首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seventy six metrical traits measured on the femur and tibia of three higher primate groups —Ceboidea, Cercopithecoidea, Hominoidea have been processed by various univariate and multivariate statistical methods to survey the process of evolution of the morphology of the femur and tibia in higher primates. Intragroup and intergroup variability, similarity and differences as well as various aspects of scaling and sexual dimorphism have been analyzed to study adaptive trends and phylogenetic diversity in higher primates, in individual superfamilies and to explore the adaptive morphological pattern of early hominids and basic differences between hominids and pongids. Two basic morphotypes of the femur and tibia in higher primates have been determined. They are (1) advanced hominoid morphotype (hominids and pongids) and (2) ancestral higher primate morphotype (platyrrhine and cattarrhine monkeys, early hominoids, and hylobatids). Cebid lower limb bones are adapted to arboreal quadrupedalism with antipronograde features while femur and tibia of cercopithecid monkeys are basically adapted to the semi-arboreal locomotion. Early hominoids (Proconsul) and hylobatids are morphologically different from pongids; some features are close toAteles or other monkey species. Pongids and hominids are taken as one major morphological group with different scaling and some functional and morphological similarities. Numerous analogous features were described on the lower limb skeleton ofPan andPongo showing analogous ecological parameters in their evolution. Major morphological and biomechanical trends are analyzed. It is argued that early advanced hominoid morphology is ancestral both to the pongids and to early hominids. The progressive morphological trend in early hominids has been found fromA. afarensis with ancestral hominid morphology, toH. habilis with an elongated femur and structural features similar to advanced hominids. A detailed phylogenetic analysis of higher primate femur and tibia is also presented.  相似文献   

2.
张银运  刘武 《人类学学报》2006,25(4):267-275
南京2号人类头骨化石仅保留部分的额骨、顶骨、枕骨和颞骨,为一不完整的颅盖骨。其顶骨和枕骨有数条断裂缝,各断块之间有程度不一的错动,致使该颅盖骨显得外形异常。本项研究是对该颅盖骨的错动部分进行复位,结果表明,南京2号头骨有较大的顶骨、较小的上枕鳞相对宽度、可能较大的颅容量。这些形态提示该头骨与直立人有所不同而与早期智人相近。该头骨所具有的角圆枕、颞鳞顶缘形状、枕骨圆枕发育程度、枕骨的枕平面与项平面过渡情况、枕内隆突点与枕外隆突点的距离、头骨骨壁厚度、脑膜中动脉分支情况、头骨枕面观之轮廓线样式等形态细节,还很难作为可靠的依据把南京2号头骨鉴定为直立人。南京2号头骨很大可能是属于智人亚种(Homo sapiens sapiens)中的一员。  相似文献   

3.
Silicon is important for the proper growth and development of bone and connective tissues. This study was designed to investigate if water-soluble silicon could be used for the treatment of postmenopausal osteoporosis. Silicon (Si 20 mg/kg body weight/day) was administrated orally to 17-week-old ovariectomized (OVX) rats for 4 weeks. Silicon did not alter weight gain in OVX rats. Silicon supplementation significantly increased the bone mineral density of the femur (p < 0.05, vs. OVX control group) and tibia in OVX rats (p < 0.05, vs. OVX control group). Serum alkaline phosphatase and osteocalcin, two bone formation biomarkers tested, were not significantly altered, but urinary calcium and phosphorous excretion tended to decrease with silicon supplementation. OVX rats with silicon supplementation showed a relatively higher serum CTx compared to the nonsupplemented OVX group (p < 0.01, vs. OVX control group). According to these results, short-term soluble silicon supplementation improved bone mineral density in OVX-induced osteoporosis.  相似文献   

4.
5.
6.
Estimates of the amount of genetic differentiation in humans among major geographic regions (e.g., Eastern Asia vs. Europe) from quantitative‐genetic analyses of cranial measurements closely match those from classical‐ and molecular‐genetic markers. Typically, among‐region differences account for ~10% of the total variation. This correspondence is generally interpreted as evidence for the importance of neutral evolutionary processes (e.g., genetic drift) in generating among‐region differences in human cranial form, but it was initially surprising because human cranial diversity was frequently assumed to show a strong signature of natural selection. Is the human degree of similarity of cranial and DNA‐sequence estimates of among‐region genetic differentiation unusual? How do comparisons with other taxa illuminate the evolutionary processes underlying cranial diversification? Chimpanzees provide a useful starting point for placing the human results in a broader comparative context, because common chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) are the extant species most closely related to humans. To address these questions, I used 27 cranial measurements collected on a sample of 861 humans and 263 chimpanzees to estimate the amount of genetic differentiation between pairs of groups (between regions for humans and between species or subspecies for chimpanzees). Consistent with previous results, the human cranial estimates are quite similar to published DNA‐sequence estimates. In contrast, the chimpanzee cranial estimates are much smaller than published DNA‐sequence estimates. It appears that cranial differentiation has been limited in chimpanzees relative to humans. Am J Phys Anthropol 154:615–620, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
刘武  吴秀杰 《人类学学报》2022,41(4):563-575
近年对许家窑、许昌、华龙洞、澎湖、夏河、哈尔滨等人类化石开展的系统研究,引发了学界对中更新世晚期人类演化及分类的不同认识。基于对相关中国人类化石形态特征的分析,作者提出这一时期中国人类化石形态特征表现为四种类型:1)以中更新世晚期人类共有特征为主;2)以原始特征为主;3)以现代特征为主;4)独特形态组合。多数化石形态特征表现为前三种类型,而许昌和许家窑这种以硕大的头骨和巨大颅容量构成的独特形态组合在其他同时期化石还没有发现。化石形态的多样性提示,不同类型的中更新世晚期中国古人类对现代人的形成贡献不同。作者认为在该时期的人类化石形态多样性规律还未阐明的情况下,将具有混合或镶嵌特征的相关人类化石归入分类地位不确定的人群较为合适。  相似文献   

8.
Evolutionary biologists are largely polarized in their approaches to integrating microevolutionary and macroevolutionary processes. Neo-Darwinians typically seek to identify population-level selective and genetic processes that culminate in macroevolutionary events. Epigeneticists and structuralists, on the other hand, emphasize developmental constraints on the action of natural selection, and highlight the role of epigenetic shifts in producing evolutionary change in morphology. Accordingly, the ways in which these paradigms view and address morphological contrasts between classes of related organisms differ. These paradigms, although seldomly explicitly stated, emerge in paleoanthropology as well. Considerations of postcranial morphological contrasts between archaic and modern humans typically fall into one of two broad interpretive models. The first derives from the neo-Darwinian perspective and holds that evolution in the postcranial skeleton was largely mosaic (operating in a particulate manner), and that temporal change in specific traits informs us about behavioral shifts or genetic evolution affecting isolated anatomical regions (i.e., adaptive behavioral inferences can be made from comparative studies of individual trait complexes). The alternative model follows from the epigeneticist paradigm and sees change in specific postcranial traits as correlated responses to change in overall body form (involving shifts in regulation of skeletal growth, or selective and developmental responses to broad adaptive shifts). By this view, integration of functional systems both constrains and directs evolution of various traits, and morphological contrasts inform us about overall change in body form related to change in such things as overall growth patterns, climatic adaptation, and technological dependency. These models were tested by confirmatory factor analysis using measures of upper body form and upper limb morphological traits in Eurasian Neandertal and early modern fossils and recent human samples. Results indicate (1) a model of morphological integration fits the data better than a model of no integration, but (2) this integration accounts for less than half of the variance in upper limb traits, suggesting a high degree of tolerance for particulate evolution in the context of an integrated upper body plan. Significant relationships were detected between joint shapes and body size, between humeral shaft shape and body size and chest shape, and between measures of biomechanical efficiency and robusticity. The observed morphological differences between late archaic and early modern humans reflect particulate evolution in the context of constraints imposed by genetic and morphological integration. While particulate approaches to interpreting the fossil record appear to be justified, attention must also be paid to delineating the nature and extent of morphological integration and its role in both constraining and producing observed patterns of variation between groups. Confirmatory factor analysis provides a means of examining trait covariance matrices, and serves as a useful method of identifying patterns of integration in morphology. © 1996 Wiley-Liss, Inc.  相似文献   

9.
Fossil evidence from the Plio-Pleistocene of Africa apparently has confirmed a multi-lineage interpretation of early hominid evolution. Empirical refutation of the single species hypothesis must now be matched to the evolutionary ecology theory, which can underwrite taxonomic assessment and help to explain sympatric hominid coexistence. This paper contributes to that goal by reassessing the ecological rationale provided for the single-species hypothesis. Limiting similarity concepts indicate that the allowable ecological overlap between sympatric competitors is greater than the degrees of metric overlap often advanced as standards for identifying fossil species. Optimal foraging theory and the compression hypothesis show that the initial ecological reaction of a hominid to a sympatric competitor would likely be micro-habitat divergence and possibly also temporal differentiation of resource use. The long-term, evolutionary response is niche divergence, probably involving diet as well. General niche partitioning studies suggest that diet and habitat are the most common dimensions of niche separation, although temporal separation is unusually frequent in carnivores. The equation of niche with culture, basic to the single-species hypothesis, has no analytic meaning. Finally, four minor points are discussed, suggesting that (a) extinction is not unlikely, even for a long-lived and competitively competent hominid lineage, (b)parsimony is fickle, (c)interspecific mutualism may jeopardize survival, and (d)generalists are subordinate competitors, but for hominids, seemingly, successful ones. I argue that analog models of hominid paleoecology should be replaced by the use of zoological and anthropological observations to assess the generality and reliability of ecological theory and comcepts that may encompass early hominids.  相似文献   

10.
Evolution of the secretoglobins: a genomic and proteomic view   总被引:1,自引:0,他引:1  
Mouse salivary androgen-binding protein (ABP) is a member of the newly erected secretoglobin family, no member of which has yet been assigned an indisputable function. We have suggested a role for ABP in mate selection behaviour and sexual isolation. Although this has been a particularly attractive hypothesis given the evidence for strong positive selection on its alpha subunit gene, Abpa , we have held out the possibility that there might be an as-yet-undiscovered primary function for ABP. This is particularly important in light of its membership in the secretoglobin family, and we are pursuing the broader issue of shared functions of the secretoglobins with genomic and bioinformatic studies. Here we present as complete a comparison as possible of the secretoglobins in the genomes of three species of mammals: mouse, rat and human, and we compare the protein sequences and their potential evolutionary relationships. We suggest that the secretoglobins can be divided into at least five families. In rodent and human genomes, these gene families are found in two main clusters that are syntenic between rat and mouse. Humans have only the three families that are found within the uteroglobin/clara cluster, because no ABP-containing secretoglobin cluster has yet been identified.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 84 , 493–501.  相似文献   

11.
The morphology of the Olduvai Hominid (OH) 8 foot and the sequence of metatarsal epiphyseal fusion in modern humans and chimpanzees support the hypothesis that OH 8 belonged to an individual of approximately the same relative age as the OH 7 subadult, the holotype of Homo habilis. Modern humans and chimpanzees exhibit a variety of metatarsal epiphyseal fusion patterns, including one identical to that observed in OH 8 in which metatarsal 1 fuses before metatarsals 2-5. More than the metatarsal fusion sequence, however, the principal evidence of the youthful age of OH 8 lies in the morphology of metatarsals 1, 2, and 3. Because both OH 8 and OH 7 come from the same stratum at the FLK NN type site, the most parsimonious explanation of the OH 8 and OH 7 data is that this material belonged to the same individual, as originally proposed by Louis Leakey. The proposition that OH 8 belonged to an adult is unsupported by morphology, including radiographic evidence, and the fusion sequences in human and chimpanzee skeletal material reported here and in the literature.  相似文献   

12.
Heterochronic studies compare ontogenetic trajectories of an organ in different species: here, the skulls of common chimpanzees and modern humans. A growth trajectory requires three parameters: size, shape, and ontogenetic age. One of the great advantages of the Procrustes method is the precise definition of size and shape for whole organs such as the skull. The estimated ontogenetic age (dental stages) is added to the plot to give a graphical representation to compare growth trajectories. We used the skulls of 41 Homo sapiens and 50 Pan troglodytes at various stages of growth. The Procrustes superimposition of all specimens was completed by statistical procedures (principal component analysis, multivariate regression, and discriminant function) to calculate separately size-related shape changes (allometry common to chimpanzees and humans), and interspecific shape differences (discriminant function). The results confirm the neotenic theory of the human skull (sensu Gould [1977] Ontogeny and Phylogeny, Cambridge: Harvard University Press; Alberch et al. [1979] Paleobiology 5:296-317), but modify it slightly. Human growth is clearly retarded in terms of both the magnitude of changes (size-shape covariation) and shape alone (size-shape dissociation) with respect to the chimpanzees. At the end of growth, the adult skull in humans reaches an allometric shape (size-related shape) which is equivalent to that of juvenile chimpanzees with no permanent teeth, and a size which is equivalent to that of adult chimpanzees. Our results show that human neoteny involves not only shape retardation (paedomorphosis), but also changes in relative growth velocity. Before the eruption of the first molar, human growth is accelerated, and then strongly decelerated, relative to the growth of the chimpanzee as a reference. This entails a complex process, which explains why these species reach the same overall (i.e., brain + face) size in adult stage. The neotenic traits seem to concern primarily the function of encephalization, but less so other parts of the skull. Our results, based on the discriminant function, reveal that additional structural traits (corresponding to the nonallometric part of the shape which is specific to humans) are rather situated in the other part of the skull. They mainly concern the equilibrium of the head related to bipedalism, and the respiratory and masticatory functions. Thus, the reduced prognathism, the flexed cranial base (forward position of the foramen magnum which is brought closer to the palate), the reduced anterior portion of the face, the reduced glabella, and the prominent nose mainly correspond to functional innovations which have nothing to do with a neotenic process in human evolution. The statistical analysis used here gives us the possibility to point out that some traits, which have been classically described as paedomorphic because they superficially resemble juvenile traits, are in reality independent of growth.  相似文献   

13.
In an effort to understand the forces shaping evolution of regulatory genes and patterns, we have compared data on interspecific differences in enzyme expression patterns among the rapidly evolving Hawaiian picture-winged Drosophila to similar data on the more conservative virilis species group. Divergence of regulatory patterns is significantly more common in the former group, but cause and effect are difficult to discern. Random fixation of regulatory variants in small populations and/or during speciation may be somewhat more likely than divergence driven by selection. Within the picture-winged group, we also have compared enzymes that fulfill different metabolic roles. There are highly significant differences between individual enzymes, but no obvious correlations to functional categories. Correspondence to: W.J. Dickinson  相似文献   

14.
15.
The reaction thermodynamics for the one-electron reduction of the [2Fe-2S] cluster of both human ferredoxin and various surface point mutants, in which each of the negatively charged residues Asp72, Glu73, Asp76, and Asp79 were converted to Ala, have been determined by variable temperature spectroelectrochemical measurements. The above are conserved residues that have been implicated in interactions between the vertebrate-type ferredoxins and their redox partners. In all cases, and similar to other 2Fe-ferredoxins, the reduction potentials are negative as a result of both an enthalpic and entropic stabilization of the oxidized state. Although all Hs Fd mutants, with the exception of Asp72Ala, show slightly higher E°′ values than that of wild type Hs Fd, according to expectations for a purely electrostatic model, they exhibit changes in the ?H°′rc values that are electrostatically counter-intuitive. The observation of enthalpy-entropy compensation within the protein series indicates that the mutation-induced changes in ?H°′rc and ?S°′rc are dominated by reduction-induced solvent reorganization effects. Protein-based entropic effects are likely to be responsible for the low E°′ value of D72A.  相似文献   

16.
Within the genus Homo, the most encephalized taxa (Neandertals and modern humans) show relatively wider frontal lobes than either Homo erectus or australopithecines. The present analysis considers whether these changes are associated with a single size-based or allometric pattern (positive allometry of the width of the anterior endocranial fossa) or with a more specific and non-allometric pattern. The relationship between hemispheric length, maximum endocranial width, and frontal width at Broca's area was investigated in extant and extinct humans. Our results do not support positive allometry for the frontal lobe's width in relation to the main endocranial diameters within modern humans (Homo sapiens). Also, the correlation between frontal width and hemispheric length is lower than the correlation between frontal width and parieto-temporal width. When compared with the australopithecines, the genus Homo could have experienced a non-allometric widening of the brain at the temporo-parietal areas, which is most evident in Neandertals. Modern humans and Neandertals also display a non-allometric widening of the anterior endocranial fossa at the Broca's cap when compared with early hominids, again more prominent in the latter group. Taking into account the contrast between the intra-specific patterns and the between-species differences, the relative widening of the anterior fossa can be interpreted as a definite evolutionary character instead of a passive consequence of brain size increase. This expansion is most likely associated with correspondent increments of the underlying neural mass, or at least with a geometrical reallocation of the frontal cortical volumes. Although different structural changes of the cranial architecture can be related to such variations, the widening of the frontal areas is nonetheless particularly interesting when some neural functions (like language or working memory, decision processing, etc.) and related fronto-parietal cortico-cortical connections are taken into account.  相似文献   

17.
This article examines a recently reported generalization. Materials from more than a score of invetigations are drawn upon. These materials show there is not a substantial research base for the claim that interbreeding in the United States between black people of African ancestry and white people of European ancestry has resulted in increased lower limb height relative to sitting height.  相似文献   

18.
Canada is a large country geographically, but relatively small in terms of population. As a result, our major problem has always been communication. It is expensive and time consuming to get together to discuss problems. For example, a scholar in Newfoundland would find Prague to be as far away as a visit to a university in her own country (British Columbia). Then too, communication is often confounded by language because we are a bilingual country, but relatively few people speak both languages. Understandably, then, it is very difficult to speak of a national identity on such a topic as human evolution. Rather, we find that individuals have influenced the field either through their research or through their teaching. Academic development has been strongly influenced in the past by developments in the United States and Europe, particularly the United Kingdom. Nevertheless, we will attempt to trace the development of evolutionary throught, but not without a preliminary apology for oversights to our colleagues. The task is difficult, and we will surely overlook some names. We hope that our attempt will still be accurate in the wholistic sense. Regardless of the foregoing problems, we do see a broad historical development and the beginning of a Canadian perspective. This is more clearly seen if we trace the development of evolutionary thought within the context of the history of physical anthropology in Canada.  相似文献   

19.
In 1992, Norm Sauer called for a language shift in which practitioners would move away from the socially loaded term “race” and replace it with the less provocative term “ancestry.” While many heeded the call and moved towards ancestry in their research and reports, the actual approach to research and analysis did not change. In response to this change, there was a large growth in ancestry estimation method development in the early decade of the 2000s. However, the practice of ancestry estimation did not adequately incorporate evolutionary theory in interpretation or trait selection and continued with little critical reflection. In the past decade, there has been an increase in ancestry validation methods with little critique of the “race” concept or discussion of modern human variation or reference samples. To advance, forensic anthropologists need to reckon with the practice of ancestry estimation as it is currently practiced. We are calling for another reform in the axiom focusing on evolutionary theory, population history, trait selection, and population-level reference samples. The practice needs to abandon the terms ancestry and race completely and recalibrate to an analysis of population affinity. Population affinity is a statistical approach based on the underlying population structure that would allow the understanding of how microevolutionary forces act in concert with historical events (e.g., colonization, the Transatlantic Slave Trade, etc.) to shape modern human variation. This is not to be confused with geographic ancestry that all too often can be perceived as interchangeable with social race and as an affirmation of the biological concept of race. It is time to critically evaluate the social and scientific implications of the current practice of ancestry estimation, and re-frame our approach to studying and analyzing modern human variation through a population structure approach.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号