首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ocular HSV-1 infection is a major cause of eye disease and innate and adaptive immunity both play a role in protection and pathology associated with ocular infection. Previously we have shown that M1-type macrophages are the major and earliest infiltrates into the cornea of infected mice. We also showed that HSV-1 infectivity in the presence and absence of M2-macrophages was similar to wild-type (WT) control mice. However, it is not clear whether the absence of M1 macrophages plays a role in protection and disease in HSV-1 infected mice. To explore the role of M1 macrophages in HSV-1 infection, we used mice lacking M1 activation (M1-/- mice). Our results showed that macrophages from M1-/- mice were more susceptible to HSV-1 infection in vitro than were macrophages from WT mice. M1-/- mice were highly susceptible to ocular infection with virulent HSV-1 strain McKrae, while WT mice were refractory to infection. In addition, M1-/- mice had higher virus titers in the eyes than did WT mice. Adoptive transfer of M1 macrophages from WT mice to M1-/- mice reduced death and rescued virus replication in the eyes of infected mice. Infection of M1-/- mice with avirulent HSV-1 strain KOS also increased ocular virus replication and eye disease but did not affect latency-reactivation seen in WT control mice. Severity of virus replication and eye disease correlated with significantly higher inflammatory responses leading to a cytokine storm in the eyes of M1-/- infected mice that was not seen in WT mice. Thus, for the first time, our study illustrates the importance of M1 macrophages specifically in primary HSV-1 infection, eye disease, and survival but not in latency-reactivation.  相似文献   

2.
Susceptibility to infection with herpes simplex virus type 1 (HSV-1) was examined in euthymic as well as athymic nude mice which were continuously depleted of natural killer (NK) cell activity by i.v. injection of anti-asialo GM1. In those NK cell activity-depleted mice, the mortality rate of infection with HSV-1 and the virus titers in the brain, liver, and spleen were notably higher than in the control mice. The enhanced susceptibility was demonstrated only in the mice receiving anti-asialo GM1 and HSV-1 simultaneously, but not in the mice in which NK cell deletion was postponed by injecting the antisera 5 days after the virus inoculation. Interferon (IFN) production of peritoneal exudate cells was also reduced in the anti-asialo GM1-injected mice. The decline of resistance against HSV-1 infection proved to be primarily due to deletion of NK cells, but not due to the inability to produce IFN, because repeated injections of IFN increased the NK cell activity and prolonged the life of HSV-1-infected mice with an intact NK cell activity. In the NK cell activity-depleted mice, however, neither the NK cell activity nor the life span was improved by the administration of IFN.  相似文献   

3.
Herpes simplex virus 1 (HSV-1) is a ubiquitous and important human pathogen. It is known to persist in trigeminal ganglia (TG), but how it reaches this site has been difficult to determine, as viral transmission is sporadic, pathogenesis is complicated, and early infection is largely asymptomatic. We used mice to compare the most likely natural HSV-1 host entry routes: oral and nasal. Intranasal infection was 100-fold more efficient than oral and targeted predominantly the olfactory neuroepithelium. Live imaging of HSV-1-expressed luciferase showed infection progressing from the nose to the TG and then reemerging in the facial skin. The brain remained largely luciferase negative throughout. Infected cell tagging by viral Cre recombinase expression in floxed reporter gene mice showed nasal virus routinely reaching the TG and only rarely reaching the olfactory bulbs. Thus, HSV-1 spread from the olfactory neuroepithelium to the TG and reemerged peripherally without causing significant neurological disease. This recapitulation of typical clinical infection suggests that HSV-1 might sometimes also enter humans via the respiratory tract.  相似文献   

4.
To enter its human host, herpes simplex virus type 1 (HSV-1) must overcome the barrier of mucosal surfaces, skin, or cornea. HSV-1 targets keratinocytes during initial entry and establishes a primary infection in the epithelium, which is followed by latent infection of neurons. After reactivation, viruses can become evident at mucocutaneous sites that appear as skin vesicles or mucosal ulcers. How HSV-1 invades skin or mucosa and reaches its receptors is poorly understood. To investigate the invasion route of HSV-1 into epidermal tissue at the cellular level, we established an ex vivo infection model of murine epidermis, which represents the site of primary and recurrent infection in skin. The assay includes the preparation of murine skin. The epidermis is separated from the dermis by dispase II treatment. After floating the epidermal sheets on virus-containing medium, the tissue is fixed and infection can be visualized at various times postinfection by staining infected cells with an antibody against the HSV-1 immediate early protein ICP0. ICP0-expressing cells can be observed in the basal keratinocyte layer already at 1.5 hr postinfection. With longer infection times, infected cells are detected in suprabasal layers, indicating that infection is not restricted to the basal keratinocytes, but the virus spreads to other layers in the tissue. Using epidermal sheets of various mouse models, the infection protocol allows determining the involvement of cellular components that contribute to HSV-1 invasion into tissue. In addition, the assay is suitable to test inhibitors in tissue that interfere with the initial entry steps, cell-to-cell spread and virus production. Here, we describe the ex vivo infection protocol in detail and present our results using nectin-1- or HVEM-deficient mice.  相似文献   

5.
During lytic infection, the virion host shutoff (vhs) protein of herpes simplex virus (HSV) mediates the rapid degradation of RNA and shutoff of host protein synthesis. In mice, HSV type 1 (HSV-1) mutants lacking vhs activity are profoundly attenuated. HSV-2 has significantly higher vhs activity than HSV-1, eliciting a faster and more complete shutoff. To examine further the role of vhs activity in pathogenesis, we generated an intertypic recombinant virus (KOSV2) in which the vhs open reading frame of HSV-1 strain KOS was replaced with that of HSV-2 strain 333. KOSV2 and a marker-rescued virus, KOSV2R, were characterized in cell culture and tested in an in vivo mouse eye model of latency and pathogenesis. The RNA degradation kinetics of KOSV2 was identical to that of HSV-2 333, and both showed vhs activity significantly higher than that of KOS. This demonstrated that the fast vhs-mediated degradation phenotype of 333 had been conferred upon KOS. The growth of KOSV2 was comparable to that of KOS, 333, and KOSV2R in cell culture, murine corneas, and trigeminal ganglia and had a reactivation frequency similar to those of KOS and KOSV2R from explanted latently infected trigeminal ganglia. There was, however, significantly reduced blepharitis and viral replication within the periocular skin of KOSV2-infected mice compared to mice infected with either KOS or KOSV2R. Taken together, these data demonstrate that heightened vhs activity, in the context of HSV-1 infection, leads to increased viral clearance from the skin of mice and that the replication of virus in the skin is a determining factor for blepharitis. These data also suggest a role for vhs in modulating host responses to HSV infection.  相似文献   

6.
Interferon (IFN) type I (alpha/beta IFN [IFN-alpha/beta]) is very important in directly controlling herpes simplex virus type I (HSV-1) replication as well as in guiding and upregulating specific immunity against this virus. By contrast, the roles of IFN type II (IFN-gamma) and antibodies in the defense against HSV-1 are not clear. Mice without a functional IFN system and no mature B and T cells (AGR mice) did not survive HSV-1 infection in the presence or absence of neutralizing antibodies to the virus. Mice without a functional IFN type I system and with no mature B and T cells (AR129 mice) were unable to control infection with as little as 10 PFU of HSV-1 strain F. By contrast, in the presence of passively administered neutralizing murine antibodies to HSV-1, some AR129 mice survived infection with up to 10(4) PFU of HSV-1. This acute immune response was dependent on the presence of interleukin-12 (IL-12) p75. Interestingly, some virus-infected mice stayed healthy for several months, at which time antibody to HSV-1 was no longer detectable. Treatment of these virus-exposed mice with dexamethasone led to death in approximately 40% of the mice. HSV-1 was found in brains of mice that did not survive dexamethasone treatment, whereas HSV-1 was absent in those that survived the treatment. We conclude that in the presence of passively administered HSV-1-specific antibodies, the IL-12-induced IFN-gamma-dependent innate immune response is able to control low doses of virus infection. Surprisingly, in a significant proportion of these mice, HSV-1 appears to persist in the absence of antibodies and specific immunity.  相似文献   

7.
In the present study we show that peritoneal macrophages obtained from the mice treated with the immunoactive peptides inhibit the multiplication of Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), but not that of vesicular stomatitis virus (VSV), and that the intraperitoneal administration of the peptides suppresses the infection with HSV-1 in mice.  相似文献   

8.
To investigate the protective ability of monoclonal antibodies (MCAs) to viral glycoprotein in herpes simplex virus (HSV) infection, athymic nude mice were inoculated intracutaneously with HSV type-1 (HSV-1) in the midflank. Three hours after inoculation, one group of mice was passively immunized with one of a series of MCAs to glycoprotein gB of HSV-1, and a control group of mice was given phosphate buffered saline alone. The control mice died within 16 days after infection, whereas the mice passively immunized with any of the MCA showed suppressed development of skin lesions. Three of six mice given MCA failed to develop any visible lesions and no HSV could be isolated from the lumbar dorsal root ganglia of these mice 60 days after the challenge. BALB/c mice were also protected from infection with HSV type 2 by passive immunization with MCA to HSV-1 gB.  相似文献   

9.
The relative roles of interferon (IFN) and natural killer (NK) cells in herpes simplex virus type 1 (HSV-1) infection of mice were examined. Adoptive transfer of adult mouse leukocytes into 4- to 6-day-old suckling mice protected the recipients from HSV-1 infection, as judged by viral titers in the spleen 2 days postinfection. Protection was mediated by several classes of leukocytes, including those depleted of NK cell activity by antibody to asialo GM1 and those depleted of macrophages by size separation. Mice receiving these leukocytes produced significantly higher levels of IFN 6 hr postinfection (early IFN) than did HSV-1-infected mice not receiving donor leukocytes. Antibody to IFN, under conditions that blocked early but not late IFN synthesis, greatly enhanced HSV-1 synthesis in mice receiving leukocytes and completely removed the protective effect mediated by leukocytes. High doses of anti-asialo GM1 blocked both NK cell activity and early IFN production and resulted in high titers of HSV-1. This effect on virus synthesis was not seen if mice were given antibody 1 day postinfection. Lower doses of anti-asialo GM1, which still depleted NK cell activity but had no effect on early IFN production, did not enhance HSV-1 synthesis. Depletion of NK cell activity with a low dose of antibody had no effect on the reduced HSV-1 synthesis resulting from prophylactic IFN treatment or on the enhanced HSV-1 synthesis resulting from antibody to IFN treatment. Thus, resistance to acute HSV-1 infection in mice correlates with early IFN production but not with NK cell activity, suggesting that NK cells are not major mediators of natural resistance in this model and that the antiviral effect of IFN is not mediated by NK cells.  相似文献   

10.
The role of CXCL9 and CXCL10 in the ocular immune response to herpes simplex virus type 1 (HSV-1) infection was investigated using mice deficient in either CXCL9 or CXCL10. CXCL10 but not CXCL9 deficient mice showed an increase in sensitivity to ocular virus infection as measured by an elevation in virus titer recovered in the tear film and corneal tissue. The increase in virus was associated with an increase in the expression of the chemokine CCL2 but no significant change in the infiltration of CD4(+) T cells or NK cells into the corneal stroma. In contrast, a significant reduction in CD4(+) T cell infiltration into the cornea was found in CXCL9 deficient mice following HSV-1 infection consistent with the absence of CXCL9 expression and reduction in expression of other chemokines including CCL3, CCL5, CXCL1, and CXCL10. Collectively, the results suggest a non-redundant role for CXCL9 and CXCL10 in response to ocular HSV-1 infection in terms of controlling virus replication and recruitment of CD4(+) T cells into the cornea.  相似文献   

11.
Y Ohashi  Y Sakaue  S Kato  T Wada  K Sato 《Biken journal》1980,23(4):199-204
Lethal infection with herpes simplex virus types 1 (HSV-1) and 2 was effectively prevented by previous immunization with a detergent-soluble extract (DSE) of virus-infected cells free from infectious virus without any adjuvant. This protective immunity seemed to last for at least one month. Neutralizing antibodies were elicited in mice immunized with DSE, but at a lower level than in animals immunized with live or killed virus. DSE did not protect athymic nude mice from death by HSV-1 infection, suggesting that a T cell-mediated immune response plays a major role in the protection.  相似文献   

12.
HSV-1 is the causative agent of cutaneous lesions, commonly referred to as cold sores. Primary exposure to the virus ordinarily occurs through the periphery, in particular through abraded skin or mucosal membranes. Under certain circumstances (e.g., in neonatals or AIDS patients), the infection becomes disseminated, often with severe consequences. Spread of HSV-1 is limited by virus-specific Ab. The development of an efficient humoral response to the virus is dependent on innate immunity component complement C3. The liver is the major source of C3, but there are also extrahepatic origins of C3 such as lymphoid macrophages. In the present study, the significance of C3 synthesis by bone marrow-derived cells was assessed by the transfer of wild-type bone marrow into irradiated C3-deficient mice. Using these chimeric mice, extrahepatic C3 was determined sufficient to initiate specific Ab and memory responses to a peripheral HSV-1 infection.  相似文献   

13.
HSV type 1 (HSV-1) infection of the mouse cornea results in a tissue-destructive inflammatory reaction in the cornea, but little or no disease in the skin surrounding the eye. Depleting T lymphocytes from mice before HSV-1 corneal infection prevents the corneal inflammation but severely exacerbates the periocular skin lesions. Studies described in this communication investigated the role of T cell cytokines in the corneal and periocular skin disease induced by HSV-1 corneal infection. Mice received weekly i.p. injections of rat mAb specific for IL-2, IL-4, or IFN-gamma beginning 1 day before (day -1) or 6 days after (day +6) corneal infection with the RE strain of HSV-1. The severity of corneal inflammation and the area of periocular skin involvement were measured. Treatment with anti-IFN-gamma or anti-IL-2 significantly reduced the incidence and severity of corneal inflammation. Treatment was equally effective when initiated on day -1 (before T cell activation) or day +6 (after T cell activation but before the initiation of corneal inflammation). Treatment with anti-IL-4 had no effect. The histologic features of corneal inflammation in mock-treated mice included neovascularization, corneal edema, and cellular infiltration. Corneas of anti-IL-2-treated mice that developed inflammation had similar but less severe histologic features. Corneas of anti-IFN-gamma-treated mice that developed inflammation had neovascularization and edema but minimal cellular infiltration. Treatment with anti-IFN-gamma or anti-IL-2 significantly exacerbated periocular skin lesions when initiated at day -1, but not when initiated at day +6. Anti-IL-4 treatment had no effect on skin lesions. Treatment with either anti-IFN-gamma or anti-IL-2, when initiated at day -1, significantly inhibited the delayed-type hypersensitivity response to HSV Ag, but when treatment was begun at day +6 only anti-IFN-gamma significantly inhibited the delayed-type hypersensitivity response. Our findings suggest that IFN-gamma and IL-2 are important elements in both an immunopathologic T-lymphocyte response to HSV-1 Ag in the cornea and a protective T lymphocyte response in the skin.  相似文献   

14.
Heat-killed Lactobacillus casei YIT 9018 (LC 9018) cells enhanced the resistance to herpes simplex virus type 1 (HSV-1) in adult mice, but not significantly. The protection of mice against HSV-1 infection and the production of neutralizing antibodies were significantly enhanced by the administration of LC 9018 in combination with inactivated HSV-1 antigen. The optimal enhancement of resistance was seen in mice 14 days after the simultaneous administration of these substances. The resistance to HSV-1 infection in mice could be transferred with peritoneal exudate cells from syngeneic mice previously treated with LC 9018 alone and LC 9018 in combination with inactivated HSV-1 antigen or with thioglycollate broth, whereas the transfer of peritoneal exudate cells induced by thioglycollate broth alone and of spleen cells induced by LC 9018 in combination with thioglycollate broth or by thioglycollate broth alone was not effective. These results suggest that mouse peritoneal macrophages induced by the administration of LC 9018 in combination with inactivated HSV-1 antigen may play an important role in host defense mechanisms against HSV-1 infection.  相似文献   

15.
Transgenic (rho gamma) mice provide a model for studying the influence of gamma interferon (IFN-gamma) produced in the eye on ocular and cerebral viral infection. To establish this model, we injected BALB/c- and C57BL/6-derived transgenic and nontransgenic mice of different ages intravitreally with herpes simplex virus type 1 (HSV-1) strain F. Eye and brain tissues of these mice were assessed for pathological and immunocytochemical changes. HSV-1 infection induced severe retinitis of the injected eyes and infection of the brain in all mice. In transgenic mice inoculated with HSV-1, the left, nontreated eyes were protected from retinitis, whereas nontransgenic mice developed bilateral retinitis. Additional intravitreal injection of IFN-gamma with the virus protected the noninoculated eyes of nontransgenic mice. Three-week-old nontransgenic mice died from HSV-1 infection, whereas transgenic mice of the same age and nontransgenic mice intravitreally treated with IFN-gamma survived. Ocular IFN-gamma production increased the extent of inflammation in transgenic mice but did not have a significant influence on the growth of HSV-1 until day 3 after inoculation and did not influence the neuroinvasion of this virus. Thus, the effects of IFN-gamma were not caused by an early block of viral replication. Possible mechanisms of IFN-gamma action include activation of the immune response, alteration of the properties of the virus, and direct protection of neurons.  相似文献   

16.
17.
Background aimsDendritic cells (DCs) are the most potent antigen presenting cells of the immune system and have been under intense study with regard to their use in immunotherapy against cancer and infectious disease agents. In the present study, DCs were employed to assess their value in protection against live virus challenge in an experimental model using lethal and latent herpes simplex virus (HSV) infection in Balb/c mice.MethodsDCs obtained ex vivo in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4 were loaded with HSV-1 proteins (DC/HSV-1 vaccine). Groups of mice were vaccinated twice, 7 days apart, via subcutaneous, intraperitoneal or intramuscular routes with DC/HSV-1 and with mock (DC without virus protein) and positive (alum adjuvanted HSV-1 proteins [HSV-1/ALH]) control vaccines. After measuring anti-HSV-1 antibody levels in blood samples, mice were given live HSV-1 intraperitoneally or via ear pinna to assess the protection level of the vaccines with respect to lethal or latent infection challenge.ResultsIntramuscular, but not subcutaneous or intraperitoneal, administration of DC/HSV-1 vaccine provided complete protection against lethal challenge and establishment of latent infection as assessed by death and virus recovery from the trigeminal ganglia. It was also shown that the immunity was not associated with antibody production because DC/HSV-1 vaccine, as opposed to HSV-1/ALH vaccine, produced very little, if any, HSV-1-specific antibody.ConclusionsOverall, our results may have some impact on the design of vaccines against genital HSV as well as chronic viral infections such as hepatitis B virus, hepatitis C virus and human immunodeficiency virus.  相似文献   

18.
Poon AP  Liang Y  Roizman B 《Journal of virology》2003,77(23):12671-12678
An earlier report showed that the expression of viral genes by a herpes simplex virus 1 mutant [HSV-1(vCPc0)] in which the wild-type, spliced gene encoding infected-cell protein no. 0 (ICP0) was replaced by a cDNA copy is dependent on both the cell type and multiplicity of infection. At low multiplicities of infection, viral gene expression in rabbit skin cells was delayed by many hours, although ultimately virus yield was comparable to that of the wild-type virus. This defect was rescued by replacement of the cDNA copy with the wild-type gene. To test the hypothesis that the delay reflected a dysfunction of ICP0 in altering the structure of host protein-viral DNA complexes, we examined the state of histone deacetylases (HDACs) (HDAC1, HDAC2, and HDAC3). We report the following. (i) HDAC1 and HDAC2, but not HDAC3, were modified in infected cells. The modification was mediated by the viral protein kinase U(S)3 and occurred between 3 and 6 h after infection with wild-type virus but was delayed in rabbit skin cells infected with HSV-1(vCPc0) mutant, concordant with a delay in the expression of viral genes. (ii) Pretreatment of rabbit skin cells with inhibitors of HDAC activity (e.g., sodium butyrate, Helminthosporium carbonum toxin, or trichostatin A) accelerated the expression of HSV-1(vCPc0) but not that of wild-type virus. We conclude the following. (i) In the interval in which HSV-1(vCPc0) DNA is silent, its DNA is in chromatin-like structures amenable to modification by inhibitors of histone deacetylases. (ii) Expression of wild-type virus genes in these cells precluded the formation of DNA-protein structures that would be affected by either the HDACs or their inhibitors. (iii) Since the defect in HSV-1(vCPc0) maps to ICP0, the results suggest that this protein initiates the process of divestiture of viral DNA from tight chromatin structures but could be replaced by other viral proteins in cells infected with a large number of virions.  相似文献   

19.
Mouse models of herpes simplex virus type 1 (HSV-1) infection provide significant insights into viral and host genes that regulate disease pathogenesis, but conventional methods to determine the full extent of viral spread and replication typically require the sacrifice of infected animals. To develop a noninvasive method for detecting HSV-1 in living mice, we used a strain KOS HSV-1 recombinant that expresses firefly (Photinus pyralis) and Renilla (Renilla reniformis) luciferase reporter proteins and monitored infection with a cooled charge-coupled device camera. Viral infection in mouse footpads, peritoneal cavity, brain, and eyes could be detected by bioluminescence imaging of firefly luciferase. The activity of Renilla luciferase could be imaged after direct administration of substrate to infected eyes but not following the systemic delivery of substrate. The magnitude of bioluminescence from firefly luciferase measured in vivo correlated directly with input titers of recombinant virus used for infection. Treatment of infected mice with valacyclovir, a potent inhibitor of HSV-1 replication, produced dose-dependent decreases in firefly luciferase activity that correlated with changes in viral titers. These data demonstrate that bioluminescence imaging can be used for noninvasive, real-time monitoring of HSV-1 infection and therapy in living mice.  相似文献   

20.
Herpes simplex virus type 1 (HSV-1) causes chronic blepharitis and conjunctivitis as well as keratitis in humans. The pathogenesis of these inflammatory ocular and dermal lesions is not well understood. We have examined the persistence of HSV-1 DNA and its relationship to inflammatory lesions in the conjunctiva and eyelid skin of mice which were inoculated with HSV-1 by the corneal route. Viral DNA was detected by in situ PCR in the conjunctiva and eyelid tissue of infected mice at 5, 11, 23, and 37 days postinfection (p.i.). This DNA was localized in the epithelial cells of the conjunctiva and hair follicles and in the epidermal cells of the eyelid skin. Viral proteins were not detected in the conjunctiva or the eyelid skin after 5 days p.i., even though histopathological lesions were found at 23 and 37 days p.i. in both tissues. The DNA-containing cells were adjacent to sites of inflammation in the chronic lesions in both the conjunctiva and the eyelid skin. A similar temporal and spatial relationship between HSV-1 DNA and inflammatory lesions has been previously reported for the cornea. Our data suggest that the lesions in the cornea, conjunctiva, and eyelid skin progress similarly. Further studies are required to determine whether the long-term presence of HSV-1 is involved in the mechanism by which these chronic inflammatory lesions develop. The presence of HSV-1 DNA in these extraocular tissues for extended periods may constitute persistent viral infection of nonneuronal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号