perturbation of cellular calcium homeostasis occurring in the glutathione-depleted state. In contrast to hepatocytes, renal cells metabolize extracellular glutathione and glutathione S-conjugates formed during drug biotransformation to the component amino acids and N-acetyl-cysteine S-conjugates, respectively. In addition, renal cells contain a thiol oxidase acting on extracellular GSH and several other thiols. In conclusion, our findings with isolated cells mimic the physiological situation characterized by hepatic synthesis and renal degradation of plasma glutathione and glutathione S-conjugates, and elucidate some of the underlying biochemical mechanisms.  相似文献   

11.
The effects of extracellular purinergic agonists and their breakdown products on glucose and glutamine synthesis in rabbit kidney-cortex tubules incubated with aspartate + glycerol or alanine + glycerol + octanoate were investigated. A rapid extracellular degradation of ATP was accompanied by an accumulation of AMP, inosine, and hypoxanthine. Extracellular ATP and its breakdown products accelerated glucose synthesis in renal tubules, while ammonium released from adenine-containing compounds enhanced glutamine synthesis and diminished the degree of gluconeogenesis stimulation. In contrast to AMP and inosine, ATP evoked calcium signals, while both ATP and inosine decreased intracellular cAMP content and accelerated the flux through fructose-1,6-bisphosphatase as concluded from changes in gluconeogenic intermediates. Since (i) the activity of partially purified renal fructose-1,6-bisphosphatase was increased upon protein phosphatase-1 treatment and decreased following treatment of previously dephosphorylated enzyme with protein kinase A catalytic subunit and (ii) both 8-bromoadenosine 3',5'-cyclic monophosphate and 8-(4-chlorophenyltio)-cAMP inhibited renal glucose synthesis, it seems likely that in rabbit renal tubules ATP and inosine stimulate gluconeogenesis via cAMP decrease, which favors the appearance of a more active, dephosphorylated form of fructose-1,6-bisphosphatase, a key gluconeogenic enzyme.  相似文献   

12.
Selenite has been found to be an active catalyst for the oxidation of sulphhydryl compounds, such as glutathione (GSH). Considering the biological importance of GSH oxidation and the implication of sulphhydryl compounds in selenium poisoning and other biological activities, more information on selenite oxidation of GSH in enzyme-free conditions is desirable. Herein, we describe glutathione and sodium selenite simply mixed in aqueous solutions. The interaction products and transient intermediate are identified and characterized using electrospray ionization (ESI) tandem mass spectrometry. In the first step, GSH directly reacts to form diglutathione (GSSG) and unstable selenodiglutathione (GS-Se-SG). Then selenodiglutathione further reacted with remaining GSH to form diglutathione and elemental selenium, Se(0). As the amount of GSSG significantly increased or acidity of the solution increased, the redox potential of glutathione [E(0')(GSSG/2GSH) approximately -250 mV (NHE)] significantly shifted to the positive direction. This makes the GSSG react with elemental selenium formed in the solution, which can be demonstrated by another unstable intermediate ion identified at m/z 418 by mass spectrometry with the elemental composition of [GSS-Se](-). The reaction mechanism between GSH and sodium selenite has been proposed according to the ESI-MS, NMR and UV-vis spectrometric measurements.  相似文献   

13.
The circulating L-3,4-dihydroxyphenylalanine, the drug of choice in the therapy of Parkinson's disease (PD), is efficiently extracted by kidney and converted to dopamine, known to control several renal functions. As: (i) in addition to liver, kidney is an important source of glucose in mammals and (ii) the action of this drug on renal gluconeogenesis has not yet been studied, the aim of the present investigation was to estimate the influence of L-3,4-dihydroxyphenylalanine metabolism on glucose formation in isolated kidney-cortex tubules incubated with various gluconeogenic substrates. The data indicate that a rapid intracellular degradation of L-3,4-dihydroxyphenylalanine and tyramine (at 100 and 200 microM concentrations) is accompanied by 25-40% decrease in glucose production from pyruvate, alanine + glycerol + octanoate and dihydroxyacetone due to augmented generation of hydrogen peroxide via monoamine oxidase B, resulting in a decline of glutathione redox state by 40%. Moreover, following inhibition of monoamine oxidase B by deprenyl or substitution of pyruvate by aspartate + glycerol + octanoate both L-3,4-dihydroxyphenylalanine and tyramine affect neither the rate of gluconeogenesis nor glutathione redox state. In view of: (i) L-3,4-dihydroxyphenylalanine- and tyramine-induced changes in intracellular levels of gluconeogenic intermediates, and (ii) a significant decline of phosphoenolpyruvate carboxykinase activity by 500 microM oxidized glutathione, it is likely that L-3,4-dihydroxyphenylalanine- and tyramine-evoked disturbances in the glutathione redox state might diminish flux through phosphoenolpyruvate carboxykinase and in consequence decrease glucose formation in renal tubules, suggesting a new potential side-action of L-3,4-dihydroxyphenylalanine treatment.  相似文献   

14.
The main purpose of this study was to prepare selenium/glutathione-enriched Candida utilis and investigate its effect on growth performance, antioxidant capacity, and immune response in rats. The preparation of the selenium/glutathione-enriched yeast was conducted using fed-batch culture for high cell density. The optimal culture conditions for increased intracellular organic selenium and glutathione contents were as follows: the concentrated medium was fed beginning at 12?h using a polynomial feeding strategy until a total glucose concentration of 150?g/l was reached, and sodium selenite was continuously added together with glucose to a total concentration of 60?mg/l. As a result, 81?% of sodium selenite was assimilated and transformed into organic selenium by C. utilis under optimal conditions, which in turn resulted in greater glutathione accumulation and lower malondialdehyde cellular content in the yeast. To investigate and compare the effects of the prepared selenized C. utilis and other dietary supplements, 40 female rats were divided into five groups of eight rats each, following a randomized block design. Experimental feeding was conducted for a period of 6?weeks. Selenium supplementation with inorganic selenium (sodium selenite) and organic selenium (selenized C. utilis) showed better results than the control and other groups supplemented with yeast with or without glutathione. The body mass of rats, selenium deposition, and oxidative enzymes activities in both serum and liver samples, and immunity responses were all significantly improved by selenium supplementation, and between the two sources, organic selenium was more effective than inorganic selenium.  相似文献   

15.
Direct effects of leptin on gluconeogenesis in rat hepatocytes are equivocal, and model systems from other species have not been extensively explored in assessing the regulation of glucose metabolism by leptin. Therefore, the goal of the present study was to compare the effects of leptin on gluconeogenesis in pig and rat hepatocyte cultures as well as to investigate an underlying mechanism of action at the level of phosphoenolpyruvate carboxykinase (PEPCK). In rat hepatocytes, leptin exposure (3 h, 50 and 100 nM) attenuated glucagon-stimulated hepatic gluconeogenesis by 35 and 38% (P < 0.05), respectively. However, leptin did not produce any significant acute effect in pig hepatocytes. Leptin exposure for 24 h failed to produce any significant effect on gluconeogenesis in either rat or pig hepatocytes cultured in the presence of glucagon or dexamethasone. Mechanistically, there was a 25-35% decrease (P < 0.05) in glucagon-induced PEPCK mRNA levels in rat but not pig hepatocytes cultured with leptin. This effect on PEPCK mRNA was not due to an alteration in the relative abundance of the leptin receptor or the ability of PEPCK to respond to cAMP. The nonuniformity of the effects of leptin on gluconeogenesis in pig and rat hepatocytes indicates differences in leptin action between species. Furthermore, the unique action of leptin in porcine hepatocytes points to the utility of this model system for biomedical research and also underscores the value of comparative studies.  相似文献   

16.
Growth hormone (GH) is a key metabolic regulator mediating glucose and lipid metabolism. Ataxia telangiectasia mutated (ATM) is a member of the phosphatidylinositol 3-kinase superfamily and regulates cell cycle progression. The orphan nuclear receptor small heterodimer partner (SHP: NR0B2) plays a pivotal role in regulating metabolic processes. Here, we studied the role of ATM on GH-dependent regulation of hepatic gluconeogenesis in the liver. GH induced phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase gene expression in primary hepatocytes. GH treatment and adenovirus-mediated STAT5 overexpression in hepatocytes increased glucose production, which was blocked by a JAK2 inhibitor, AG490, dominant negative STAT5, and STAT5 knockdown. We identified a STAT5 binding site on the PEPCK gene promoter using reporter assays and point mutation analysis. Up-regulation of SHP by metformin-mediated activation of the ATM-AMP-activated protein kinase pathway led to inhibition of GH-mediated induction of hepatic gluconeogenesis, which was abolished by an ATM inhibitor, KU-55933. Immunoprecipitation studies showed that SHP physically interacted with STAT5 and inhibited STAT5 recruitment on the PEPCK gene promoter. GH-induced hepatic gluconeogenesis was decreased by either metformin or Ad-SHP, whereas the inhibition by metformin was abolished by SHP knockdown. Finally, the increase of hepatic gluconeogenesis following GH treatment was significantly higher in the liver of SHP null mice compared with that of wild-type mice. Overall, our results suggest that the ATM-AMP-activated protein kinase-SHP network, as a novel mechanism for regulating hepatic glucose homeostasis via a GH-dependent pathway, may be a potential therapeutic target for insulin resistance.  相似文献   

17.
K Zab?ocki  J Bry?a 《FEBS letters》1989,259(1):144-148
In kidney cortex tubules isolated from fed rabbits L-alanine is not utilized as glucose precursor, when added as a sole substrate. However, this amino acid decreases gluconeogenesis from low (up to 1 mM) 2-oxoglutarate concentrations and stimulates this process at higher (2.5-10 mM) ketoacid contents in the suspension medium. Aminooxyacetate, an inhibitor of aminotransferases, abolishes both inhibitory and stimulatory effects of L-alanine on glucose formation. The addition of 2-oxoglutarate increases the incorporation of L-[U-14C]alanine to glucose from 8- to 123-fold, depending upon the ketoacid and alanine concentrations used. In contrast, nonlabelled L-alanine decreases the incorporation of low [U-14C)2-oxoglutarate concentrations into glucose, while it does not affect contribution of 5 mM ketoacid to gluconeogenesis. The data indicate that (i) in the presence of 2-oxoglutarate L-alanine is utilized as glucose precursor in rabbit renal tubules and (ii) this amino acid may decrease the contribution of low extracellular concentrations of the ketoacid to gluconeogenesis.  相似文献   

18.
The purpose of this study was to investigate the effect of interleukin 1 (IL 1) on glucocorticoid-regulated hepatic metabolism. Steroid binding in liver cytosol, plasma glucose, plasma corticosterone, and phosphoenolpyruvate carboxykinase (PEPCK) activity were assayed in C3H/HeJ mice after IL 1 administration. Mice received 5 pyrogenic U (PU) of rabbit IL 1 i.p. and were sacrificed 4 hr later. In adrenal-intact mice, steroid binding and plasma glucose were significantly decreased (63 and 64% of control) and plasma corticosterone was significantly elevated threefold. In adrenalectomized mice, IL 1 (5 PU) treatment produced similar results in steroid binding (66% of control) and plasma glucose (71% of control). PEPCK was measured in intact mice fasted overnight and treated with 5 PU of IL 1. PEPCK was induced in fasted control animals (23.1 +/- 1.4 U/mg) vs fed control animals (15.9 +/- 0.7 U/mg). IL 1 treatment inhibited the induction of PEPCK in fasted animals (13.4 +/- 2.0 U/mg) and caused a significant decrease in steroid binding (78% of fasted control) and plasma glucose (82% of fasted control). No difference in plasma corticosterone was seen in IL 1-treated mice and fasted control mice. These data indicate that IL 1 decreases intracellular steroid receptors, resulting in decreased induction of PEPCK and subsequent reduced gluconeogenesis and plasma glucose. We propose that IL 1 plays a regulatory role in glucocorticoid-regulated hepatic metabolism.  相似文献   

19.
Dietary copper deficiency has been shown to reduce copper-dependent superoxide dismutase (SOD) activity and to increase lipid peroxidation in rats. Circulating reduced glutathione (GSH) concentrations are elevated in copper-deficient (CuD) rats, which suggests an increased GSH synthesis or decreased degradation, perhaps as an adaptation to the oxidative stress of copper deficiency. GSH synthesis was examined in isolated hepatocytes from CuD rats. Isolated hepatocytes were prepared by collagenase perfusion and incubated in Krebs-Henseleit bicarbonate buffer, pH 7.4, 10 mM glucose, 2.5 mM Ca2+ in the presence and absence of 1.0 mM buthionine sulfoximine (BSO), a specific inhibitor of GSH synthesis. Cell viability was assessed by trypan blue exclusion. GSH and oxidized glutathione (GSSG) were measured by the glutathione reductase recycling assay. Copper deficiency depressed hepatocyte Cu by greater than 90% and increased intracellular GSH by 41-117% over the 3-h incubation, with a two- to threefold increase in the rate of intracellular GSH synthesis. Intracellular GSSG values were minimally influenced by CuD, with a constant mol% GSSG. Extracellular total glutathione (GSH + 2GSSG) synthesis was increased by approximately 33%. Both intracellular GSH and extracellular total glutathione synthesis were inhibited by BSO. The pattern of food consumption in CuD rats, meal fed versus ad libitum fed, had no effect on glutathione synthesis. The results indicate an increased hepatic GSH synthesis as a response to dietary copper deficiency and suggest an interrelationship between the essential nutrients involved in oxyradical metabolism.  相似文献   

20.
Isolated kidney tubules synthesize glucose actively from fructose, lactate, glycerol and pyruvate and, to a lesser extent, from a variety of amino acids. Ethanol stimulated gluconeogenesis from pyruvate and inhibited it from lactate. The aminotransferase inhibitor, aminooxyacetate, greatly reduced synthesis from lactate but not from pyruvate. Quinolinate inhibited gluconeogenesis from both precursors, indicating an active role for cytosolic phosphoenolpyruvate carboxykinase (PEPCK) in the gluconeogenic pathway. Incorporation of lactate or glucose into triglycerides was relatively low, and since no fatty acid synthase (FAS) activity could be detected, probably represented chain elongation or reesterification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号