首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Skok MV  Grailhe R  Agenes F  Changeux JP 《Life sciences》2007,80(24-25):2334-2336
We studied the binding of [(3)H]-epibatidine and [(125)I-]alpha-bungarotoxin, as well as subunit-specific antibodies with purified B lymphocytes of C57Bl/6J mice and found that these cells contained 12,200+/-3200 of alpha4(alpha5)beta2 and 3130+/-750 of alpha7(alpha5beta4) nicotinic acetylcholine receptors per cell. According to flow cytometry data, the highest expression of alpha4(alpha5)beta2 receptors was observed in immature newly generated B lymphocytes of the bone marrow, while the number of alpha7(alpha5beta4) receptors grew up along with the B cell maturation in the spleen. By using alpha4, beta2 or alpha7 knockout and chimera mice, it was shown that both receptor subtypes supported the survival of B cell precursors and increased the size of B-lymphocyte population in the bone marrow. In contrast, propagation of mature B lymphocytes in the spleen was controlled by alpha7-containing subtype only. Moreover, mature B lymphocytes became sensitive to nicotine only in the absence of beta2-containing receptors. Knockout mice had less serum IgG, IgG-producing cells and natural IgG antibodies than their wild-type counterparts, while the absence of beta2-containing receptors resulted in increased B-lymphocyte activation and antibody immune response. The data obtained indicate that nicotinic receptors are involved in regulating B-lymphocyte development and activation, possibly, by affecting expression and/or signaling of CD40, the two subtypes playing different roles.  相似文献   

2.
Nicotine consumed upon smoking affects numerous physiological processes through nicotinic acetylcholine receptors, which mediate cholinergic regulation by the neuronal and endogenous acetylcholine. Consequently, nicotinic receptors are expressed in many non-excitable tissues including the blood. In spite of the documented effect of nicotine on hematopoiesis, little is known about the expression and role of nicotinic receptors in the course of blood cell differentiation. The aim of the present study was to investigate whether and how nicotinic receptors are involved in the development of myeloid and erythroid cells within the bone marrow. The presence of nicotinic receptors containing alpha4(beta2) and alpha7 subunits in the bone marrow cells of C57Bl/6 mice was shown by the binding of [125I]-alpha-bungarotoxin or [3H]-Epibatidine and by flow cytometry with subunit-specific antibodies or fluorescein-labeled alpha-cobratoxin. Both TER119+ (erythroid) and CD16+CD43med (myeloid) progenitor cells bound more alpha4-specific antibodies than their mature forms, while the binding of alpha-cobratoxin and alpha7-specific antibodies was also high in mature cells. According to morphological analysis, either the absence of alpha7-containing nicotinic receptors in knockout mice or their desensitization in mice chronically treated with nicotine decreased the number of myeloid and erythroid progenitors and junior cells. In contrast, the absence of beta2-containing receptors favored myelocyte generation and erythroid cell maturation. It is concluded that the development of both myeloid and erythroid cell lineages is regulated by endogenous cholinergic ligands and can be affected by nicotine through alpha7- and alpha4beta2-containing nicotinic receptors, which play different roles in the course of the cell maturation.  相似文献   

3.
Nicotine increases the permeability of the blood-brain barrier in vivo. This implies a possible role for nicotinic acetylcholine receptors in the regulation of cerebral microvascular permeability. Expression of nicotinic acetylcholine receptor subunits in cerebral microvessels was investigated with immunofluorescence microscopy. Positive immunoreactivity was found for receptor subunits alpha3, alpha5, alpha7, and beta2, but not subunits alpha4, beta3, or beta4. Blood-brain barrier permeability was assessed via in situ brain perfusion with [14C]sucrose. Nicotine increased the rate of sucrose entry into the brain from 0.3 +/- 0.1 to 1.1 +/- 0.2 microl.g(-1).min(-1), as previously described. This nicotine-induced increase in blood-brain barrier permeability was significantly attenuated by both the blood-brain barrier-permeant nicotinic antagonist mecamylamine and the blood-brain barrier-impermeant nicotinic antagonist hexamethonium to 0.5 +/- 0.2 and 0.3 +/- 0.2 microl.g(-1).min(-1), respectively. These data suggest that nicotinic acetylcholine receptors expressed on the cerebral microvascular endothelium mediate nicotine-induced changes in blood-brain barrier permeability.  相似文献   

4.
Although neuronal nicotinic acetylcholine receptors from insects have been reconstituted in vitro more than a decade ago, our knowledge about the subunit composition of native receptors as well as their functional properties still remains limited. Immunohistochemical evidence has suggested that two alpha subunits, alpha-like subunit (ALS) and Drosophila alpha2 subunit (Dalpha2), are colocalized in the synaptic neuropil of the Drosophila CNS and therefore may be subunits of the same receptor complex. To gain further understanding of the composition of these nicotinic receptors, we have examined the possibility that a receptor may imbed more than one alpha subunit using immunoprecipitations and electrophysiological investigations. Immunoprecipitation experiments of fly head extracts revealed that ALS-specific antibodies coprecipitate Dalpha2, and vice versa, and thereby suggest that these two alpha subunits must be contained within the same receptor complex, a result that is supported by investigations of reconstituted receptors in Xenopus oocytes. Discrimination between binary (ALS/beta2 or Dalpha2/beta2) and ternary (ALS/Dalpha2/beta2) receptor complexes was made on the basis of their dose-response curve to acetylcholine as well as their sensitivity to alpha-bungarotoxin or dihydro-beta-erythroidine. These data demonstrate that the presence of the two alpha subunits within a single receptor complex confers new receptor properties that cannot be predicted from knowledge of the binary receptor's properties.  相似文献   

5.
We have determined the subunit stoichiometry of chicken neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes by quantitation of the amount of radioactivity in individual subunits of [35S] methionine-labeled receptors. The chicken neuronal nicotinic acetylcholine receptor appears to be a pentamer of two alpha 4 acetylcholine-binding subunits and three beta 2 structural subunits. We also show that these expressed receptors bind L-[3H]nicotine with high affinity, are transported to the surface of the oocyte outer membrane, and cosediment on sucrose gradients with acetylcholine receptors isolated from chicken brain. Using this unique and generally applicable method of determining subunit stoichiometry of receptors expressed in oocytes, we obtained the expected (alpha 1) 2 beta 1 gamma delta stoichiometry for muscle-type acetylcholine receptors assembled from coexpression of either Torpedo alpha 1 or human alpha 1 subunits, with Torpedo beta 1, gamma, and delta subunits.  相似文献   

6.
Alpha 7 nicotinic acetylcholine receptors are involved in learning and memory, and are implicated in the pathology of Alzheimer's disease and schizophrenia. Detection of alpha7 subunits can be accomplished via immunodetection or alpha-bungarotoxin-binding techniques. Standard protocols for immunohistochemistry and Western blotting were followed using several commercially available antibodies. Various mice were evaluated, including non-transgenics, APP, PS1, APP+PS1, and alpha7 knockouts. Initial results with amyloid-depositing mice revealed alpha7 immunolabeled astrocytes, in addition to expected neuronal staining. Subsequent studies with intrahippocampal injections of lipopolysaccharide (LPS) into alpha7 knockout mice showed that both neuronal and astrocytic labeling by alpha7 antibodies was nonspecific. On Western blots of mouse brain proteins, none of the bands detected with antibodies directed against alpha7 subunits diminished in the alpha7 knockout mice. Although LPS-related changes in the expression of some bands were found, these also were unaffected by the alpha7 genotype of the mice. In general, the Western staining patterns for these antibodies revealed few overlapping bands. These immunodetection data are in contrast to genotyping results and mRNA analyses that confirmed the disruption of the alpha7 allele and lack of alpha7 message in the knockouts. These findings suggest caution in interpreting results when using several commercially available alpha7 nicotinic receptor antibodies.  相似文献   

7.
A new subunit, beta 2, of the neuronal nicotinic receptor family has been identified. This subunit has the structural features of a non-agonist-binding subunit. We provide evidence that beta 2 can substitute for the muscle beta 1 subunit to form a functional nicotinic receptor in Xenopus oocytes. Expression studies performed in oocytes have demonstrated that three different neuronal nicotinic acetylcholine receptors can be formed by the pairwise injection of beta 2 mRNA and each of the neuronal alpha subunit mRNAs. The beta 2 gene is expressed in PC12 cells and in areas of the central nervous system where the alpha 2, alpha 3, and alpha 4 genes are expressed. These results lead us to propose that the nervous system expresses diverse forms of neuronal nicotinic acetylcholine receptors by combining beta 2 subunits with different agonist-binding alpha subunits.  相似文献   

8.
In smoker's brain, rodent brain, and in cultured cells expressing nicotinic receptors, chronic nicotine treatment induces an increase in the total number of high affinity receptors for acetylcholine and nicotine, a process referred to as up-regulation. Up-regulation induced by 1 mm nicotine reaches 6-fold for alpha3beta2 nicotinic receptors transiently expressed in HEK 293 cells, whereas it is much smaller for alpha3beta4 receptors, offering a rationale to investigate the molecular mechanism underlying up-regulation. In this expression system binding sites are mainly intracellular, as shown by [(3)H]epibatidine binding experiments and competition with the impermeant ligand carbamylcholine. Systematic analysis of beta2/beta4 chimeras demonstrates the following. (i) The extracellular domain critically contributes to up-regulation. (ii) Only residues belonging to two beta2 segments, 74-89 and 106-115, confer up-regulation to beta4, mainly by decreasing the amount of binding sites in the absence of nicotine; on an atomic three-dimensional model of the alpha3beta2 receptor these amino acids form a compact microdomain that mainly contributes to the subunit interface and also faces the acetylcholine binding site. (iii) The beta4 microdomain is sufficient to confer to beta2 a beta4-like up-regulation. (iv) This microdomain makes an equivalent contribution to the up-regulation differences between alpha4beta2 and alpha4beta4. We propose that nicotine, by binding to immature oligomers, elicits a conformational reorganization of the microdomain, strengthening the interaction between adjacent subunits and, thus, facilitating maturation processes toward high affinity receptors. This mechanism may be central to nicotine addiction, since alpha4beta2 is the subtype exhibiting the highest degree of up-regulation in the brain.  相似文献   

9.
Autoimmune diseases involving nicotinic receptors   总被引:1,自引:0,他引:1  
The antibody-mediated autoimmune response to alpha1 muscle nicotinic acetylcholine receptors that causes myasthenia gravis is one of the best characterized autoimmune diseases. Antibody-mediated autoimmune responses to neuronal nicotinic receptors are just beginning to be discovered and characterized. One of these causes dysautonomia through antibodies to alpha 3 nicotinic receptors of autonomic ganglia. Another causes pemphigus through antibodies to alpha 9 nicotinic receptors in skin. Other autoimmune responses to nicotinic receptors may be discovered as the many functional roles of nicotinic receptors are revealed.  相似文献   

10.
Molecular studies of the neuronal nicotinic acetylcholine receptor family   总被引:16,自引:0,他引:16  
Nicotinic acetylcholine receptors on neurons are part of a gene family that includes nicotinic acetylcholine receptors on skeletal muscles and neuronal alpha bungarotoxin-binding proteins that in many species, unlike receptors, do not have an acetylcholine-regulated cation channel. This gene superfamily of ligand-gated receptors also includes receptors for glycine and gamma-aminobutyric acid. Rapid progress on neuronal nicotinic receptors has recently been possible using monoclonal antibodies as probes for receptor proteins and cDNAs as probes for receptor genes. These studies are the primary focus of this review, although other aspects of these receptors are also considered. In birds and mammals, there are subtypes of neuronal nicotinic receptors. All of these receptors differ from nicotinic receptors of muscle pharmacologically (none bind alpha bungarotoxin, and some have very high affinity for nicotine), structurally (having only two types of subunits rather than four), and, in some cases, in functional role (some are located presynaptically). However, there are amino acid sequence homologies between the subunits of these receptors that suggest the location of important functional domains. Sequence homologies also suggest that the subunits of the proteins of this family all evolved from a common ancestral protein subunit. The ligand-gated ion channel characteristic of this superfamily is formed from multiple copies of homologous subunits. Conserved domains responsible for strong stereospecific association of the subunits are probably a fundamental organizing principle of the superfamily. Whereas the structure of muscle-type nicotinic receptors appears to have been established by the time of elasmobranchs and has evolved quite conservatively since then, the evolution of neuronal-type nicotinic receptors appears to be in more rapid flux. Certainly, the studies of these receptors are in rapid flux, with the availability of monoclonal antibody probes for localizing, purifying, and characterizing the proteins, and cDNA probes for determining sequences, localizing mRNAs, expressing functional receptors, and studying genetic regulation. The role of nicotinic receptors in neuromuscular transmission is well understood, but the role of nicotinic receptors in brain function is not. The current deluge of data using antibodies and cDNAs is beginning to come together nicely to describe the structure of these receptors. Soon, these techniques may combine with others to better reveal the functional roles of neuronal nicotinic receptors.  相似文献   

11.
alpha-Conotoxins from marine snails are known to be selective and potent competitive antagonists of nicotinic acetylcholine receptors. Here we describe the purification, structural features and activity of two novel toxins, SrIA and SrIB, isolated from Conus spurius collected in the Yucatan Channel, Mexico. As determined by direct amino acid and cDNA nucleotide sequencing, the toxins are peptides containing 18 amino acid residues with the typical 4/7-type framework but with completely novel sequences. Therefore, their actions (and that of a synthetic analog, [gamma15E]SrIB) were compared to those exerted by the alpha4/7-conotoxin EI from Conus ermineus, used as a control. Their target specificity was evaluated by the patch-clamp technique in mammalian cells expressing alpha(1)beta(1)gammadelta, alpha(4)beta(2) and alpha(3)beta(4) nicotinic acetylcholine receptors. At high concentrations (10 microm), the peptides SrIA, SrIB and [gamma15E]SrIB showed weak blocking effects only on alpha(4)beta(2) and alpha(1)beta(1)gammadelta subtypes, but EI also strongly blocked alpha(3)beta(4) receptors. In contrast to this blocking effect, the new peptides and EI showed a remarkable potentiation of alpha(1)beta(1)gammadelta and alpha(4)beta(2) nicotinic acetylcholine receptors if briefly (2-15 s) applied at concentrations several orders of magnitude lower (EC(50), 1.78 and 0.37 nm, respectively). These results suggest not only that the novel alpha-conotoxins and EI can operate as nicotinic acetylcholine receptor inhibitors, but also that they bind both alpha(1)beta(1)gammadelta and alpha(4)beta(2) nicotinic acetylcholine receptors with very high affinity and increase their intrinsic cholinergic response. Their unique properties make them excellent tools for studying the toxin-receptor interaction, as well as models with which to design highly specific therapeutic drugs.  相似文献   

12.
The biological mechanisms involved in initiating, coordinating, and ultimately terminating cell-cell adhesion in the stratified epithelium are not well understood at present. This study was designed to elucidate the roles of the muscarinic M3, the nicotinic alpha3, and the mixed muscarinic-nicotinic alpha9 acetylcholine receptors in physiologic control of keratinocyte adhesion. Both muscarinic and nicotinic antagonists caused keratinocyte detachment and reversibly increased the permeability of keratinocyte monolayers, indicative of the involvement of both muscarinic and nicotinic pathways in the cholinergic control of keratinocyte adhesion. Since phosphorylation of adhesion proteins plays an important role in rapid assembly and disassembly of intercellular junctions, we measured muscarinic and nicotinic effects on phosphorylation of keratinocyte adhesion molecules. The phosphorylation levels of E-cadherin, beta-catenin, and gamma-catenin increased following pharmacological blockage of muscarinic receptors. Long-term blocking of alpha3, alpha9, and M3 receptor signaling pathways with antisense oligonucleotides resulted in cell-cell detachment and changes in the expression levels of E-cadherin, beta-catenin, and gamma-catenin in cultured human keratinocytes. Simultaneous inhibition of several receptor subtypes with a mixture of antisense oligonucleotides produced intensified abnormalities with cell adhesion. Moreover, altered cell-cell adhesion was found in the stratified epithelium of alpha3, alpha9, and M3 receptor knockout mice. Keratinocytes from these mice exhibited abnormal expression of adhesion molecules at both the protein and the mRNA levels. Thus, our data indicate that the alpha3, alpha9, and M3 acetylcholine receptors play key roles in regulating in a synergistic mode keratinocyte adhesion, most probably by modulating cadherin and catenin levels and activities. These findings may aid in the development of novel methods useful for the treatment of skin adhesion diseases and tumor metastasis.  相似文献   

13.
The heptapeptide IQTTWSR (IQ), recently reported as inhibitor of the beta-amyloid (Abeta) binding to nicotinic acetylcholine receptors (nAChrs), was docked to the homology model of the alpha7 nicotinic acetylcholine receptor. The most representative models were further subjected to molecular dynamics simulations. The data obtained here suggest that Abeta needs highly specific structural motifs to bind to the alpha7nAChR. These structural motifs are located principally in the upper and lower surroundings of loop C, including loop F and sheets beta1, beta2, beta6, beta9, and beta10 of the receptor. Overall, these results suggest that IQ can be mimicked by more bioavailable, stable compounds that would be helpful for the understanding of the Abeta binding site and its dynamics, and for the design of novel agents to be used as an effective alternative against Alzheimer's disease.  相似文献   

14.
Neuronal nicotinic acetylcholine receptor subunit alpha5 mRNA is widely expressed in the CNS. An alpha5 gene polymorphism has been implicated in behavioral differences between mouse strains, and alpha5-null mutation induces profound changes in mouse acute responses to nicotine. In this study, we have examined the distribution and prevalence of alpha5* nicotinic acetylcholine receptor in mouse brain, and quantified the effects of alpha5-null mutation on pre-synaptic nicotinic acetylcholine receptor function (measured using synaptosomal (86)Rb(+) efflux) and overall [(125)I]epibatidine binding site expression. alpha5* nicotinic acetylcholine receptor expression was found in nine of fifteen regions examined, although < 20% of the total nicotinic acetylcholine receptor population in any region contained alpha5. Deletion of the alpha5 subunit gene resulted in localized loss of function (thalamus, striatum), which was itself confined to the DHbetaE-sensitive receptor population. No changes in receptor expression were seen. Consequently, functional changes must occur as a result of altered function per unit of receptor. The selective depletion of high agonist activation affinity sites results in overall nicotinic function being reduced, and increases the overall agonist activation affinity. Together, these results describe the receptor-level changes underlying altered behavioral responses to nicotine in nicotinic acetylcholine receptor alpha5 subunit-null mutants.  相似文献   

15.
Tandem constructs are increasingly being used to restrict the composition of recombinant multimeric channels. It is therefore important to assess not only whether such approaches give functional channels, but also whether such channels completely incorporate the subunit tandems. We have addressed this question for neuronal nicotinic acetylcholine receptors, using a channel mutation as a reporter for subunit incorporation. We prepared tandem constructs of nicotinic receptors by linking alpha (alpha2-alpha4, alpha6) and beta (beta2, beta4) subunits by a short linker of eight glutamine residues. Robust functional expression in oocytes was observed for several tandems (beta4_alpha2, beta4_alpha3, beta4_alpha4, and beta2_alpha4) when coexpressed with the corresponding beta monomer subunit. All tandems expressed when injected alone, except for beta4_alpha3, which produced functional channels only together with beta4 monomer and was chosen for further characterization. These channels produced from beta4_alpha3 tandem constructs plus beta4 monomer were identical with receptors expressed from monomer alpha3 and beta4 constructs in acetylcholine sensitivity and in the number of alpha and beta subunits incorporated in the channel gate. However, separately mutating the beta subunit in either the monomer or the tandem revealed that tandem-expressed channels are heterogeneous. Only a proportion of these channels contained as expected two copies of beta subunits from the tandem and one from the beta monomer construct, whereas the rest incorporated two or three beta monomers. Such inaccuracies in concatameric receptor assembly would not have been apparent with a standard functional characterization of the receptor. Extensive validation is needed for tandem-expressed receptors in the nicotinic superfamily.  相似文献   

16.
Recent evidence suggests that in addition to alpha4beta2 and alpha3-containing nicotinic receptors, alpha6-containing receptors are present in midbrain dopaminergic neurons and involved in the nicotine reward pathway. Using heterologous expression, we found that alpha6beta2, like alpha3beta2 and alpha4beta2 receptors, formed high affinity epibatidine binding complexes that are pentameric, trafficked to the cell surface, and produced acetylcholine-evoked currents. Chronic nicotine exposure up-regulated alpha6beta2 receptors with differences in up-regulation time course and concentration dependence compared with alpha4beta2 receptors, the predominant high affinity nicotine binding site in brain. The alpha6beta2 receptor up-regulation required higher nicotine concentrations than for alpha4beta2 but lower than for alpha3beta2 receptors. The alpha6beta2 up-regulation occurred 10-fold faster than for alpha4beta2 and slightly faster than for alpha3beta2. Our data suggest that nicotinic receptor up-regulation is subtype-specific such that alpha6-containing receptors up-regulate in response to transient, high nicotine exposures, whereas sustained, low nicotine exposures up-regulate alpha4beta2 receptors.  相似文献   

17.
Cholinergic receptors in upper motor neurons of brain stem control locomotion and coordination. Present study unravels cholinergic alterations in brain stem during spinal cord injury to understand signalling pathway changes which may be associated with spinal cord injury mediated motor deficits. We evaluated cholinergic function in brain stem by studying the expression of choline acetyl transferase and acetylcholine esterase. We quantified metabotropic muscarinic cholinergic receptors by receptor assays for total muscarinic, muscarinic M1 and M3 receptor subunits, gene expression studies using Real Time PCR and confocal imaging using FITC tagged secondary antibodies. The gene expression of ionotropic nicotinic cholinergic receptors and confocal imaging were also studied. The results from our study showed metabolic disturbance in cholinergic pathway as choline acetyl transferase is down regulated and acetylcholine esterase is up regulated in spinal cord injury group. The significant decrease in muscarinic receptors showed by decreased receptor number along with down regulated gene expression and confocal imaging accounts for dysfunction of metabotropic acetylcholine receptors in spinal cord injury group. Ionotropic acetylcholine receptor alterations were evident from the decreased gene expression of alpha 7 nicotinic acetylcholine receptors and confocal imaging. The motor coordination was analysed by Grid walk test which showed an increased foot slips in spinal cord injured rats. The significant reduction in brain stem cholinergic function might have intensified the motor dysfunction and locomotor disabilities.  相似文献   

18.
The molluskan acetylcholine-binding protein (AChBP) is a homolog of the extracellular binding domain of the pentameric ligand-gated ion channel family. AChBP most closely resembles the alpha-subunit of nicotinic acetylcholine receptors and in particular the homomeric alpha7 nicotinic receptor. We report the isolation and characterization of an alpha-conotoxin that has the highest known affinity for the Lymnaea AChBP and also potently blocks the alpha7 nAChR subtype when expressed in Xenopus oocytes. Remarkably, the peptide also has high affinity for the alpha3beta2 nAChR indicating that alpha-conotoxin OmIA in combination with the AChBP may serve as a model system for understanding the binding determinants of alpha3beta2 nAChRs. alpha-Conotoxin OmIA was purified from the venom of Conus omaria. It is a 17-amino-acid, two-disulfide bridge peptide. The ligand is the first alpha-conotoxin with higher affinity for the closely related receptor subtypes, alpha3beta2 versus alpha6beta2, and selectively blocks these two subtypes when compared with alpha2beta2, alpha4beta2, and alpha1beta1deltaepsilon nAChRs.  相似文献   

19.
The TE671 human medulloblastoma cell line expresses a variety of characteristics of human neurons. Among these characteristics is the expression of membrane-bound high-affinity binding sites for alpha-bungarotoxin, which is a potent antagonist of functional nicotinic acetylcholine receptors on these cells. These toxin binding sites represent a class of nicotinic receptor isotypes present in mammalian brain. Treatment of TE671 cells during proliferative growth phase with nicotine or carbamylcholine, but not with muscarine or d-tubocurarine, induced up to a five-fold increase in the density of radiolabeled toxin binding sites in crude membrane fractions. This effect was blocked by co-incubation with the nicotinic antagonists d-tubocurarine and decamethonium, but not by mecamylamine or by muscarinic antagonists. Following a 10-13 h lag phase upon removal of agonist, recovery of the up-regulated sites to control values occurred within an additional 10-20 h. These studies indicate that the expression of functional nicotinic acetylcholine receptors on TE671 cells is subject to regulation by nicotinic agonists. Studies of the murine CNS have consistently indicated nicotine-induced up-regulation of nicotinic acetylcholine receptors, thereby supporting the identification of the toxin binding site on these cells as the functional nicotinic receptor. Although a mechanism for this effect is not apparent, nicotine-induced receptor blockade does not appear to be involved.  相似文献   

20.
The activity of alpha-conotoxin (alpha-CTX) ImI, from the vermivorous marine snail Conus imperialis, has been studied on mammalian nicotinic receptors on bovine chromaffin cells and at the rat neuromuscular junction. Synthetic alpha-CTX ImI was a potent inhibitor of the neuronal nicotinic response in bovine adrenal chromaffin cells (IC50 = 2.5 microM, log IC50 = 0.4 +/- 0.07), showing competitive inhibition of nicotine-evoked catecholamine secretion. Alpha-CTX ImI also inhibited nicotine-evoked 45Ca2+ uptake but not 45Ca2+ uptake stimulated by 56 mM K+. In contrast, alpha-CTX ImI had no effect at the neuromuscular junction over the concentration range 1-20 microM. Bovine chromaffin cells are known to contain the alpha3beta4, alpha7, and (possibly) alpha3beta4alpha5 subtypes. However, the secretory response of bovine chromaffin cells is not inhibited by alpha-bungarotoxin, indicating that alpha7 nicotinic receptors are not involved. We propose that alpha-CTX Iml interacts selectively with the functional (alpha3beta4 or alpha3beta4alpha5) nicotinic acetylcholine receptor to inhibit the neuronal-type nicotinic response in bovine chromaffin cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号