首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leukotriene A4 hydrolase from the human lung was purified to apparent homogeneity. The molecular weight (68,000-71,000), the amino acid composition, and the N-terminal amino acid sequence were similar to those of the human neutrophil enzyme but different from those of human erythrocyte enzyme. The lung enzyme was inactivated by its substrate, leukotriene A4. To elucidate the substrate and the inactivator specificity of this enzyme, we synthesized various geometric and positional isomers of leukotriene A4. 14,15-Leukotriene A4, leukotriene A4 methyl ester, and geometric isomers of leukotriene A4 could not serve as substrates, but they inactivated the enzyme. On the other hand, styrene oxide and (5S)-trans-5,6-oxide-8,10,14-cis-12-trans-eicosatetraenoic acid neither served as substrates nor inactivated the enzyme. These results indicate that whereas allylic epoxide structures of arachidonic acids are responsible for inactivation of the enzyme, the free carboxylic acid, 5,6-oxide, and the tetraene structure with the 7,9-trans-11,14-cis configuration are required as a substrate for leukotriene A4 hydrolase.  相似文献   

2.
Endogenous trans fatty acids originate from diet, but recent studies also suggest that cis-trans isomerization of fatty acids is possible by nitrogen dioxide radical, a product of NO and nitrite oxidation. We developed a method for quantitative analysis of four trans-arachidonic acids (TAA) in human plasma using isotopic dilution gas chromatography/mass spectrometry (GC/MS) with deuterium-labeled internal standard. Esterification of the plasma fatty acid extract with pentafluorobenzyl (PFB) bromide followed by high-performance liquid chromatography purification yielded a fairly pure fraction containing TAA-PFB esters that was analyzed by GC/MS. Partial separation of the TAA isomers was obtained on various GC columns. Comparison of the retention time with the synthetic standards revealed that all four TAA isomers are present in human plasma. The mean concentration of TAA in human plasma was 20.2ng/ml. The levels of isomers were 12.48+/-1.28, 2.75+/-0.39, and 4.99+/-0.74ng/ml for 5E-AA + 11E-AA, 8E-AA, and 14E-AA, respectively. The identification of TAA in plasma suggests that isomerization of arachidonic acid occurs in vivo. Our method allows distinguishing between the dietary and the NO(2)-dependent mechanisms of trans fatty acid formation and will be useful in defining the role of TAA as an in vivo marker of nitrooxidative stress in clinical and experimental settings.  相似文献   

3.
Lipoxin A. Stereochemistry and biosynthesis   总被引:8,自引:0,他引:8  
Lipoxin A (LXA) was prepared by incubation of either (15S)-15-hydroxy-5,8,11-cis-13-trans-eicosatetraenoic acid (15-HETE) or (15S)-15-hydroperoxy-5,8,11-cis-13-trans-eicosatetraenoic (15-HPETE) with human leukocytes stimulated by either the ionophore A23187 or the chemotactic peptide fMet-Leu-Phe. Comparison with four trihydroxyeicosatetraenoic acids prepared by total synthesis showed that biologically derived LXA is 5S,6R,15S)-5,6,15-trihydroxy-7,9,13-trans-11-cis-eicosatetraenoic acid. Three isomers of LXA were also identified in extracts of leukocytes utilizing an improved isolation procedure. These were (5S,6S,15S)-5,6,15-trihydroxy-7,9,13-trans-11-cis-eicosatetraenoic acid (6S-LXA), (5S,6R,15S)-5,6,15-trihydroxy-7,9,11,13-trans-eicosatetraenoic acid (11-trans-LXA), and (5S,6S,15S)-5,6,15-trihydroxy-7,9,11,13-trans-eicosatetraenoic acid (6S-11-trans-LXA). 18O2-labeling studies indicated that formation of LXA and its isomers occurred with incorporation of 18O at their C-5 but not C-6 positions. These results suggest that 15-hydroxy-5,6-epoxy-7,9,13-trans-11-cis-eicosatetraenoic acid or its equivalent may serve as one intermediate in the biosynthesis of LXA and 6S-LXA. When added to guinea pig lung strips LXA provoked contractions which were slow in onset and long lasting. In addition, dose response studies showed that biologically derived LXA and synthetic LXA were indistinguishable in this bioassay whereas synthetic 6S-LXA and biologically derived 6S-LXA did not share this activity. Taken together, these results suggest that activated leukocytes utilize exogenous 15-HETE to generate lipoxins which in turn can modulate cellular responses.  相似文献   

4.
alpha-(4-Pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) radical adducts, which are formed in the reactions of soybean lipoxygenase with linoleic acid, arachidonic acid, and linolenic acid, were isolated using HPLC-ESR spectroscopy. Both linoleic acid and arachidonic acid gave one radical adduct, whereas in the case of linolenic acid, two radical adducts were isolated. These radical adducts all showed virtually identical uv spectra with lambda max at 292 and 220 nm in hexane. The absence of absorbance with lambda max at 234 nm indicates that a conjugated diene structure is not contained in these radical adducts. The mass spectra of the radical adducts formed from linoleic and arachidonic acids were identical and contained a molecular ion of m/z 264, consistent with the trapping of the pentyl radical by 4-POBN. Indeed, authentic 4-POBN pentyl radical adduct obtained from the reaction between pentylhydrazine and 4-POBN gave the same mass spectrum as the product obtained from the reaction of linoleic acid and arachidonic acid with 4-POBN. The two 4-POBN radical adducts formed in the linolenic acid reaction were shown by mass spectrometry to be isomers of pentenyl radicals. The 4-POBN-pentyl radical adduct was also detected in the reaction mixture of 13-hydroperoxy-linoleic acid, soybean lipoxygenase, and 4-POBN, indicating that the pentyl radical and pentenyl radical are formed by the decomposition of the hydroperoxides.  相似文献   

5.
Nitrative stress has an important role in microvascular degeneration leading to ischemia in conditions such as diabetic retinopathy and retinopathy of prematurity. Thus far, mediators of nitrative stress have been poorly characterized. We recently described that trans-arachidonic acids are major products of NO(2)(*)-mediated isomerization of arachidonic acid within the cell membrane, but their biological relevance is unknown. Here we show that trans-arachidonic acids are generated in a model of retinal microangiopathy in vivo in a NO(*)-dependent manner. They induce a selective time- and concentration-dependent apoptosis of microvascular endothelial cells in vitro, and result in retinal microvascular degeneration ex vivo and in vivo. These effects are mediated by an upregulation of the antiangiogenic factor thrombospondin-1, independently of classical arachidonic acid metabolism. Our findings provide new insight into the molecular mechanisms of nitrative stress in microvascular injury and suggest new therapeutic avenues in the management of disorders involving nitrative stress, such as ischemic retinopathies and encephalopathies.  相似文献   

6.
The spin trapping agent alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN) was used to trap the initial radical formed from [U-14C]linoleic acid in the reaction with soybean lipoxygenase. By using low levels of enzyme and relatively short incubation times it was possible to avoid the formation of secondary oxidation products and polymers. The adduct was extracted after methyl esterification, and isolated by a combination of open column chromatography on silicic acid and high pressure liquid chromatography on Spherisorb S5 CN with non-aqueous solvents. The 1:1 POBN-linoleate adduct was characterized by UV, IR and ESR spectra of the appropriate HPLC column fraction, by the ratio of the UV absorption to 14C content, and by mass spectrometry of the reduced (hydroxylamine) form. The results indicated that POBN trapped a linoleic acid carbon-centered radical such that POBN was attached to the fatty acid chain at C-13 or C-9 (two isomers), the linoleate double bonds having become conjugated in the process. The exact locations of the bridges in the two isomers were only tentatively determined. There was no evidence for the presence of oxygen-bridged adducts. The trapped linoleoyl radical adduct provides evidence for the production of a free radical as part of the enzymatic mechanism of soybean lipoxygenase.  相似文献   

7.
Fatty acid nitration is a recently discovered process that generates biologically active nitro lipids; however, its mechanism has not been fully characterized. For example, some structural details such as vinyl and allyl isomers of the nitro fatty acids have not been established. To characterize lipids that originated from a biomimetic reaction of *NO(2) with oleic acid, we synthesized several isomers of nitro oleic acids and studied their chromatography and mass spectra by various techniques of mass spectrometry. LC/MS analysis performed on a high resolution micro column detected molecular carboxylic anions of various oleic acid nitro isomers (NO(2)OA). Esterification of NO(2)OA with pentafluorobenzyl bromide and diisopropylethylamine as a catalyst produced a unique isoxazole ester derivative exclusively from allyl NO(2)OA isomers via dehydration of the nitro group at ambient temperatures. This new analytical procedure revealed that *NO(2) generated two vinyl and two allyl isomers of NO(2)OA. The vinyl isomers showed high regioselectivity with the 1.8:1 preference for the 10-NO(2)OA isomer that was absent among allylic isomers. The nitration also generated elaidic acid via cis-trans isomerization and diatereoisomers of vicinal nitro hydroxy, nitro keto and alpha-nitro epoxy stearic acids with high stereo and regioselectivity. Nitration of small unilamelar phospholipid vesicles resulted in several phospholipids containing nitro lipids and elaidic acid amenable to hydrolysis by phospholipase A(2).  相似文献   

8.
Murine spleen cells and purified B lymphocytes oxidized arachidonic acid via the lipoxygenase pathway. The major metabolite of both the whole spleen and enriched B lymphocytes was 12S-hydroxy-5,8-cis-10-trans-14-cis-eicosatetraenoic acid. A novel metabolite was observed that did not have an absorbance from 210 to 400 nm, indicating the absence of a conjugated double bond system. The new metabolite was converted to the methyl ester, reduced by platinum oxide, derivatized to the trimethylsilyl ether, and analyzed by gas chromatography-mass spectrometry. A major and a minor component were observed in the analysis of the new compound. The major component had major diagnostic ions indicating the presence of hydroxyl groups at C-12 and C-19. The minor component had major diagnostic ions indicating the presence of hydroxyl groups at C-12 and C-20. The new metabolites are characterized as a mixture of 12S,19- and 12S,20-dihydroxyeicosanoids presumably formed by hydroxylation and reduction of one or more double bonds of 12S-hydroxy-5,8-cis-10-trans-14-cis-eicosatetraenoic acid. These metabolites were formed predominantly with whole spleen lymphocytes but could be detected at longer incubation times or by using 12S-hydroxy-5,8-cis-10-trans-14-cis-eicosatetraenoic acid as the starting substrate with highly enriched B lymphocytes.  相似文献   

9.
Enzymic Synthesis of Leukotriene B4 in Guinea Pig Brain   总被引:1,自引:8,他引:1  
Leukotriene B4 [5(S), 12(R)-dihydroxy-6, 14-cis-8,10-trans-eicosatetraenoic acid] was obtained from endogenous arachidonic acid when slices of the guinea pig brain cortex were incubated with the calcium ionophore A 23187. Enzymes involved in its synthesis, arachidonate 5-lipoxygenase [arachidonic acid to 5(S)-hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic acid and subsequently to leukotriene A4] and leukotriene A4 hydrolase (leukotriene A4 to B4), were present in the cytosol fraction. Arachidonate 5-lipoxygenase was Ca2+-dependent, and was stimulated by ATP and the microsomal membrane, as was noted for the enzyme from mast cells. The lipid hydroperoxides stimulated 5-lipoxygenase by four- to sixfold. The leukotriene A4 hydrolase activity was rich in brain, and the specific activity (0.4 nmol/min/mg of protein) was much the same as that of guinea pig leukocytes. High activities of these enzymes were detected in the olfactory bulb, pituitary gland, hypothalamus, and cerebral cortex. Since leukotriene B4 is enzymically synthesized in the brain, possible roles related to neuronal functions or dysfunctions deserve to be examined.  相似文献   

10.
H Y Kim  N Salem 《Prostaglandins》1989,37(1):105-119
A new method to determine the structure of lipoxygenase reaction products is presented. Thermospray mass spectra of hydroperoxy derivatives of polyunsaturates contain both molecular ion species and fragments reflecting the position of oxygenation. Data are presented for hydroperoxy-docosahexaenoic, eicosapentaenoic, arachidonic and linoleic acids in this regard. Ten positional isomers of hydroperoxy docosahexaenoic acid were prepared by autooxidation and their structures were determined by thermospray LC/MS and confirmed by electron impact GC/MS after suitable derivatives were made. This technique was particularly useful in determining the structure of unknown metabolites by direct monitoring of the reaction mixture without derivatization. In this paper, the value of this approach is demonstrated using a soybean lipoxygenase reaction mixture as a simple example.  相似文献   

11.
A new method to determine the structure of lipoxygenase reaction products is presented. Thermospray mass spectra of hydroperoxy derivatives of polyunsaturates contain both molecular ion species and fragment reflecting the position of oxygenation. Data are presented for hydroperoxyl-docosahexaenoic, eicosapentaenoic, arachidonic and linoleic acids in this regard. Ten positional isomers of hydroperoxy docosahexaenoic acid were prepared by autooxidation and their structures were determined by thermospray LC/MS and confirmed by electron impact GC/MS after suitable derivatives were made. This technique was particularly useful in determining the structure of unknown metabolites by direct monitoring of the reaction mixture without derivation. In this paper, the value of this approach is demonstrated using a soybean lipoxygenase reaction mixture as a simple example.  相似文献   

12.
Stimulated neutrophils produce hypochlorous acid (HOCl) via the myeloperoxidase-catalyzed reaction of hydrogen peroxide with chloride. The reactions of HOCl with oleic, linoleic, and arachidonic acids both as free fatty acids or bound in phosphatidylcholine have been studied. The products were identified by gas chromatography-mass spectrometry of the methylated and trimethylsilylated derivatives. Oleic acid was converted to the two 9,10-chlorohydrin isomers in near stoichiometric yield. Linoleic acid, at low HOCl:fatty acid ratios, yielded predominantly a mixture of the four possible monochlorohydrin isomers. Bischlorohydrins were also formed, in increasing amounts at higher HOCl concentrations. Arachidonic acid gave a complex mixture of mono- and bischlorohydrins, the relative proportions depending on the amount of HOCl added. Linoleic acid appears to be slightly more reactive than oleic acid with HOCl. Reactions of oleic and linoleic acids with myeloperoxidase, hydrogen peroxide, and chloride gave chlorohydrin products identical to those with HOCl. Lipid chlorohydrins have received little attention as products of reactions of neutrophil oxidants. They are more polar than the parent fatty acids, and if formed in cell membranes could cause disruption to membrane structure. Since cellular targets for HOCl appear to be membrane constituents, chlorohydrin formation from unsaturated lipids could be significant in neutrophil-mediated cytotoxicity.  相似文献   

13.
Porcine leukocytes incubated with an isoenzyme of phospholipase A2 (PLA2) (isolated from snake venom) produced several trihydroxytetraene- containing compounds which were derived from endogenous sources of arachidonic acid. The formation of these compounds was dose-dependent with an EC50 of approximately 1.25 X 10(-8) M. At this concentration of the isoenzyme and time of exposure the cells remained viable as determined by the exclusion of trypan blue. The compounds were purified by HPLC and their identities were determined by physical criteria which included U.V. spectrometry, GC/MS and by comparison with both synthetic and authentic materials. The biologically derived compounds proved to be lipoxin B (5S, 14R, 15S-trihydroxy-6, 10, 12-trans-8-cis-eicosatetraenoic acid) and its two structural isomers (8-trans-LXB and 14S-8-trans-LXB). Of interest, only small amounts of lipoxin A and its isomers were found in these incubations. Results of the present study indicate that porcine leukocytes can generate lipoxin B and its isomers from endogenous sources of arachidonic acid. Moreover, they suggest that certain PLA2 isoenzymes may initiate the formation of lipoxins and related compounds.  相似文献   

14.
Using fast atom bombardment (FAB) and tandem mass spectrometry (MS/MS), we examined 12 synthetic N-carbamoylamino acids (CAA) as tert-butyldimethylsilyl (TBDMS) derivatives. In FAB mass spectrometry and FAB MS/MS, spectra of protonated molecules for CAA provide specific cleavages involving the TBDMS carbamoyl moiety. The daughter scan spectrum of the parent ion indicated that it was useful for structural elucidation and differentiation of structural isomers of CAA. We have also identified each CAA separately in a mixture using a neutral loss scan for characteristic ions. In addition, we demonstrated that CAA in urine samples from patients with ornithine carbamoyl transferase deficiency gave collision-induced dissociation (CID) spectra which correspond well with CID spectra obtained using synthetically prepared CAA.  相似文献   

15.
Incubation of prostaglandin H synthase-1 (PGHS-1) under anaerobic conditions with peroxide and arachidonic acid leads to two major radical species: a pentadienyl radical and a radical with a narrow EPR spectrum. The proportions of the two radicals are sensitive to temperature, favoring the narrow radical species at 22 °C. The EPR characteristics of this latter radical are somewhat similar to the previously reported narrow-singlet tyrosine radical NS1a and are insensitive to deuterium labeling of AA. To probe the origin and structure of this radical, we combined EPR analysis with nitric oxide (NO) trapping of tyrosine and substrate derived radicals for both PGHS-1 and -2. Formation of 3-nitrotyrosine in the proteins was analyzed by immunoblotting, whereas NO adducts to AA and AA metabolites were analyzed by mass spectrometry and by chromatography of 14C-labeled products. The results indicate that both nitrated tyrosine residues and NO-AA adducts formed upon NO trapping. The predominant NO-AA adduct was an oxime at C11 of AA with three conjugated double bonds, as indicated by absorption at 275 nm and by mass spectral analysis. This adduct amounted to 10% and 20% of the heme concentration of PGHS-1 and -2, respectively. For PGHS-1, the yield of NO-AA adduct matched the yield of the narrow radical signal obtained in parallel EPR experiments. High frequency EPR characterization of this narrow radical, reported in an accompanying paper, supports assignment to a new tyrosyl radical, NS1c, rather than an AA-based radical. To reconcile the results from EPR and NO-trapping studies, we propose that NS1c is in equilibrium with an AA pentadienyl radical, and that the latter reacts preferentially with NO.  相似文献   

16.
Identification of aromatic dihydroxy acids in biological fluids   总被引:1,自引:0,他引:1  
3,5-Dihydroxyphenylpropionic acid, 3,5-dihydroxycinnamic acid and 2,3-dihydroxycinnamic acid were detected for the first time to be components of human urine. In the course of this investigation all constitutional isomers of dihydroxy-benzoic, -phenylpropionic, -phenylacetic and -cinnamic acid were synthesized. Mass spectra and retention indices of methyl and trimethylsilyl (TMS) derivatives were determined. In contrast to many other substituted aromatic compounds the mass spectra of methyl and TMS derivatives of dihydroxy aromatic acids often allow a firm distinction to be made between constitutional isomers: TMS derivatives of aromatic acids containing two hydroxy groups located in the ortho position to each other can be recognized by ions resulting from a primary cleavage reaction mainly in the side chain or ester group, followed by loss of tetramethylsilane. In methyl derivatives of 1,2,3-trisubstituted isomers, methoxy groups are lost much more easily from the ions corresponding to the benzylic cleavage than in other isomers. Methyl derivatives of dihydroxycinnamic acids containing at least one methoxy group in the ortho position to the side chain are characterized by a fragmentation reaction, corresponding to the loss of dimethyl ether. TMS and methyl derivatives of 3,5-dihydroxy aromatic acids show unique structure-specific fragmentation reactions.  相似文献   

17.
The 220 MHz PMR spectra of 143 non-conjugated alkenoic and alkynoic acids and esters are correlated so as to provide a method for the structural analysis of such compounds in general. The spectral data are explained in terms of long-range deshielding of the double bonds, triple bonds, acid and ester groups in the molecules, and parameters are derived to quantify the influence of these groups on the chemical shifts of methyl and methylene protons up to six carbon atoms distant along an alkyl chain. It is shown that, by the application of these parameters, 220 MHz PMR spectroscopy can be used to determine both the stereochemistry and position of double bonds, and the position of triple bonds, in the majority of fatty acids and esters. The 2- to 9- and 13- to 17-cis- and trans-isomers of octadecenoic acid may be readily idenfited in this way, whilst for the octadecynoic acids all positional isomers may be characterized. Examples are also given of the structural analysis of several polyenoic compounds, including methyl cis-5, cis-8, cis-11, cis-14, cis-5, cis-8, cis-11, trans-14, and trans-5, cis-8, cis-11, cis-14-eicosatetraenoates, and methyl trans-5, cis-9, cis-12-octadecatrienoate.  相似文献   

18.
Conjugated linolenic acids (CLN) refer to a group of octadecatrienoic acids with three conjugated double bonds. Minor positional and geometrical differences among CLN isomers make their separation and identification difficult. We have used GC-MS and NMR to study three common CLN isomers namely alpha-eleostearic acid, beta-eleostearic acid and punicic acid, finding that some signals of olefinic carbon atoms in NMR spectra were mistakenly assigned in the literature. The present study was therefore undertaken to re-characterize the location of CC double bonds and assign the chemical signals of proton and carbon atoms using (1)H NMR, (13)C NMR, (1)H-(1)H two-dimensional correlation spectra ((1)H-(1)H COSY) and (13)C-(1)H two-dimensional correlation spectra ((13)C-(1)H COSY). The geometrical structure of double bonds in these three CLN isomers was identified using homonuclear decoupling technique.  相似文献   

19.
We describe a simple tandem mass spectrometric approach toward structural characterization of mycolic acids, the long-chain α-alkyl-β-hydroxy fatty acids unique to mycobacteria and related taxa. On collisionally activated dissociation in a linear ion trap or tandem quadrupole mass spectrometer, the [M−H] ions of mycolic acid generated by electrospray ionization undergo dissociation to eliminate the meroaldehyde residue, leading to formation of carboxylate anions containing α-alkyl chains. The structural information from these fragment ions affords structural assignment of the mycolic acids, including the lengths of the meromycolate chain and the α-branch. This study revealed that the mycolic acids isolated from pathogenic Rhodococcus equi 103 contained a series of homologous ions having C30 to C50 chain with 0–2 double bonds. The α-branch ranged from C10 to C18 with 0 to 1 double bond, in which 16:0 and 14:0 are the most prominent, whereas the meromycolate chain ranged from C14 to C34 with 0 to 2 double bonds. The major molecular species consisted of more than 3 isomers that differ by the lengths of the α-branch or meromycolate chain, and up to 10 isobaric isomers were identified for some minor ions. We also employed tandem quadrupole mass spectrometry with precursor ion and neutral loss scans for profiling mycolic acid with specific structure in mixtures. The tandem spectra obtained from precursor ion scans of m/z 255 (16:0-carboxylate anion) and m/z 227 (14:0-carboxylate anion) may provide a simple specific means for classification of Rhodococci species, whereas tandem spectra from neutral loss of meroaldehyde residue scans provided a simple approach to reveal the mycolic acid molecules with specific meromycolate chain in mixtures.  相似文献   

20.
Four isomers of epoxyeicosatrienoic acid (EET) can be formed by cytochrome P-450 oxidation of arachidonic acid: 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid. The collision-induced dissociation of the [M-H]- anion at m/z 319 from each of these isomers, using negative-ion fast atom bombardment ionization and a triple quadrupole mass spectrometer, resulted in a series of common ions as well as ions characteristic of each isomer. The common ions were m/z 301 [M-H2O]- and 257 [M-(H2O + CO2)]-. Unique ions resulted from cleavages alpha to the epoxide moiety to form either conjugated carbanions or aldehydes. Mechanisms involving charge site transfer are suggested for the origin of these ions. A distonic ion series that may involve a charge-remote fragmentation mechanism was also observed. The epoxyeicosatrienoic acids were also incorporated into cellular phospholipids following incubation of the free acid with murine mast cells in culture. Negative fast atom bombardment mass spectrometry of purified glycerophosphoethanolamine-EET species and glycerophosphocholine-EET species yielded abundant [M-H]- and [M-CH3]- ions, respectively. The collision-induced dissociation of these specific high-mass ions revealed fragment ions characteristic of the epoxyeicosatrienoic acids incorporated (m/z 319, 301, and 257) and the same unique ions as those seen with each isomeric epoxyeicosatrienoic acid. With this direct method of analysis, phospholipids containing the four positional isomers of EET, including the highly labile (5,6-EET), could be identified as unique molecular species in mast cells incubated with EET.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号