首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Monoclonal antibodies against Escherichia coli ribosomal proteins L9 and L10 were obtained and their specificity confirmed by Western blot analysis of total ribosomal protein. This was particularly important for the L9 antibody, since the immunizing antigen mixture contained predominantly L11. Each antibody recognized both 70 S ribosomes and 50 S subunits. Affinity-purified antibodies were tested for their effect on in vitro assays of ribosome function. Anti-L10 and anti-L9 inhibited poly(U)-directed polyphenylalanine synthesis almost completely. The antibodies had no effect on subunit association or dissociation and neither antibody inhibited peptidyltransferase activity. Both antibodies inhibited the binding of the ternary complex that consisted of aminoacyl-tRNA, guanylyl beta, gamma-methylenediphosphonate, and elongation factor Tu, and the binding of elongation factor G to the ribosome. The intact antibodies were more potent inhibitors than the Fab fragments. In contrast to the previously established location of L10 at the base of the L7/L12 stalk near the factor-binding site, the site of anti-L9 binding to 50 S subunits was shown by immune electron microscopy to be on the L1 lateral protuberance opposite the L7/L12 stalk as viewed in the quasisymmetric projection. The inhibition of factor binding by both antibodies, although consistent with established properties of L10 in the ribosome, suggests a long range effect on subunit structure that is triggered by the binding of anti-L9.  相似文献   

2.
A monoclonal antibody specific for Escherichia coli ribosomal protein L16 was prepared to test its effects on ribosome function and to locate L16 by immunoelectron microscopy. The antibody recognized L16 in 50 S subunits, but not in 70 S ribosomes. It inhibited association of ribosomal subunits at 10 mM Mg2+, but not at 15 mM Mg2+. Poly(U)-directed polyphenylalanine synthesis and peptidyltransferase activities were completely inhibited when the L16 antibody was bound to 50 S subunits at a molar ratio of 1. There was no inhibitory effect on the binding of elongation factors or on the associated GTPase activities. Fab fragments of the antibody gave the same result as the intact antibody. Chemical modification of the single histidine (His13) by diethyl pyrocarbonate destroyed antibody binding. Electron microscopy of negatively stained antibody subunit complexes showed antibody binding beside the central protuberance of the 50 S particle on the side away from the L7/L12 stalk and on or near the interface between the two subunits. This site of antibody binding is fully consistent with its biochemical effects that indicate that protein L16 is essential for the peptidyltransferase activity activity of protein biosynthesis and is at or near the subunit interface.  相似文献   

3.
A monoclonal antibody specific for Escherichia coli ribosomal protein L5 was isolated from a cell line obtained from Dr. David Schlessinger. Its unique specificity for L5 was confirmed by one- and two-dimensional electrophoresis and immunoblotting. The antibody recognized L5 both in 50 S subunits and 70 S ribosomes. Both antibody and Fab fragments had similar effects on the ribosome functions tested. Antibody bound to 50 S subunits inhibited their reassociation with 30 S subunits at 10 mM Mg2+ but not 15 mM, the concentration present for in vitro protein synthesis. The 70 S couples were not dissociated by the antibody. The antibody caused inhibition of polyphenylalanine synthesis at molar ratios to 50 S or 70 S particles of 4:1. The major inhibitory effect was on the peptidyltransferase reaction. There was no effect on either elongation factor binding or the associated GTPase activities. The site of antibody binding to 50 S was determined by electron microscopy. Antibody was seen to bind beside the central protuberance or head of the particle, on the side away from the L7/L12 stalk, and on or near the region at which the 50 S subunit interacts with the 30 S subunit. This site of antibody binding is fully consistent with its biochemical effects.  相似文献   

4.
The effects of antibodies specific for the Escherichia coli 30 S and 50 S ribosomal proteins have been determined for in vitro peptide chain termination and two partial reactions, the codon-directed binding of E. coli release factor to the ribosome and peptidyl-tRNA hydrolysis with RF2. Antibodies to ribosomal proteins L7 and L12 inhibit the initial binding of RF to the ribosome, and as a result, the subsequent peptidyl-tRNA hydrolysis. The kinetics of ribosomal inactivation for in vitro termination by anti-L7/L12 indicate that Fab fragments bind to three ribosome sites, and suggest that each of three copies of L7/L12 is involved in the binding of RF to the ribosome. When 70 S ribosome substrates are pretreated with anti-L11 and anti-L16 RF-dependent peptidyl-tRNA, hydrolysis is partially inhibited but the interaction of RF with the ribosome is not affected. The inactivation of in vitro termination by a mixture of anti-L11 and anti-L16 is not co-operative. Pretreatment of the 30 S ribosomal subunit (but not 70 S ribosomal substrate) with antibodies to the 30 S proteins, S9 and S11, results in strong inhibition of codon-directed hydrolysis of peptidyl-tRNA. While these antibodies inhibit ribosome subunit association, a requirement for peptide chain termination, and thereby may inhibit the in vitro termination reactions indirectly, the codon-directed binding of RF is markedly more affected than peptidyl-tRNA hydrolysis by anti-S9 and anti-S11. Antibody to S2 and anti-S3 exhibit a similar but less marked differential effect on the partial reactions of in vitro termination under the same conditions. When dissociated ribosomes are pretreated with anti-L11, in vitro termination is completely inhibited and both codon-directed binding of RF and peptidyl-tRNA hydrolysis are affected. L11 may, therefore, be at or near the interface between the ribosome subunits and like S9 and S11 not completely accessible to antibody in 70 S ribosomes. Pretreatment of dissociated ribosomes with antibodies to a number of other ribosomal proteins (L2, L4, L6, L14, L15, L17, L18, L20, L23, L26, L27) results in partial inhibition of all termination reactions although these antibodies have no effect on termination when incubated with 70 S ribosome substrates. The antibodies probably affect in vitro termination indirectly as a result of either preventing correct ribosome subunit association, or preventing correct positioning of the fMet-tRNA at the ribosome P site.  相似文献   

5.
The E. coli ribosomal proteins L12 and its N-acetylated form L7 were cleaved into an N-terminal and C-terminal fragment of roughly comparable size. The selective cleavage at the lone arginine residue was accomplished by trypsin treatment of the citraconylated proteins, followed by removal of the citraconyl moieties. These fragments, both separately and in combination, were incapable of reconstituting elongation factor G (EF-G) dependent GTPase of CsCl ribosomal cores supplemented with L10. However, incubation of cores containing L10 with the N-terminal fragment prevented the reconstitution of GTPase activity by intact L7/L12. No inhibition was observed when CsCl cores lacking L10 were incubated with the N-terminal fragment followed by addition of a preincubated mixture of L7/L12 and L10. The results indicate that the N-terminal part of L7/L12 is responsible for its ability to bind to 50S ribosomes and that L7/L12 together with L10 form a protein cluster on the ribosome.  相似文献   

6.
A method to localize individual proteins on the surface of the ribosomal subunit was developed. The method uses specific immunoglobulins G against proteins under examination. The antibodies are combined with the ribosomes to give rise to ribosome dimers linked by the bivalent antibody. The Fab arm of the Y shaped antibody points to the position of the protein the antibody was prepared against.Using this method, two ribosomal proteins (L1, L19)3were located on two defined shapes of the 50 S ribosomal subunit.  相似文献   

7.
1. Polyclonal antibodies (pAb 1-73 and pAb 26-120) have been raised against both an N-terminal fragment of Escherichia coli ribosomal protein L7/L12 (amino acids 1-73), and a fragment lacking part of the N-terminal domain (amino acids 26-120). 2. Only pAb 26-120 inhibited release-factor-dependent in vitro termination functions on the ribosome. This antibody binds over the length of the stalk of the large subunit of the ribosome as determined by immune electron microscopy, thereby not distinguishing between the C-terminal domains of the two L7/L12 dimers, those in the stalk or those in the body of the subunit. 3. A monoclonal antibody against an epitope of the C-terminal two thirds of the protein (mAb 74-120), which binds both to the distal tip of the stalk as well as to a region at its base, reflecting the positions of the two dimers is strongly inhibitory of release factor function. 4. A monoclonal antibody against an epitope of the N-terminal fragment of L7/L12 (mAb 1-73), previously shown to remove the dimer of L7/L12 in the 50S subunit stalk but still bind to the body of the particle, partially inhibited release-factor-mediated events. 5. The mAb 74-120 inhibited in vitro termination with a similar profile when the stalk dimer of L7/L12 was removed with mAb 1-73, indicating that the body L7/L12 dimer, and in particular its C-terminal domains, are important for release factor/ribosome interaction. 6. The two release factors have subtle differences in their binding domains with respect to L7/L12.  相似文献   

8.
Four molecules of ribosomal protein L7/L12 are found as two dimers on the Escherichia coli 50 S ribosomal subunit. Immune electron microscopy using monoclonal antibodies directed against two epitopes of protein L7/L12 has allowed placement of elements of each dimer. One monoclonal antibody, directed against a determinant in the COOH-terminal domain, allows localization of two identical determinants at or near the end of the subunit stalk. The same antibody was used to place two additional determinants at the periphery of stalkless subunits, in an area from which a stalk might be expected to project. A second antibody, directed against an epitope in the amino-terminal portion of L7/L12, caused loss of stalks from the 50 S subunits. The micrographs showed symmetrical oligometric complexes of the dissociated dimeric protein with bivalent antibody. Antibodies were also seen to bind to the body of stalkless subunits, in a region near the COOH-terminal sites. The results are explained by a model in which one dimer of protein L7/L12 exists in a folded conformation on the subunit body and the second dimer occurs in an extended conformation in the subunit stalk.  相似文献   

9.
Griaznova O  Traut RR 《Biochemistry》2000,39(14):4075-4081
Escherichia coli ribosomal protein L10 binds the two L7/L12 dimers and thereby anchors them to the large ribosomal subunit. C-Terminal deletion variants (Delta10, Delta20, and Delta33 amino acids) of ribosomal protein L10 were constructed in order to define the binding sites for the two L7/L12 dimers and then to make and test ribosomal particles that contain only one of the two dimers. None of the deletions interfered with binding of L10 variants to ribosomal core particles. Deletion of 20 or 33 amino acids led to the inability of the proteins to bind both dimers of protein L7/L12. The L10 variant with deletion of 10 amino acids bound one L7/L12 dimer in solution and when reconstituted into ribosomes promoted the binding of only one L7/L12 dimer to the ribosome. The ribosomes that contained a single L7/L12 dimer were homogeneous by gel electrophoresis where they had a mobility between wild-type 50S subunits and cores completely lacking L7/L12. The single-dimer ribosomal particles supported elongation factor G dependent GTP hydrolysis and protein synthesis in vitro with the same activity as that of two-dimer particles. The results suggest that amino acids 145-154 in protein L10 determine the binding site ("internal-site") for one L7/L12 dimer (the one reported here), and residues 155-164 ("C-terminal-site") are involved in the interaction with the second L7/L12 dimer. Homogeneous ribosomal particles containing a single L7/L12 dimer in each of the distinct sites present an ideal system for studying the location, conformation, dynamics, and function of each of the dimers individually.  相似文献   

10.
We have used modification of specific amino acid residues in the E. coli ribosomal protein L10 as a tool to study its interactions with another ribosomal protein, L7/L12, as well as with ribosomal core particles and with 23S RNA. The ribosome and RNA binding capability of L10 was found to be inhibited by modification of one more of its arginine residues. This treatment does not affect the ability of L10 to bind four molecules of L7/L12 in a L7/L12-L10 complex. Our results support the view that L10's role in promoting the L7/L12-ribosome association is due primarily to its ability to bind to both 23S RNA and L7/L12 simultaneously.  相似文献   

11.
Antibodies were raised against Escherichia coli ribosomal protein S1 and its NH2- and COOH-terminal fragments, and their specificity was demonstrated by a variety of immunological techniques. These antibodies were then used to investigate the location of protein S1 and its NH2- and COOH-terminal domains on the surface of the 30 S ribosomal subunit by immunoelectron microscopy. In order to prevent dissociation of the protein during the experiments, S1 was cross-linked to 30 S subunits with dithiobis(succinimidyl-propionate); cross-linking yield was 100%. Epitopes of the NH2-terminal domain of S1 were localized at the large lobe of the 30 S ribosomal subunit, close to the one-third/two-thirds partition on the side which in the 70 S ribosome faces the cytoplasm. Experiments with monovalent Fab fragments specific for the COOH-terminal part of S1 provide evidence that the COOH-terminal domain forms an elongated structure extending at least 10 nm from the large lobe of the small subunit into the cytoplasmic space.  相似文献   

12.
Two-dimensional electrophoresis of total protein from 50 S ribosomal subunits of the archaebacterium Sulfolobus solfataricus demonstrated a complex between two proteins that was stable in 6 M urea, but dissociable in detergent or below pH 5.5. The proteins, numbered L1 and L10 according to their electrophoretic mobilities, corresponded to Escherichia coli ribosomal proteins L10 and L7/L12, respectively. The members of the complex were therefore designated Sso L10e and Sso L12e. Sso L12e had other properties in common with E. coli L7/L12: low molecular weight, relative acidity, selective release from the ribosome by high salt/ethanol, and dimeric structure. The Sso L12e.Sso L10e complex was isolated by gel filtration of total 50 S proteins in 4 M urea. The stoichiometry of the components was approximately four copies of Sso L12e to one copy of Sso L10e. The occurrence in an archaebacterium of a complex of acidic ribosomal proteins similar to E. coli (L7/L12)4.L10 and eukaryotic (P1)2/(P2)/.P0 strongly supports the concept that this element of quaternary structure is a major conserved feature of the ribosome and reaffirms its importance in the translocation step of protein synthesis.  相似文献   

13.
Two monoclonal antibodies against different epitopes in Escherichia coli ribosomal protein L7/L12 were prepared and characterized as reported previously (Sommer, A., Etchison, J.R., Gavino, G., Zecherle, N., Casiano, C., and Traud, R.R. (1985) J. Biol. Chem. 260, 6522-6527). Both antibodies strongly inhibited polyuridylic acid-directed polyphenylalanine synthesis, ribosome-dependent GTPase activity, and the binding of elongation factor G to the ribosome at mole ratios over ribosomes of 4:1 or less. One epitope was shown to be within residues 1-73 (Ab 1-73) and the other within 74-120 (Ab 74-120). Incubation of 50 S ribosomal subunits or 70 S ribosomes with Ab 1-73, but not with Ab 74-120, leads to a partial loss of L7/L12 from the particle with no loss of any other protein. The experiment was repeated with ribosomes reconstituted with pure radioactive L7/L12 of determined specific activity in order to quantify the L7/L12 in the antibody-treated particle. The protein-deficient core particles isolated by sucrose gradient centrifugation after incubation with Ab 1-73 were found to contain, on average, two copies of L7/L12 and one Ab 1-73. The constancy of this stoichiometry in many experiments and the demonstration of Ab 1-73 on all particles indicate the presence of a homogeneous population of ribosomes, each with only one of the two L7/L12 dimers originally present. The results show a difference in the interactions of the two dimers with the ribosome and present a means of preparing ribosomes with one dimer in a specific binding site. The accompanying paper (Olson, H.M., Sommer, A., Tewari, D. S., Traut, R.R., and Glitz, D.G. (1986) J. Biol. Chem. 261, 6924-6932) shows by immune electron microscopy the location of the two antibody-binding sites and the effect of Ab 1-73 on structure.  相似文献   

14.
Ribosomal protein L7/L12 from Escherichia coli was modified specifically at Lys-51 with 4-(6-formyl-3-azido-phenoxy)butyrimidate. Reconstitution of ribosomal cores, lacking L7/L12, with imidate-modified L7/L12 resulted in back formation of 50S particles which were fully active in elongation-factor-dependent processes. By use of the formylazidophenoxy moiety as hapten, the position of Lys-51 of L7/L12 on the 50S ribosome was determined by immune electron microscopy. The results show that an L7/L12 dimer is present in the L7/L12 stalk in such a way that Lys-51 is located at the far cytoplasmic end of the stalk. The experimental data are discussed in relation to a proposed model for the L7/L12 dimer.  相似文献   

15.
Rabbits were immunised againstEscherichia coli ribosomes and the partially purified immunoglobulin G fraction had maximum ability to precipitate the ribosomes as well as the extracted ribosomal proteins. By digestion of immuno-globulin G with papain, monovalent Fab fragments were produced. The 70 S ribosome and its subunits (50 S and 30 S) were separately treated with Fab and then tested in the kinetic assay of degradation of ribosomes by ribonuclease I at various Mg2+ concentrations. Treated ribosomes and their subunits were degraded at faster rates than the nontreated ones; the rates in both the control and the treated cases were dependent on the concentration of Mg2+. These results indicate the unfolding of the structure of the ribosome on treatment with antibody fragments, which may be due to the weakening of the interaction between rRNAs and ribosomal proteins.  相似文献   

16.
Large ribosomal subunits from Sulfolobus solfataricus were cross-linked with 2-iminothiolane in order to investigate the arrangement of proteins in the region containing the multicopy acidic protein Sso L12e, the protein homologous to Escherichia coli L7/L12. Proteins from cross-linked 50 S subunits were extracted and fractionated by chromatography on CM-cellulose. Fractions containing Sso L12e were analyzed by "diagonal" (two-dimensional reducing/nonreducing) dodecyl sulfate polyacrylamide gel electrophoresis. Sso L12e appeared in cross-linked homodimers and also in cross-linked complexes that contained Sso L10e, the protein equivalent to E. coli L10. In addition, Sso L12e was found in cross-links to L4, L6a, L26, and L29. N-terminal sequences obtained for L6a and L26 showed them to have significant homologies to E. coli proteins L11 and L23, respectively. The results indicate the presence in this archaebacterial ribosome of Sso L12e dimers and their location near Sso L10e and Sso L11e. The Sso L12e-L29 (Sso L23e) cross-link suggests proximity between components of the factor-binding and peptidyltransferase domains, since E. coli L23 is a protein affinity-labeled by puromycin. The (Sso L12e)4-Sso L10 pentameric complex, identified previously from studies in solution, appears to represent correctly the arrangement of these proteins in the ribosome. The occurrence in the archaebacterial ribosome of this unique structural element, similar to those shown previously in eubacteria and eukaryotes, reinforces the concept that the protein quaternary structure of the ribosomal factor-binding domain is highly conserved.  相似文献   

17.
Two monoclonal antibodies raised against intact Escherichia coli ribosomal protein L2 were isolated, affinity-purified, and characterized. One of the antibodies (Ab 5-186) recognizes an epitope within residues 5-186, and the other (Ab 187-272) recognizes an epitope within residues 182-272. Both antibodies strongly inhibit in vitro polyphenylalanine synthesis when they are first allowed to bind to 50 S subunits prior addition of 30 S subunits. However, only Ab 187-272 is inhibitory when added to preformed 70 S ribosomes. Ab 5-186 binds to 50 S subunits but not to 70 S ribosomes. Ab 187-272 does not cause dissociation of 70 S ribosomes under the ionic conditions of the assay for polyphenylalanine synthesis (15 mM magnesium), although at 10 mM magnesium it does cause dissociation. Both antibodies inhibit the reassociation of 50 S with 30 S subunits. Both antibodies strongly inhibit peptidyltransferase activity. The two antibodies differ in their effects on interactions with elongation factors Tu (EF-Tu) and G (EF-G). Neither antibody significantly inhibits EF-G-dependent GTPase activity, nor the binding of EF-G when the antibodies are incubated with 50 S subunits; however, Ab 187-272 causes a decrease in the binding of EF-Tu X aminoacyl-tRNA X GTP ternary complex and of EF-Tu-dependent GTPase when it is incubated with 70 S ribosomes. The Fab fragments of both antibodies had effects similar to the intact antibodies. The results show that monoclonal antibodies can be used to discriminate different regions of L2 and that EF-Tu and EF-G do not have identical ribosomal binding sites.  相似文献   

18.
During tRNA translocation on the ribosome, an arc-like connection (ALC) is formed between the G' domain of elongation factor G (EF-G) and the L7/L12-stalk base of the large ribosomal subunit in the GDP state. To delineate the boundary of EF-G within the ALC, we tagged an amino acid residue near the tip of the G' domain of EF-G with undecagold, which was then visualized with three-dimensional cryo-electron microscopy (cryo-EM). Two distinct positions for the undecagold, observed in the GTP-state and GDP-state cryo-EM maps of the ribosome bound EF-G, allowed us to determine the movement of the labeled amino acid. Molecular analyses of the cryo-EM maps show: (1) that three structural components, the N-terminal domain of ribosomal protein L11, the C-terminal domain of ribosomal protein L7/L12, and the G' domain of EF-G, participate in formation of the ALC; and (2) that both EF-G and the ribosomal protein L7/L12 undergo large conformational changes to form the ALC.  相似文献   

19.
The Escherichia coli ribosomal protein L7/L12 is central to the translocation step of translation, and it is known to be flexible under some conditions. The assignment of electron density to L7/L12 was not possible in the recent 2.4 A resolution x-ray crystallographic structure (Ban, N., Nissen, P., Hansen, J., Moore, P. B., and Steitz, T. A. (2000) Science 289, 905-920). We have localized the two dimers of L7/L12 within the structure of the 70 S ribosome using two reconstitution approaches together with cryo-electron microscopy and single particle reconstruction. First, the structures were determined for ribosomal cores from which protein L7/L12 had been removed by treatment with NH(4)Cl and ethanol and for reconstituted ribosomes in which purified L7/L12 had been restored to core particles. Difference mapping revealed that the reconstituted ribosomes had additional density within the L7/L12 shoulder next to protein L11. Second, ribosomes were reconstituted using an L7/L12 variant in which a single cysteine at position 89 in the C-terminal domain was modified with Nanogold (Nanoprobes, Inc.), a 14 A gold derivative. The reconstruction from cryo-electron microscopy images and difference mapping placed the gold at four interfacial positions. The finding of multiple sites for the C-terminal domain of L7/L12 suggests that the conformation of this protein may change during the steps of elongation and translocation.  相似文献   

20.
Protein L7/L12 of the bacterial ribosome plays an important role in activating the GTP hydrolytic activity of elongation factor G (EF-G), which promotes ribosomal translocation during protein synthesis. Previously, we cross-linked L7/L12 from two residues (209 and 231) flanking alpha-helix AG' in the G' subdomain of Escherichia coli EF-G. Here we report kinetic studies on the functional effects of mutating three neighboring glutamic acid residues (224, 228, and 231) to lysine, either singly or in combination. Two single mutations (E224K and E228K), both within helix AG', caused large defects in GTP hydrolysis and smaller defects in ribosomal translocation. Removal of L7/L12 from the ribosome strongly reduced the activities of wild type EF-G but had no effect on the activities of the E224K and E228K mutants. Together, these results provide evidence for functionally important interactions between helix AG' of EF-G and L7/L12 of the ribosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号