首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methylglyoxal (MGO) is a highly reactive dicarbonyl compound known to induce cellular injury and cytoxicity, including apoptosis in vascular cells. Vascular endothelial cell apoptosis has been implicated in the pathophysiology and progression of atherosclerosis. We investigated whether the advanced glycation end-product inhibitor LR-90 could prevent MGO-induced apoptosis in human umbilical vascular endothelial cells (HUVECs). HUVECs were pre-treated with LR-90 and then stimulated with MGO. Cell morphology, cytotoxicity and apoptosis were evaluated by light microscopy, MTT assay, and Annexin V-FITC and propidium iodide double staining, respectively. Levels of Bax, Bcl-2, cytochrome c, mitogen-activated protein kinases (MAPKs) and caspase activities were assessed by Western blotting. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were measured with fluorescent probes. LR-90 dose-dependently prevented MGO-associated HUVEC cytotoxicity and apoptotic biochemical changes such as loss of MMP, increased Bax/Bcl-2 protein ratio, mitochondrial cytochrome c release and activation of caspase-3 and 9. Additionally, LR-90 blocked intracellular ROS formation and MAPK (p44/p42, p38, JNK) activation, though the latter seem to be not directly involved in MGO-induced HUVEC apoptosis. LR-90 prevents MGO-induced HUVEC apoptosis by inhibiting ROS and associated mitochondrial-dependent apoptotic signaling cascades, suggesting that LR-90 possess cytoprotective ability which could be beneficial in prevention of diabetic related-atherosclerosis.  相似文献   

2.
Vascular endothelial growth factor (VEGF) promotes vasculogenesis, arteriogenesis, and angiogenesis by stimulating proliferation, migration, and cell survival of endothelial cells. VEGF mediates its actions through activation of two receptor tyrosine kinases, VEGFR-1 and VEGFR-2. Serum starvation led to apoptosis of human umbilical vein endothelial cells (HUVEC), which was accompanied by activation of p38 MAPK and caspase-3. Stimulation of both VEGF-receptors resulted in a considerable decrease of apoptosis, which was associated with the inhibition of p38 MAPK and caspase-3 activity. Selective stimulation of VEGFR-2 showed similar results, whereas the isolated activation of VEGFR-1 was without effect. Incubation of HUVEC with SB203580, a p38 MAPK inhibitor, resulted in similar effects as VEGF-stimulation: p38 MAPK and caspase-3 enzyme activity were reduced and apoptosis was prevented. These data indicate that activation of VEGFR-2 prevents endothelial cell apoptosis by inhibiting p38 MAPK phosphorylation and thus, reducing caspase-3 activity.  相似文献   

3.
Small GTP-binding Rho GTPases regulate important signaling pathways in endothelial cells, but little is known about their role in endothelial cell apoptosis. Clostridial cytotoxins specifically inactivate GTPases by glucosylation [Clostridium difficile toxin B-10463 (TcdB-10463), C. difficile toxin B-1470 (TcdB-1470)] or ADP ribosylation (C. botulinum C3 toxin). Exposure of human umbilical cord vein endothelial cells (HUVEC) to TcdB-10463, which inhibits RhoA/Rac1/Cdc42, or to C3 toxin, which inhibits RhoA, -B, -C, resulted in apoptosis, whereas inactivation of Rac1/Cdc42 with TcdB-1470 was without effect, suggesting that Rho inhibition was responsible for endothelial apoptosis. Disruption of endothelial microfilaments as well as inhibition of p160ROCK did not induce endothelial apoptosis. Exposure to TcdB-10463 resulted in activation of caspase-9 and -3 but not caspase-8 in HUVEC. Moreover, Rho inhibition reduced expression of antiapoptotic Bcl-2 and Mcl-1 and increased proapoptotic Bid but had no effect on Bax or FLIP protein levels. Caspase-3 activity and apoptosis induced by TcdB-10463 were abolished by cAMP elevation. In summary, inhibition of Rho in endothelial cells activates caspase-9- and -3-dependent apoptosis, which can be antagonized by cAMP elevation.  相似文献   

4.
Endothelial injury is a major manifestation of septic shock induced by LPS. Recently, LPS was shown to induce apoptosis in different types of endothelial cells. In this study, we observed that pretreatment with vascular endothelial growth factor (VEGF), a known cell survival factor, blocked LPS-induced apoptosis in endothelial cells. We then further defined this LPS-induced apoptotic pathway and its inhibition by VEGF. We found that LPS treatment increased caspase-3 and caspase-1 activities and induced the cleavage of focal adhesion kinase. LPS also augmented expression of the pro-apoptotic protein Bax and the tumor suppressor gene p53. The pro-apoptotic Bax was found to translocate to the mitochondria from the cytosol following stimulation with LPS. Pretreatment of endothelial cells with VEGF inhibited the induction of both Bax and p53 as well as the activation of caspase-3. These data suggest that VEGF inhibits LPS-induced endothelial apoptosis by blocking pathways that lead to caspase activation.  相似文献   

5.
Irisin is a newly discovered myokine that links exercise with metabolic homeostasis. It is involved in modest weight loss and improves glucose intolerance. However, the direct effects and mechanisms of irisin on vascular endothelial cells (ECs) are not fully understood. In the current study, we demonstrated that irisin promoted Human Umbilical Vein Endothelial Cell (HUVEC) proliferation. It was further demonstrated that this pro-proliferation effect was mediated by irisin-induced activation of extracellular signal–related kinase (ERK) signaling pathways. Inhibition of ERK signaling with U0126 decreased the pro-proliferation effect of irisin on HUVECs. It was also demonstrated that irisin reduced high glucose-induced apoptosis by up-regulating Bcl-2 expression and down-regulating Bax, Caspase-9 and Caspase-3 expression. In summary, these results suggested that irisin plays a novel role in sustaining endothelial homeostasis by promoting HUVEC proliferation via the ERK signaling pathway and protects the cell from high glucose-induced apoptosis by regulating Bcl-2,Bax and Caspase expression.  相似文献   

6.
Therapeutic radiation is widely used in cancer treatments. The success of radiation therapy depends not only on the radiosensitivity of tumor cells but also on the radiosensitivity of endothelial cells lining the tumor vasculature. Vascular endothelial growth factor (VEGF) plays a critical role in protecting endothelial cells against a number of antitumor agents including ionizing radiation. Strategies designed to overcome the survival advantage afforded to endothelial cells by VEGF might aid in enhancing the efficacy of radiation therapy. In this report we examined the signaling cascade(s) involved in VEGF-mediated protection of endothelial cells against gamma-irradiation. gamma-Irradiation-induced apoptosis of human dermal microvascular endothelial cells (HDMECs) was predominantly mediated through the p38 MAPK pathway as an inhibitor of p38 MAPK (PD169316), and dominant negative mutants of p38 MAPK could significantly enhance HDMEC survival against gamma-irradiation. Inhibition of the PI3K and MAPK pathways markedly up-regulated gamma-irradiation-mediated p38 MAPK activation resulting in enhanced HDMEC apoptosis. In contrast, VEGF-treated HDMECs were protected from gamma-irradiation-induced apoptosis predominantly through the PI3K/Akt pathway. Bcl-2 expression was markedly elevated in VEGF-treated HDMECs, and it was significantly inhibited by the PI3K inhibitor LY294002. HDMECs exposed to irradiation showed a significant decrease in Bcl-2 expression. In contrast, VEGF-stimulated HDMECs, when irradiated, maintained higher levels of Bcl-2 expression. Taken together our results suggest that gamma-irradiation induces endothelial cell apoptosis predominantly via the activation of p38 MAPK, and VEGF protects endothelial cells against gamma-irradiation predominantly via the PI3K-Akt-Bcl-2 signaling pathway.  相似文献   

7.
To explore the effect of fluctuating glucose on endothelial cells, human umbilical vein endothelial cells were incubated for 14 days in media containing different glucose concentrations: 5 mmol/l, 20 mmol/l, or a daily alternating 5 or 20 mmol/l glucose. Apoptosis was studied by different methods: viability assay, cell cycle analysis, DNA fragmentation, and morphological analysis. Furthermore, the levels of Bcl-2 and Bax, well known proteins involved in apoptosis, were evaluated. Stable high glucose induced apoptosis in human umbilical vein endothelial cells, a phenomenon accompanied by a significant decrease of Bcl-2 and a simultaneous increase of Bax expression. However, apoptosis was enhanced in human umbilical vein endothelial cells exposed to intermittent, rather than constant, high glucose concentration. In this condition, Bcl-2 was not detectable, whereas Bax expression was significantly enhanced. These findings suggest that variability in glycemic control could be more deleterious to endothelial cells than a constant high concentration of glucose.  相似文献   

8.
We previously demonstrated that the phytosphingosine-induced apoptosis was accompanied by the concomitant induction of both the caspase-8-mediated and mitochondrial activation-mediated apoptosis pathways. In the present study, we investigated the role of mitogen-activated protein kinases (MAPKs) in the activation of these two distinct cell death pathways induced by phytosphingosine in human cancer cells. Phytosphingosine caused strong induction of caspase-8 activity and caspase-independent Bax translocation to the mitochondria. A rapid decrease of phosphorylated ERK1/2 and a marked increase of p38 MAPK phosphorylation were observed within 10 min after phytosphingosine treatment. Activation of ERK1/2 by pretreatment with phorbol 12-myristate 13-acetate or forced expression of ERK1/2 attenuated phytosphingosine-induced caspase-8 activation. However, Bax translocation and caspase-9 activation was unaffected, indicating that down-regulation of the ERK activity is specifically required for the phytosphingosine-induced caspase-8-dependent cell death pathway. On the other hand, treatment with SB203580, a p38 MAPK-specific inhibitor, or expression of a dominant negative form of p38 MAPK suppressed phytosphingosine-induced translocation of the proapoptotic protein, Bax, from the cytosol to mitochondria, cytochrome c release, and subsequent caspase-9 activation but did not affect caspase-8 activation, indicating that activation of p38 MAPK is involved in the mitochondrial activation-mediated cell death pathway. Our results suggest that phytosphingosine can utilize two different MAPK signaling pathways for amplifying the apoptosis cascade, enhancing the understanding of the molecular mechanisms utilized by naturally occurring metabolites to regulate cell death. Molecular dissection of the signaling pathways that activate the apoptotic cell death machinery is critical for both our understanding of cell death events and development of cancer therapeutic agents.  相似文献   

9.
The cardiotoxicity of cyclosporine A (CsA) limits its clinical application in extensive and long-term therapies. Our group has shown that CsA induces myocardium cell apoptosis in vivo and increases calcium-sensing receptor (CaSR) expression. However, its molecular mechanism remains unknown. The purpose of this study was to determine whether CaSR plays an essential role in CsA-induced apoptosis in H9c2 cells and to investigate the role of the mitogen-activated protein kinase (MAPK) signaling cascade in this process. H9c2 cells were treated with CsA in a dose-dependent manner, and decreased Bcl-2 expression, increased Bax expression, and caspase-3 activation were observed. In a time-dependent manner, CsA increased CaSR expression, activated the extracellularly regulated kinase (ERK) and p38 MAPK pathways, and inactivated the c-Jun N-terminal kinase (JNK) MAPK signaling pathway. When H9c2 cardiomyoblast cells pretreated with gadolinium chloride (GdCl(3)), a CaSR activator, were treated with CsA, decreased phosphorylation of ERK1/2, increased phosphorylation of p38, decreased Bcl-2 expression, increased Bax expression, and activated caspase-3 were observed. Cells pretreated with the CaSR inhibitor NPS2390 inhibited this process. Furthermore, the MEK1/2 inhibitor U0126 and the p38 MAPK inhibitor SB203580 markedly blocked the effect of CsA on cell apoptosis, apoptotic-related protein expression, and caspase-3 activation. These findings showed that CsA induced apoptosis in H9c2 cells in vitro, and CaSR mediated the degradation of ERK MAPK and the upregulation of the p38 MAPK pathway involved in CsA-induced H9c2 cardiomyoblast cell apoptosis.  相似文献   

10.
Etoposide (VP-16) a topoisomerase II inhibitor induces apoptosis of tumor cells. The present study was designed to elucidate the mechanisms of etoposide-induced apoptosis in C6 glioma cells. Etoposide induced increased formation of ceramide from sphingomyelin and release of mitochondrial cytochrome c followed by activation of caspase-9 and caspase-3, but not caspase-1. In addition, exposure of cells to etoposide resulted in decreased expression of Bcl-2 with reciprocal increase in Bax protein. z-VAD.FMK, a broad spectrum caspase inhibitor, failed to suppress the etoposide-induced ceramide formation and change of the Bax/Bcl-2 ratio, although it did inhibit etoposide-induced death of C6 cells. Reduced glutathione or N-acetylcysteine, which could reduce ceramide formation by inhibiting sphingomyelinase activity, prevented C6 cells from etoposide-induced apoptosis through blockage of caspase-3 activation and change of the Bax/Bcl-2 ratio. In contrast, the increase in ceramide level by an inhibitor of ceramide glucosyltransferase-1, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol caused elevation of the Bax/Bcl-2 ratio and potentiation of caspase-3 activation, thereby resulting in enhancement of etoposide-induced apoptosis. Furthermore, cell-permeable exogenous ceramides (C2- and C6-ceramide) induced downregulation of Bcl-2, leading to an increase in the Bax/Bcl-2 ratio and subsequent activation of caspases-9 and -3. Taken together, these results suggest that ceramide may function as a mediator of etoposide-induced apoptosis of C6 glioma cells, which induces increase in the Bax/Bcl-2 ratio followed by release of cytochrome c leading to caspases-9 and -3 activation.  相似文献   

11.
Vascular endothelial growth factor (VEGF), an endothelial cell-specific mitogen, promotes endothelial cell survival and angiogenesis. We recently showed that VEGF can support the growth of human dermal microvascular endothelial cells (HDMEC) and human umbilical vein endothelial cells in serum-free medium. Reasoning that VEGF might be modulating apoptotic signal transduction pathways, we examined mechanisms involved in the anti-apoptotic effect of VEGF on starvation- and ceramide-induced apoptosis in HDMEC. We observed that VEGF ameliorated the time-dependent increase in apoptosis, as demonstrated by morphologic observations, TUNEL assay, and DNA fragmentation. On the other hand, basic fibroblast growth factor only partially prevented apoptosis in serum-starved HDMEC; platelet-derived growth factor-BB was completely ineffective. VEGF activated the phosphorylation of extracellular signal regulated kinase (ERK)1 (p44 mitogen-activated protein kinase; MAPK) and ERK2 (p42 MAPK) in a time- and concentration-dependent manner. Both the VEGF-induced activation and its anti-apoptotic effect were prevented by the specific MAPK/ERK inhibitor PD98059. The presence of VEGF also inhibited the sustained activation of stress-activated protein kinase/c-jun-NH2-kinase (SAPK/JNK) caused by serum starvation and ceramide treatment. Activation of the MAPK pathway together with inhibition of SAPK/JNK activity by VEGF appears to be a key event in determining whether an endothelial cell survives or undergoes programmed cell death.  相似文献   

12.
Endothelial dysfunction is recognized as the initial detectable stage of cardiovascular disease, a serious complication of diabetes. In this study, we evaluated effects of myricetin on high glucose (HG)-elicited oxidative damage in human umbilical vein endothelial cells (HUVECs). The cells were pre-incubated with myricetin and then treated with HG to induce apoptosis. The effect of myricetin on viability was investigated by MTT assay. The levels of lipid peroxidation (LPO) were determined by thiobarbituric acid (TBA) method. The protein expression of Bax, Bcl-2 and caspase-3 was measured by western blot analysis. Moreover, the effect of myricetin on total antioxidant capacity (TAC) and total thiol molecules was also determined. Our results showed that myricetin was able to markedly restore the viability of endothelial cells under oxidative stress. Myricetin reduced HG-caused increase in LPO levels. Also, TAC and total thiol molecules were notably elevated by myricetin. Incubation with myricetin decreased the protein expression levels of Bax, whereas it increased the expression levels of the Bcl-2, compared with HG treatment alone. Furthermore, myricetin significantly decreased cleaved caspase-3 protein expression. It is concluded that myricetin may protect HUVECs from oxidative stress induced by HG via increasing cell TAC and reducing Bax/Bcl-2 protein ratio, and caspase-3 expression.  相似文献   

13.
In the present study, we investigated the effects of tetramethylpyrazine (TMP) on hydrogen peroxide (H2O2)-induced apoptosis in PC12 cells. The apoptosis in H2O2-induced PC12 cells was accompanied by a decrease in Bcl-2/Bax protein ratio, release of cytochrome c to cytosol and the activation of caspase-3. TMP not only suppressed the down-regulation of Bcl-2, up-regulation of Bax and the release of mitochondrial cytochrome c to cytosol, but also attenuated caspase-3 activation and eventually protected against H2O2-induced apoptosis. These results indicated that TMP blocked H2O2-induced apoptosis by the regulation of Bcl-2 family members, suppression of cytochrome c release, and caspase cascade activation in PC12 cells.  相似文献   

14.
Citral, 3,7-dimethyl-2,6-octadienal, is a key component of the essential oils extracted from several lemon-scented herbal plants. Besides its antifungal activity, the anticancer effect of citral was studied in recent years. In this study, we investigated the effect of citral on the acute promyelocytic leukemia cell line NB4. Citral treatment had an antiproliferative effect in NB4 cells via the induction of apoptosis assessed by morphology, proliferation assay, DNA electrophoresis, Annexin V-FITC/PI staining and caspase-3 activation. And citral induced apoptosis of NB4 cells in a dose- and time-dependent manner. In addition, citral treatment induced decreased mitochondrial membrane potential, indicating that citral induced apoptosis via the mitochondrial pathway. Bax up-regulation and Bcl-2 down-regulation on mRNA level and NF-κB down-regulation on protein level was found in this study, suggesting that Bcl-2, Bax and NF-κB may be involved in the mechanism of the apoptotic effect of citral on NB4 cells. These data suggest that citral has a potential therapeutic effect on leukemia.  相似文献   

15.
Angiotensin II stimulates NADPH oxidase activity in vascular cells. However, it is not fully understood whether angiotensin II, which plays an important role in heart failure, stimulates NADPH oxidase activation and expression in cardiac myocytes. Previous studies have shown that angiotensin II induces myocyte apoptosis, but whether the change is mediated via NADPH oxidase remains to be elucidated. In this study we proposed to determine whether angiotensin II stimulated NADPH oxidase activation and NADPH oxidase subunit p47-phox expression in H9C2 cardiac muscle cells. If so, we would determine whether the NADPH oxidase inhibitor apocynin prevented angiotensin II-induced apoptosis. The results showed that angiotensin II increased NADPH oxidase activity, p47-phox protein and mRNA expression, intracellular reactive oxygen species, and apoptosis in H9C2 cells. Angiotensin II elevated p38 mitogen-activated protein kinase (MAPK) activity, decreased Bcl-2 protein, and increased Bax protein and caspase-3 activity. Apocynin treatment inhibited angiotensin II-induced NADPH oxidase activation and increases in p47-phox expression, intracellular reactive oxygen species, and apoptosis. The effect of apocynin on apoptosis was associated with reduced p38 MAPK activity, increased Bcl-2 protein, and decreased Bax protein and caspase-3 activity. These results suggest that angiotensin II-induced apoptosis is mediated via NADPH oxidase activation probably through p38 MAPK activation, a decrease in Bcl-2 protein, and caspase activation.  相似文献   

16.
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) functions by activating two receptor-tyrosine kinases, Flt-1 (VEGF receptor (VEGFR)-1) and KDR (VEGFR-2), both of which are selectively expressed on primary vascular endothelium. KDR is responsible for VPF/VEGF-stimulated endothelial cell proliferation and migration, whereas Flt-1 down-modulates KDR-mediated endothelial cell proliferation. Our most recent works show that pertussis toxin-sensitive G proteins and Gbetagamma subunits are required for Flt-1-mediated down-regulation of human umbilical vein endothelial cell (HUVEC) proliferation and that Gq/11 proteins are required for KDR-mediated RhoA activation and HUVEC migration. In this study, we demonstrate that Gq/11 proteins are also required for VPF/VEGF-stimulated HUVEC proliferation. Our results further indicate that Gq/11 proteins specifically mediate KDR signaling such as intracellular Ca2+ mobilization rather than Flt-1-induced CDC42 activation and that a Gq/11 antisense oligonucleotide completely inhibits MAPK phosphorylation induced by KDR but has no effect on Flt-1-induced MAPK activation. More importantly, we demonstrate that Gq/11 proteins interact with KDR in vivo, and the interaction of Gq/11 proteins with KDR does not require KDR tyrosine phosphorylation. Surprisingly, the Gq/11 antisense oligonucleotide completely inhibits VPF/VEGF-stimulated KDR phosphorylation. Expression of a constitutively active mutant of G11 but not Gq can cause phosphorylation of KDR and MAPK. In addition, a Gbetagamma minigene, hbetaARK1(495), inhibits VPF/VEGF-stimulated HUVEC proliferation, MAPK phosphorylation, and intracellular Ca2+ mobilization but has no effect on KDR phosphorylation. Taken together, this study demonstrates that Gq/11 proteins mediate KDR tyrosine phosphorylation and KDR-mediated HUVEC proliferation through interaction with KDR.  相似文献   

17.
Momordin Ic is a natural triterpenoid saponin enriched in various Chinese and Japanese natural medicines such as the fruit of Kochia scoparia (L.) Schrad. So far, there is little scientific evidence for momordin Ic with regard to the anti-tumor activities. The aim of this work was to elucidate the anti-tumor effect of momordin Ic and the signal transduction pathways involved. We found that momordin Ic induced apoptosis in human hepatocellular carcinoma HepG2 cells, which were supported by DNA fragmentation, caspase-3 activation and PARP cleavage. Meanwhile, momordin Ic triggered reactive oxygen species (ROS) production together with collapse of mitochondrial membrane potential, cytochrome c release, down-regulation of Bcl-2 and up-regulation of Bax expression. The activation of p38 and JNK, inactivation of Erk1/2 and Akt were also demonstrated. Although ROS production rather than NO was stimulated, the expression of iNOS and HO-1 were altered after momordin Ic treatment for 4 h. Furthermore, the cytochrome c release, caspase-3 activation, Bax/Bcl-2 expression and PARP cleavage were promoted with LY294002 and U0126 intervention but were blocked by SB203580, SP600125, PI3K activator, NAC and 1,400 W pretreatment, demonstrating the mitochondrial disruption. Furthermore, momordin Ic combination with NAC influenced MAPK, PI3K/Akt and HO-1, iNOS pathways, MAPK and PI3K/Akt pathways also regulated the expression of HO-1 and iNOS. These results indicated that momordin Ic induced apoptosis through oxidative stress-regulated mitochondrial dysfunction involving the MAPK and PI3K-mediated iNOS and HO-1 pathways. Thus, momordin Ic might represent a potential source of anticancer candidate.  相似文献   

18.
Pulmonary microvascular endothelial cells (PMECs) injury including apoptosis plays an important role in the pathogenesis of acute lung injury during sepsis. Our recent study has demonstrated that calpain activation contributes to apoptosis in PMECs under septic conditions. This study investigated how calpain activation mediated apoptosis and whether heat stress regulated calpain activation in lipopolysaccharides (LPS)-stimulated PMECs. In cultured mouse primary PMECs, incubation with LPS (1 μg/ml, 24 h) increased active caspase-3 fragments and DNA fragmentation, indicative of apoptosis. These effects of LPS were abrogated by pre-treatment with heat stress (43 °C for 2 h). LPS also induced calpain activation and increased phosphorylation of p38 MAPK. Inhibition of calpain and p38 MAPK prevented apoptosis induced by LPS. Furthermore, inhibition of calpain blocked p38 MAPK phosphorylation in LPS-stimulated PMECs. Notably, heat stress decreased the protein levels of calpain-1/2 and calpain activities, and blocked p38 MAPK phosphorylation in response to LPS. Additionally, forced up-regulation of calpain-1 or calpain-2 sufficiently induced p38 MAPK phosphorylation and apoptosis in PMECs, both of which were inhibited by heat stress. In conclusion, heat stress prevents LPS-induced apoptosis in PMECs. This effect of heat stress is associated with down-regulation of calpain expression and activation, and subsequent blockage of p38 MAPK activation in response to LPS. Thus, blocking calpain/p38 MAPK pathway may be a novel mechanism underlying heat stress-mediated inhibition of apoptosis in LPS-stimulated endothelial cells.  相似文献   

19.
20.
We used a rat pheochromocytoma (PC12) cell line to study the effects of salidroside on hydrogen peroxide (H(2)O(2))-induced apoptosis. In PC12 cells, H(2)O(2)-induced apoptosis was accompanied by the down-regulation of Bcl-2, the up-regulation of Bax, the release of mitochondrial cytochrome c to cytosol, and the activation of caspase-3, -8 and -9. However, salidroside suppressed the down-regulation of Bcl-2, the up-regulation of Bax and the release of mitochondrial cytochrome c to cytosol. Moreover, salidroside attenuated caspase-3, -8 and -9 activation, and eventually protected cells against H(2)O(2)-induced apoptosis. Taken together, these results suggest that treatment of PC12 cells with salidroside can block H(2)O(2)-induced apoptosis by regulating Bcl-2 family members and by suppressing cytochrome c release and caspase cascade activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号