首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CitS of Klebsiella pneumoniae is a secondary transporter that transports citrate in symport with 2 Na(+) ions. Reaction of Cys-398 and Cys-414, which are located in a cytoplasmic loop of the protein that is believed to be involved in catalysis, with thiol reagents resulted in significant inhibition of uptake activity. The reactivity of the two residues was determined in single Cys mutants in different catalytic states of the transporter and from both sides of the membrane. The single Cys mutants were shown to have the same transport stoichiometry as wild type CitS, but the C398S mutation was responsible for a 10-fold loss of affinity for Na(+). Both cysteine residues were accessible from the periplasmic as well as from the cytoplasmic side of the membrane by the membrane-impermeable thiol reagent [2-(trimethylammonium)ethyl] methanethiosulfonate bromide (MTSET) suggesting that the residues are part of the translocation site. Binding of citrate to the outward facing binding site of the transporter resulted in partial protection against inactivation by N-ethylmaleimide, whereas binding to the inward facing binding site resulted in essentially complete protection. A 10-fold higher concentration of citrate was required at the cytoplasmic rather than at the periplasmic side of the membrane to promote protection. Only marginal effects of citrate binding were seen on reactivity with MTSET. Binding of Na(+) at the periplasmic side of the transporter protected both Cys-398 and Cys-414 against reaction with the thiol reagents, whereas binding at the cytoplasmic side was less effective and discriminated between Cys-398 and Cys-414. A model is presented in which part of the cytoplasmic loop containing Cys-398 and Cys-414 folds back into the translocation pore as a pore-loop structure. The loop protrudes into the pore beyond the citrate-binding site that is situated at the membrane-cytoplasm interface.  相似文献   

2.
In order to obtain information about the actin-induced conformational change around the subfragment-1/subfragment-2 link region of myosin, measurements of the fluorescence quenching by acrylamide were made on cardiac myosin and its heavy meromyosin, in which the reactive lysyl residue located in the link region was labeled with an extrinsic fluorophore, the N-methyl-2-anilino-6-naphthalenesulfonyl group. The results with the model compound indicated the involvement of a collisional quenching mechanism for the fluorophore. The quenching rate constant calculated from measured quenching constants using available lifetime data was extremely low for the labeled myosin (0.59 X 10(8) M-1 . S-1), suggesting that the fluorophore bound to myosin is surrounded by segments of proteins. This value was independent of the solvent viscosity, indicating that the quenching reaction is limited by fluctuations in the protein matrix, which produce the inward movement of acrylamide. Chymotryptic digestion of the labeled myosin, which yielded the light chain-2-deficient heavy meromyosin, made the bound fluorophore slightly exposed. Addition of F-actin resulted in about 40% reduction in the quenching rate constants for the labeled myosin and heavy meromyosin. The actin effect was reversed by adding ATP. These results suggest that the binding of actin to myosin makes the protein matrix around the subfragment-1/subfragment-2 link region less mobile.  相似文献   

3.
The Na+-dependent citrate carrier of Klebsiella pneumoniae (CitS) is a member of the 2-hydroxycarboxylate transporter family. Within the highly conserved helix Vb region, Asn-185 of CitS was mutated to Val and Glu-194 was mutated to Gln. The wild-type and mutant proteins were synthesised in Escherichia coli DH5alpha or C43(DE3) as biotinylated or His-tagged CitS-fusions, respectively. The synthesis and purification procedure yielded 6.5 mg pure CitS per litre culture. The fusion proteins were characterised with E. coli cell suspensions or after reconstitution of the purified enzymes into proteoliposomes. The E194Q mutation had almost no effect on the kinetics of Na+ or citrate transport. In contrast, aberrant citrate transport kinetics were found for the N185V mutant. The apparent K(m) value for the citrate species H-citrate(2-) was increased about nine-fold, whereas the apparent Vmax value and the effect of Na+ on the transport kinetics were comparable to the wild-type. Asn-185 of CitS appears therefore to participate in the binding of H-citrate(2-).  相似文献   

4.
Sobczak I  Lolkema JS 《Biochemistry》2003,42(32):9789-9796
The citrate transporter CitS of Klebsiella pneumoniae is a secondary transporter that transports citrate in symport with two sodium ions and one proton. Treatment of CitS with the alkylating agent N-ethylmaleimide resulted in a complete loss of transport activity. Treatment of mutant proteins in which the five endogenous cysteine residues were mutated into serines in different combinations revealed that two cysteine residues located in the C-terminal cytoplasmic loop, Cys-398 and Cys-414, were responsible for the inactivation. Labeling with the membrane impermeable methanethiosulfonate derivatives MTSET and MTSES in right-side-out membrane vesicles showed that the cytoplasmic loop was accessible from the periplasmic side of the membrane. The membrane impermeable but more bulky maleimide AmdiS did not inactivate the transporter in right-side-out membrane vesicles. Inactivation by N-ethylmaleimide, MTSES, and MTSET was prevented by the presence of the co-ion Na(+). Protection was obtained upon binding 2 Na(+), which equals the transport stoichiometry. In the absence of Na(+), the substrate citrate had no effect on the inactivation by permeable or impermeable thiol reagents. In contrast, when subsaturating concentrations of Na(+) were present, citrate significantly reduced inactivation suggesting ordered binding of the substrate and co-ion; citrate is bound after Na(+). In the presence of the proton motive force, the reactivity of the Cys residues was increased significantly for the membrane permeable N-ethylmaleimide, while no difference was observed for the membrane impermeable thiol reagents. The results are discussed in the context of a model for the opening and closing of the translocation pore during turnover of the transporter.  相似文献   

5.
We previously reported the construction of a family of reagentless fluorescent biosensor proteins by the structure-based design of conjugation sites for a single, environmentally sensitive small molecule dye, thus providing a mechanism for the transduction of ligand-induced conformational changes into a macroscopic fluorescence observable. Here we investigate the microscopic mechanisms that may be responsible for the macroscopic fluorescent changes in such Fluorescent Allosteric Signal Transduction (FAST) proteins. As case studies, we selected three individual cysteine mutations (F92C, D95C, and S233C) of Escherichia coli maltose binding protein (MBP) covalently labeled with a single small molecule fluorescent probe, N-((2-iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole (NBD), each giving rise to a robust FAST protein with a distinct maltose-dependent fluorescence response. The fluorescence emission intensity, anisotropy, lifetime, and iodide-dependent fluorescence quenching were determined for each conjugate in the presence and absence of maltose. Structure-derived solvent accessible surface areas of the three FAST proteins are consistent with experimentally observed quenching data. The D95C protein exhibits the largest fluorescence change upon maltose binding. This mutant was selected for further characterization, and residues surrounding the fluorophore coupling site were mutagenized. Analysis of the resulting mutant FAST proteins suggests that specific hydrogen-bonding interactions between the fluorophore molecule and two tyrosine side-chains, Tyr171 and Tyr176, in the open state but not the closed, are responsible for the dramatic fluorescence response of this construct. Taken together these results provide insights that can be used in future design cycles to construct fluorescent biosensors that optimize signaling by engineering specific hydrogen bonds between a fluorophore and protein.  相似文献   

6.
The technique of fluorescence quenching by the non-ionic quenchers acrylamide and nicotinamide has been used to probe the accessibility of the environmentally sensitive N-(bromoacetyl)-N'-(1-sulpho-5-naphthyl) ethylenediamine (1,5-Br-AEDANS) fluorophore attached to either Cys-177 of the A1-light chain or the SH1 thiol (Cys-707) of the myosin subfragment (S1) heavy chain. Neither quencher caused any detrimental effects to the ATPase activities of S1 under the conditions of the experiments. It was found that the fluorophore on the isolated light chain was highly exposed to solvent and although this exposure was reduced on hybridization into S1(A1-AEDANS), the probe was still accessible to solvent. This exposure was unaltered by formation of binary complexes with either Mg.ATP or actin or by the formation of a weakly associated acto-S1 complex (in which the Cys-697 and Cys-707 residues of S1 were crosslinked with p-phenylenedimaleimide). The lack of corresponding change in lambda max of emission and quantum yield supported the quenching date and indicated that actin neither binds directly to this region nor induces any significant conformational changes in this locality despite the observation that the A1-Cys-707 moves some 3 nm closer to a point on actin in the weak-binding state (Trayer, H.R. and Trayer, I.P. (1988) Biochemistry, 27, 5718-5727). Parallel experiments with the fluorophore attached to the Cys-707 of the S1 indicated that this region was less accessible to solvent than the light chain thiol despite its ease of labelling. This exposure was not significantly altered by binary complex formation with actin and Mg.ATP, although spectral changes in the absence of quencher support the notion that some conformational change is occurring in this region.  相似文献   

7.
The quenching efficiency of iodide as a penetrating fluorescence quencher for a membrane-associated fluorophore was utilized to measure the molecular packing of lipid bilayers. The KI quenching efficiency of tryptophan-fluorescence from melittin incorporated in DMPC bilayer vesicles peaks at the phase transition temperature (24 degrees C) of DMPC, whereas acrylamide quenching efficiency does not depend on temperature. The ability of iodide to penetrate the hydrocarbon region of the bilayer was examined by measuring the fluorescence quenching of the pyrene-phosphatidylcholine incorporated into DMPC vesicles (pyrene was attached to the 10th carbon of the sn-2 chain). The quenching efficiency of pyrene by iodide again shows a maximum at the lipid phase transition. We conclude that iodide penetrates the membrane hydrocarbon region at phase transition through an increased number of bilayer defects. The magnitude of change in quenching efficiency of iodide during lipid phase transition provides a sensitive technique to probe the lipid organization in membranes.  相似文献   

8.
A fluorophore/quencher pair capable of detecting conformational changes of DNA-protein complexes is described. The system employs a fluorescent nucleoside analog 1,3-diaza-2-oxophenothiazine (tC) within duplex DNA and a non-fluorescent quencher (TEMPO) attached to an engineered cysteine residue of the protein. The straightforward labeling methodology allows for the placement of the fluorophore and quencher moieties at specific positions suited to studying the conformational change of interest. To illustrate the utility of the tC-TEMPO pair, we have monitored nucleotide-induced conformational changes of the Klenow fragment (KF) polymerase bound to duplex DNA. In this system, tC was incorporated in the primer strand of the duplex, adjacent to the 3′ end, while TEMPO was positioned at the end of the O-helix within the fingers domain of KF. Using steady-state fluorescence spectroscopy, we measured the quenching efficiency in a binary complex of tC-modified DNA and TEMPO-labeled KF and in ternary complexes containing cognate or non-cognate dNTP substrates. The quenching efficiency is significantly enhanced in the presence of a cognate dNTP, indicating that the O-helix has moved closer towards the DNA. In contrast, no significant tC quenching is observed in the presence of a non-cognate dNTP, indicating that the O-helix remains in a position that is beyond the distance reporting range of the tC-TEMPO pair. These results demonstrate that a cognate dNTP substrate induces a large conformational change of the O-helix, which can be sensitively detected using the tC-TEMPO pair. This fluorophore/quencher pair may be useful to study conformational changes associated with other DNA-enzyme complexes.  相似文献   

9.
Sobczak I  Lolkema JS 《Biochemistry》2005,44(14):5461-5470
The sodium ion-dependent citrate transporter CitS of Klebsiella pneumoniae is a member of the 2-hydroxycarboxylate transporter (2HCT) family whose members transport divalent citrate in symport with two sodium ions. Profiles of the hydrophobic moment suggested the presence of an amphipathic helical structure in the cytoplasmic loop between transmembrane segments (TMSs) VIII and IX (the AH loop) in all members of the family. Cysteine-scanning mutagenesis was used to study the secondary structure of the AH loop. We have mutated 20 successive residues into cysteine residues, characterized each of the mutants for its transport activity, and determined the accessibility of the residues. Three of the mutants, G324C, F331C, and F332C, had very low citrate transport activity, and two others, I321C and S333C, exhibited significantly decreased activity after treatment of right-side-out membranes with membrane permeable thiol reagent N-ethylmaleimide (NEM), but not with membrane impermeable 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid (AmdiS) and [2-(trimethylammonium)ethyl]methanethiosulfonate (MTSET). No protection against NEM was observed with citrate or sodium ions. Labeling of the cysteine residues in the 20 mutants with the fluorescent probe fluorescein 5-maleimide, in membrane vesicles with an inverted orientation, resulted in a clear periodicity in the accessibility of the residues. Residues expected to be at the hydrophobic face of the putative alpha-helix were not accessible for the label, whereas those at the hydrophilic face were easily accessed and labeled. Pretreatment of whole cells and inside-out membranes expressing the mutants with the membrane impermeable reagent AmdiS confirmed the cytoplasmic localization of the AH region. It is concluded that the loop between TMSs VIII and IX folds into an amphipathic surface helix.  相似文献   

10.
A series of anthroyloxy fatty acid (AF) fluorescent probes, with the anthroyloxy group covalently linked at various positions along the alkyl chain, were studied in solvents exhibiting a wide range of polarity and hydrogen-bond donor (Hd) and acceptor (Ha) ability. These probes were sensitive to the solvent polarity as reflected by the Stokes' shift observed in steady state fluorescence. As determined by multi-linear regression analysis of the observed Stokes' shift and solvent parameters, such as orientation polarizability (Δf), Hd and Ha of the solvents, all the probes were sensitive to the Hd of solvents but were not affected by the Ha of solvents except the 2-AF. Due to the proximity of the polar headgroup to the fluorophore, it appears that some intramolecular hydrogen-bonding is present in 2-AF, an interaction that is sensitive to the pH of the solvent, but is less sensitive to the Hd and Ha of the solvents. Fluorescence lifetimes measured by the multi-frequency phase-modulation technique in mixtures of hexane and ethanol reflect a modified Stern-Volmer behavior suggesting the second solvent, ethanol, specifically interacts with the probe, in part through collisional quenching. Also, the lifetime data were sensitive to very low concentrations of the second solvent (0–0.1%, by vol.). The results from this study provide insight into the intrinsic differences between the different AF positions that must be taken into consideration while investigating the dynamics of lipid bilayer systems. Moreover, this study illustrates the utility and resolving power of lifetime based measurements needed for the interpretation of heterogeneous biophysical environments.  相似文献   

11.
Peptides corresponding to the N-terminus of skeletal myosin light chain 1 (rsMLC1 1-37) and the short loop of human cardiac beta-myosin (hcM398-414) have been shown to interact with skeletal F-actin by NMR and fluorescence measurements. Skeletal tropomyosin strengthens the binding of the myosin peptides to actin but does not interact with the peptides. The binding of peptides corresponding to the inhibitory region of cardiac troponin I (e.g. hcTnI128-153) to F-actin to form a 1 : 1 molar complex is also strengthened in the presence of tropomyosin. In the presence of inhibitory peptide at relatively lower concentrations the myosin peptides and a troponin I peptide C-terminal to the inhibitory region, rcTnI161-181, all dissociate from F-actin. Structural and fluorescence evidence indicate that the troponin I inhibitory region and the myosin peptides do not bind in an identical manner to F-actin. It is concluded that the binding of the inhibitory region of troponin I to F-actin produces a conformational change in the actin monomer with the result that interaction at different locations of F-actin is impeded. These observations are interpreted to indicate that a major conformational change occurs in actin on binding to troponin I that is fundamental to the regulatory process in muscle. The data are discussed in the context of tropomyosin's ability to stabilize the actin filament and facilitate the transmission of the conformational change to actin monomers not in direct contact with troponin I.  相似文献   

12.
Ligand binding to Cys-loop receptors produces either global conformational changes that lead to activation or local conformational changes that do not. We found that the fluorescence of a fluorophore tethered to R271C in the extracellular M2 region of the α1 glycine receptor increases during glycine activation but not during ivermectin activation. This prompted the hypothesis that this signal reports a glycine-mediated conformational change not essential for activation. We tested this by investigating whether the fluorescence signal depended on whether the fluorophore was attached to a glycine-free or a glycine-bound subunit. Agonist-free subunits were created by incorporating T204A and R65K mutations, which disrupted glycine binding to both (+) and (−) subunit interfaces. In heteromeric receptors comprising wild-type and R65K,T204A,R271C triple-mutant subunits, the fluorescence response exhibited a drastically reduced glycine sensitivity relative to the current response. Two conclusions can be drawn from this. First, because the labeled glycine-free subunits were activated by glycine binding to neighboring wild-type subunits, our results provide evidence for a cooperative activation mechanism. However, because the fluorescent label on glycine-free subunits does not reflect movements at the channel gate, we conclude that glycine binding also produces a local non-concerted conformational change that is not essential for receptor activation.  相似文献   

13.
Flowers S  Biswas EE  Biswas SB 《Biochemistry》2003,42(7):1910-1921
DnaB helicase of E. coli unwinds duplex DNA in the replication fork using the energy of ATP hydrolysis. We have analyzed structural and conformational changes in the DnaB protein in various nucleotides and DNA bound intermediate states by fluorescence quenching analysis of intrinsic fluorescence of native tryptophan (Trp) residues in DnaB. Fluorescence quenching analysis indicated that Trp48 in domain alpha is in a hydrophobic environment and resistant to fluorescence quenchers such as potassium iodide (KI). In domain beta, Trp294 was found to be in a partially hydrophobic environment, whereas Trp456 in domain gamma appeared to be in the least hydrophobic environment. Binding of oligonucleotides to DnaB helicase resulted in a significant attenuation of the fluorescence quenching profile, indicating a change in conformation. ATPgammaS or ATP binding appeared to lead to a conformation in which Trp residues had a higher degree of solvent exposure and fluorescence quenching. However, the most dramatic increase of Trp fluorescence quenching was observed with ADP binding with a possible conformational relaxation. Site-specific Trp --> Cys mutants of DnaB helicase demonstrated that conformational change upon ADP binding could be attributed exclusively to a conformational transition in the alpha domain leading to an increase in the solvent exposure of Trp48. However, formation of DnaB.ATPgammaS.DNA ternary complex led to a conformation with a fluorescence quenching profile similar to that observed with DnaB alone. The DnaB.ADP.DNA ternary complex produced a quenching curve similar to that of DnaB.ADP complex pointing to a change in conformation due to ATP hydrolysis. There are at least four identifiable structural/conformational states of DnaB helicase that are likely important in the helicase activity. The noncatalytic alpha domain in the N-terminus appeared to undergo the most significant conformational changes during nucleotide binding and hydrolysis. This is the first reported elucidation of the putative role of domain alpha, which is essential for DNA helicase action. We have correlated these results with partial structural models of alpha, beta, and gamma domains  相似文献   

14.
The phosphorescence and fluorescence properties of bacterial luciferase (alphabeta) mutants from Xenorhabdus luminescens were investigated. All tryptophans in the alpha and beta subunits were replaced with tyrosines except for one or two tryptophans in the alpha subunit. Because one luciferase mutant (W250) retained only a single tryptophan in the alpha subunit while two other mutants (W182/250 and W194/250) each contained two tryptophans in the alpha subunit, it was possible to deduce the spectral properties of these specific tryptophans (Trp182, Trp194, Trp250). Analyses of the phosphorescence properties were particularly revealing as only a single phosphorescence emission peak at 411-414 nm was observed for the W250 and W194/250 mutants while peaks at 409 and 414 nm could be clearly observed for the W182/250 mutant. Coupled with intrinsic fluorescence quenching experiments, these results show that alphaTrp182 is in a distinctly polar environment while alphaTrp250 is in a hydrophobic region and illustrate the advantages of using phosphorescence to recognize different microenvironments for tryptophan residues.  相似文献   

15.
We report on a novel technique to develop an optical immunosensor based on fluorescence resonance energy transfer (FRET). IgG antibodies were labeled with acceptor fluorophores while one of three carrier molecules (protein A, protein G, or F(ab')2 fragment) was labeled with donor fluorophores. The carrier molecule was incubated with the antibody to allow specific binding to the Fc portion. The labeled antibody-protein complex was then exposed to specific and nonspecific antigens, and experiments were designed to determine the 'in solution' response. The paper reports the results of three different donor-acceptor FRET pairs, fluorescein isothiocyanate/tetramethylrhodamine isothiocyanate, Texas Red/Cy5, and Alexa Fluor 546/Alexa Fluor 594. The effects of the fluorophore to protein conjugation ratio (F/P ratio) and acceptor to donor fluorophore ratios between the antibody and protein (A/D ratio) were examined. In the presence of specific antigens, the antibodies underwent a conformational change, resulting in an energy transfer from the donor to the acceptor fluorophore as measured by a change in fluorescence. The non-specific antigens elicited little or no changes. The Alexa Fluor FRET pair demonstrated the largest change in fluorescence, resulting in a 35% change. The F/P and A/D ratio will affect the efficiency of energy transfer, but there exists a suitable range of A/D and F/P ratios for the FRET pairs. The feasibility of the FRET immunosensor technique was established; however, it will be necessary to immobilize the complexes onto optical substrates so that consistent trends can be obtained that would allow calibration plots.  相似文献   

16.
The sodium ion dependent citrate transporter of Klebsiella pneumoniae (CitS) is a member of the bacterial 2-hydroxycarboxylate transporter family. Membrane topology models of the protein, largely based on reporter molecule fusions to C-terminally truncated CitS molecules, indicate that the protein traverses the membrane 11 times with the NH(2)-terminus in the cytoplasm and the COOH-terminus in the periplasm. Furthermore, the structure is characterized by unusual long loops in the COOH-terminal half of the protein: one hydrophobic segment between transmembrane segments V and VI in the periplasm and three long loops connecting transmembrane segments VI and VII, VIII and IX and X and XI in the cytoplasm. The 10 kDa biotin acceptor domain and six consecutive His residues (His-tag) were inserted at different positions in the four long loops and the effect on transport activity and protein stability was analyzed. Six out of seven insertion mutants were stably expressed and three of these had retained significant transport activity. The sidedness of the tags in the mutants that tolerated the insertion was determined by proteolysis experiments. The results support the 11 transmembrane segment model that was based upon truncated CitS proteins.  相似文献   

17.
To investigate the role of Arginine 276 in the conserved leucine-loop of human uracil-DNA glycosylase (UNG), the effects of six R276 amino acid substitutions (C, E, H, L, W, and Y) on nucleotide flipping and enzyme conformational change were determined using transient and steady state, fluorescence-based, kinetic analysis. Relative to UNG, the mutant proteins exhibited a 2.6- to 7.7-fold reduction in affinity for a doubled-stranded oligonucleotide containing a pseudouracil residue opposite 2-aminopurine, as judged by steady-state DNA binding-base flipping assays. An anisotropy binding assay was utilized to determine the K(d) of UNG and the R276 mutants for carboxyfluorescein-labeled uracil-containing single- and double-stranded oligonucleotides; the binding affinities varied 11-fold for single-stranded uracil-DNA, and 43-fold for double-stranded uracil-DNA. Productive uracil-DNA binding was monitored by rapid quenching of UNG intrinsic protein fluorescence. Relative to UNG, the rate of intrinsic fluorescence quenching of five mutant proteins for binding double-stranded uracil-DNA was reduced approximately 50%; the R276E mutant exhibited 1% of the rate of fluorescence quenching of UNG. When reacted with single-stranded uracil-DNA, the rate of UNG fluorescence quenching increased. Moreover, the rate of fluorescence quenching for all the mutant proteins, except R276E, was slightly faster than UNG. The k(cat) of the R276 mutants was comparable to UNG on single-stranded DNA and differentially affected by NaCl; however, k(cat) on double-stranded DNA substrate was reduced 4-12-fold and decreased sharply at NaCl concentrations as low as 20 mM. Taken together, these results indicate that the effects of mutations at Arg276 were largely limited to enzyme interactions with double-stranded uracil-containing DNA, and suggested that mutations at Arg276 effectively transformed UNG into a single-stranded DNA-specific uracil-DNA glycosylase.  相似文献   

18.
J Weber  R S Lee  E Grell  A E Senior 《Biochemistry》1992,31(22):5112-5116
(1) Previous mutational analyses have shown that residue beta R398 of the beta-subunit is a key residue for binding of the inhibitory antibiotic aurovertin to Escherichia coli F1Fo-ATP synthase. Here, we studied purified F1 from the beta R398C and beta R398W mutants. ATPase activity in both cases was resistant to aurovertin inhibition. The fluorescence spectrum (lambda exc = 278 or 295 nm) of beta R398W F1 showed a significant red-shift as compared to wild-type and beta R398C enzymes, indicating that residue beta R398 lies in a polar environment. On the basis of this and previous evidence, we propose that aurovertin binding to F1-ATPase involves a specific charged donor-acceptor H-bond between residue beta R398 and the 7-hydroxyl group of aurovertin. (2) The fluorescent substrate analog lin-benzo-ADP was shown to bind to beta R398W F1 catalytic sites with the same Kd values as to wild-type F1, and with the same quenching of the fluorescence of the analog. Fluorescence energy transfer was seen between the beta R398W residue and bound lin-benzo-ADP. Analysis of transfer efficiency at varying stoichiometry of bound lin-benzo-ADP showed that interaction occurred between one beta R398W residue and one catalytic-site-bound analog molecule at a distance of approximately 23 A. The relationships of the aurovertin and catalytic sites in the primary and tertiary structure are discussed.  相似文献   

19.
In this study we investigate conformational changes in Loop V-VI of visual arrestin during binding to light-activated, phosphorylated rhodopsin (Rho*-P) using a combination of site-specific cysteine mutagenesis and intramolecular fluorescence quenching. Introduction of cysteines at positions in the N-domain at residues predicted to be in close proximity to Ile-72 in Loop V-VI of arrestin (i.e. Glu-148 and Lys-298) appear to form an intramolecular disulfide bond with I72C, significantly diminishing the binding of arrestin to Rho*-P. Using a fluorescence approach, we show that the steady-state emission from a monobromobimane fluorophore in Loop V-VI is quenched by tryptophan residues placed at 148 or 298. This quenching is relieved upon binding of arrestin to Rho*-P. These results suggest that arrestin Loop V-VI moves during binding to Rho*-P and that conformational flexibility of this loop is essential for arrestin to adopt a high affinity binding state.  相似文献   

20.
Zheng J  Zagotta WN 《Neuron》2000,28(2):369-374
Site-specific fluorescence recordings have shown great promise in understanding conformational changes in signaling proteins. The reported applications on ion channels have been limited to extracellular sites in whole oocyte preparations. We are now able to directly monitor gating movements of the intracellular domains of cyclic nucleotide-gated channels using simultaneous site-specific fluorescence recording and patchclamp current recording from inside-out patches. Fluorescence signals were reliably observed when fluorophore was covalently attached to a site between the cyclic nucleotide-binding domain and the pore. While iodide, an anionic quencher, has a higher quenching efficiency in the channel's closed state, thallium ion, a cationic quencher, has a higher quenching efficiency in the open state. The state and charge dependence of quenching suggests movements of charged or dipolar residues near the fluorophore during CNG channel activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号