首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The receptors for interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) share a common beta subunit, the distal cytoplasmic domain of which is essential for the promotion of cell survival by these two cytokines. Genes whose expression is specifically induced by signaling through the distal cytoplasmic domain of this receptor beta subunit were screened by a subtraction cloning approach in derivatives of a mouse pro-B-cell line. One gene thus identified was shown to encode a protein highly homologous (with only 7 amino acid substitutions) to murine osteopontin (OPN), a secreted adhesion protein. Conditioned medium from cells expressing wild-type OPN, but not that from cells expressing a deletion mutant lacking residues 79 to 140, increased the viability of a non-OPN-producing cell line in the presence of human GM-CSF. Antibody blocking experiments revealed that OPN produced as a result of IL-3 or GM-CSF signaling was secreted into the medium and, through binding to its cell surface receptor, CD44, contributed to the survival-promoting activities of these two cytokines. Furthermore, coupling of the OPN-CD44 pathway to the survival response to IL-3 was also demonstrated in primary IL-3-dependent mouse bone marrow cells. These results thus show that induction of an extracellular adhesion protein and consequent activation of its cell surface receptor are important for the antiapoptotic activities of IL-3 and GM-CSF.  相似文献   

2.
IL-12 is a pleiotropic cytokine that plays an important role in innate and adaptive immunity. IL-12 induces T cell proliferation and IFN-gamma secretion from activated T cells. It was also reported that IL-12 prevents apoptosis of CD4(+) T cells. However, the signaling mechanism that regulates these IL-12-induced responses is poorly understood yet. In this study, we demonstrated that IL-12 activates phosphatidylinositol 3-kinase (PI3K)/Akt pathway in murine CD4(+) T cells, and that this signaling pathway is required for IL-12-induced T cell proliferation and antiapoptotic function, but not for IFN-gamma induction. Through PI3K/Akt pathway, IL-12 up-regulates the expression of cell cycle-related molecule such as cyclin D3, and antiapoptotic molecules such as Bcl-2 and cellular inhibitors of apoptosis proteins-2, followed by down-regulation of active caspase-3. These results suggest that PI3K/Akt pathway is critical for mediating IL-12-induced CD4(+) T cell responses such as T cell proliferation and survival.  相似文献   

3.
The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway plays an important role in mediating survival signals in wide variety of neurons and cells. Recent studies show that Akt also regulates metabolic pathways to regulate cell survival. In this study, we reported that cyclin-dependent kinase-5 (Cdk5) regulates Akt activity and cell survival through the neuregulin-mediated PI 3-kinase signaling pathway. We found that brain extracts of Cdk5-/-mice display a lower PI 3-kinase activity and phosphorylation of Akt compared with that in wild type mice. Moreover, we demonstrated that Cdk5 phosphorylated Ser-1176 in the neuregulin receptor ErbB2 and phosphorylated Thr-871 and Ser-1120 in the ErbB3 receptor. We identified the Ser-1120 sequence RSRSPR in ErbB3 as a novel phosphorylation consensus sequence of Cdk5. Finally, we found that Cdk5 activity is involved in neuregulin-induced Akt activity and neuregulin-mediated neuronal survival. These findings suggest that Cdk5 may exert a key role in promoting neuronal survival by regulating Akt activity through the neuregulin/PI 3-kinase signaling pathway.  相似文献   

4.
5.
The gammac-family cytokine IL-2 activates signaling events that contribute to cell survival and proliferation, the best-studied of which are the STAT-5 and phosphatidylinositol 3-kinase (PI3K) pathways. The starting point of this study was to define genes regulated by the IL-2R-mediated PI3K pathway in T cells. Accordingly, we used an erythropoietin (EPO) receptor chimeric receptor system in which IL-2-dependent HT-2 T cells expressed a mutant EPO-IL-2Rbeta construct where Tyr-338 is mutated to Phe. Cells expressing this mutant IL-2Rbeta chain fail to induce phosphorylation of PI3K-p85alpha/beta or activate Akt, but mediate normal IL-2-dependent proliferation and activation of JAK1 and STAT-5A/B. Microarray analyses revealed differential regulation of numerous genes compared with cells expressing a wild-type IL-2Rbeta, including up-regulation of the IL-17 receptor subunit IL-17RA. Blockade of the PI3K pathway but not p70S6K led to up-regulation of IL-17RA, and constitutive Akt activation was associated with suppressed IL-17RA expression. Moreover, similar to the mutant EPO-IL-2Rbeta chimera, IL-15 and IL-21 induced IL-17RA preferentially compared with IL-2, and IL-2 but not IL-15 or IL-21 mediated prolonged activation of the PI3K p85 regulatory subunit. Thus, there are intrinsic signaling differences between IL-2 and IL-15 that can be attributed to differences in activation of the PI3K pathway.  相似文献   

6.
We have recently reported that osteopontin (OPN) stimulates cell motility and nuclear factor kappaB-mediated secretion of urokinase-type plasminogen activator (uPA) through phosphatidylinositol 3-kinase/Akt signaling pathways in breast cancer cells (Das, R., Mahabeleshwar, G. H., and Kundu, G. C. (2003) J. Biol. Chem. 278, 28593-28606). However, the role(s) of OPN on AP-1-mediated uPA secretion and cell motility and the involvement of c-Src/epidermal growth factor receptor (EGFR) in these processes in breast cancer cells are not well defined. In this study we report that OPN induces alpha(v)beta(3) integrin-mediated c-Src kinase activity in both highly invasive (MDA-MB-231) and low invasive (MCF-7) breast cancer cells. Ligation of OPN with alpha(v)beta(3) integrin induces kinase activity and tyrosine phosphorylation of EGFR in MDA-MB-231 and wild type EGFR-transfected MCF-7 cells, and this was inhibited by the dominant negative form of c-Src (dn c-Src) indicating that c-Src kinase plays a crucial role in this process. OPN induces association between alpha(v)beta(3) integrin and EGFR on the cell membrane in a macromolecular form with c-Src. Furthermore, OPN induces alpha(v)beta(3) integrin/EGFR-mediated ERK1/2 phosphorylation and AP-1 activation. Moreover, dn c-Src also suppressed the OPN-induced phosphatidylinositol (PI) 3-kinase activity in these cells indicating that c-Src acts as master switch in regulating MEK/ERK1/2 and phosphatidylinositol 3-kinase/Akt signaling pathways. OPN-induced ERK phosphorylation, AP-1 activation, uPA secretion, and cell motility were suppressed when cells were transfected with dn c-Src or pretreated with alpha(v)beta(3) integrin antibody, c-Src kinase inhibitor (pp2), EGFR tyrosine kinase inhibitor (PD153035), and MEK-1 inhibitor (PD98059). To our knowledge, this is the first report that OPN induces alpha(v)beta(3) integrin-mediated AP-1 activity and uPA secretion by activating c-Src/EGFR/ERK signaling pathways and further demonstrates a functional molecular link between OPN-induced integrin/c-Src-dependent EGFR phosphorylation and ERK/AP-1-mediated uPA secretion, and all of these ultimately control the motility of breast cancer cells.  相似文献   

7.
We have recently reported that osteopontin (OPN) induces nuclear factor kappaB (NFkappaB)-mediated promatrix metalloproteinase-2 activation through IkappaBalpha/IKK signaling pathways and that curcumin (diferulolylmethane) down-regulates these pathways (Philip, S., and Kundu, G. C. (2003) J. Biol. Chem. 278, 14487-14497). However, the molecular mechanism by which upstream kinases regulate the OPN-induced NFkappaB activation and urokinase type plasminogen activator (uPA) secretion in human breast cancer cells is not well defined. Here we report that OPN induces the phosphatidylinositol 3'-kinase (PI 3'-kinase) activity and phosphorylation of Akt in highly invasive MDA-MB-231 and low invasive MCF-7 cells. The OPN-induced Akt phosphorylation was inhibited when cells were transfected with a dominant negative mutant of the p85 domain of PI 3-kinase (Deltap85) and enhanced when cells were transfected with an activated form of PI 3-kinase (p110CAAX), indicating that PI 3'-kinase is involved in Akt phosphorylation. OPN enhances the interaction between IkappaBalpha kinase (IKK) and phosphorylated Akt. OPN also induces NFkappaB activation through phosphorylation and degradation of IkappaBalpha by inducing the IKK activity. However, both pharmacological (wortmannin and LY294002) and genetic (Deltap85) inhibitors of PI 3'-kinase inhibited OPN-induced Akt phosphorylation, IKK activity, and NFkappaB activation through phosphorylation and degradation of IkappaBalpha. OPN also enhances uPA secretion, cell motility, and extracellular matrix invasion. Furthermore, cells transfected with Deltap85 or the super-repressor form of IkappaBalpha suppressed the OPN-induced uPA secretion and cell motility, whereas cells transfected with p110CAAX enhanced these effects. Pretreatment of cells with PI 3-kinase inhibitors or NFkappaB inhibitory peptide (SN-50) reduced the OPN-induced uPA secretion, cell motility, and invasion. To our knowledge, this is first report that OPN induces NFkappaB activity and uPA secretion by activating PI 3'-kinase/Akt/IKK-mediated signaling pathways and further demonstrates a functional molecular link between OPN-induced PI 3'-kinase-dependent Akt phosphorylation and NFkappaB-mediated uPA secretion, and all of these ultimately control the motility of breast cancer cells.  相似文献   

8.
Leptin, the adipocyte-secreted hormone that centrally regulates weight control, is known to function as an immunomodulatory regulator. We investigated the signaling pathway involved in IL-8 production caused by leptin in both rheumatoid arthritis synovial fibroblasts (RASF) and osteoarthritis synovial fibroblasts (OASF). RASF and OASF expressed the long (OBRl) and short (OBRs) isoforms of the leptin receptor. Leptin caused concentration- and time-dependent increases in IL-8 production. Leptin-mediated IL-8 production was attenuated by OBRl receptor antisense oligonucleotide, JAK2 inhibitor or STAT3 small interference RNA (siRNA). Transfection with insulin receptor substrate (IRS)-1 siRNA or dominant-negative mutant of p85 and Akt or pretreatment with phosphatidylinositol 3-kinase inhibitor (Ly294002 and wortmannin), Akt inhibitor, NF-kappaB inhibitor (PDTC) and NF-kappaB inhibitor peptide also inhibited the potentiating action of leptin. Stimulation of RASF with leptin activated IkappaB kinase alpha/beta (IKK alpha/beta), p65 phosphorylation at Ser(276), p65 translocation from the cytosol to the nucleus, and kappaB-luciferase activity. Moreover, pretreatment with p300 inhibitor (curcumin) also blocked IL-8 expression. The binding of p65 to the NF-kappaB elements, as well as the recruitment of p300 and the enhancement of histone H3 acetylation on the IL-8 promoter was enhanced by leptin, which was inhibited by wortmannin, Akt inhibitor or IRS-1 siRNA. These results suggest that leptin increased IL-8 production in synovial fibroblast via the OBRl/JAK2/STAT3 pathway, as well as the activation of IRS1/PI3K/Akt/NF-kappaB-dependent pathway and the subsequent recruitment of p300.  相似文献   

9.
Baf-3 cells are dependent on interleukin-3 (IL-3) for their survival and proliferation in culture. To identify anti-apoptotic pathways, we performed a retroviral-insertion mutagenesis on Baf-3 cells and selected mutants that have acquired a long term survival capacity. The phenotype of one mutant, which does not overexpress bcl-x and proliferates in the absence of IL-3, is described. We show that, in this mutant, Akt is constitutively activated leading to FKHRL1 phosphorylation and constitutive glycolytic activity. This pathway is necessary for the mutant to survive following IL-3 starvation but is not sufficient or necessary to protect cells from DNA damage-induced cell death. Indeed, inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in Baf-3 cells does not prevent the ability of IL-3 to protect cells against gamma-irradiation-induced DNA damage. This protective effect of IL-3 rather correlates with the expression of the anti-apoptotic Bcl-x protein. Taken together, these data demonstrate that the PI3K/Akt pathway is sufficient to protect cells from growth factor starvation-induced apoptosis but is not required for IL-3 inhibition of DNA damage-induced cell death.  相似文献   

10.
Phosphorylation of the translation repressor eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) is thought to be partly responsible for increased protein synthesis induced by growth factors. This study investigated the effect of a G(q)-coupled receptor on protein synthesis and the phosphorylation state and function of 4E-BP1 in Rat-1 fibroblasts expressing the human alpha(1A) adrenergic receptor. Treatment of cells with phenylephrine (PE), a specific alpha(1) adrenergic receptor agonist, increased protein synthesis and induced the phosphorylation of 4E-BP1 and its release from translation initiation factor 4E. Although the PE-induced phosphorylation of 4E-BP1 was blocked by the phosphatidylinositol 3-kinase inhibitor LY294002, neither phosphatidylinositol 3-kinase nor Akt, its downstream effector, is activated in cells treated with PE (Ballou, L. M., Cross, M. E., Huang, S., McReynolds, E. M., Zhang, B. X., and Lin, R. Z., J. Biol. Chem. 275, 4803-4809). The effect of PE on 4E-BP1 phosphorylation was also abolished in cells depleted of intracellular Ca(2+) and in cells pretreated with calmodulin antagonists. By contrast, phosphorylation of 4E-BP1 still occurred in cells in which the Ca(2+)- and diacylglycerol-dependent isoforms of protein kinase C were down-regulated by prolonged exposure to a phorbol ester. We conclude that activation of the alpha(1A) adrenergic receptor in Rat-1 fibroblasts leads to phosphorylation of 4E-BP1 via a pathway that is Ca(2+)- and calmodulin-dependent. Phosphatidylinositol 3-kinase, Akt, and phorbol ester-sensitive protein kinase C isoforms do not appear to be required in this signaling pathway.  相似文献   

11.
Most, if not all, cytokines activate phosphatidylinositol 3-kinase (PI-3K). Although many cytokine receptors have direct binding sites for the p85 subunit of PI-3K, others, such as the interleukin-3 (IL-3) receptor beta common chain (betac) and the IL-2 receptor beta chain (IL-2Rbeta), lack such sites, leaving the mechanism by which they activate PI-3K unclear. Here, we show that the protooncoprotein Shc, which promotes Ras activation by recruiting the Grb2-Sos complex in response to stimulation of cytokine stimulation, also signals to the PI-3K/Akt pathway. Analysis of Y-->F and "add-back" mutants of betac shows that Y577, the Shc binding site, is the major site required for Gab2 phosphorylation in response to cytokine stimulation. When fused directly to a mutant form of IL-2Rbeta that lacks other cytoplasmic tyrosines, Shc can promote Gab2 tyrosyl phosphorylation. Mutation of the three tyrosyl phosphorylation sites of Shc, which bind Grb2, blocks the ability of the Shc chimera to evoke Gab2 tyrosyl phosphorylation. Overexpression of mutants of Grb2 with inactive SH2 or SH3 domains also blocks cytokine-stimulated Gab2 phosphorylation. The majority of cytokine-stimulated PI-3K activity associates with Gab2, and inducible expression of a Gab2 mutant unable to bind PI-3K markedly impairs IL-3-induced Akt activation and cell growth. Experiments with the chimeric receptors indicate that Shc also signals to the PI-3K/Akt pathway in response to IL-2. Our results suggest that cytokine receptors lacking direct PI-3K binding sites activate Akt via a Shc/Grb2/Gab2/PI-3K pathway, thereby regulating cell survival and/or proliferation.  相似文献   

12.
Catecholamines, acting through adrenergic receptors, play an important role in modulating the effects of insulin on glucose metabolism. Insulin activation of glycogen synthesis is mediated in part by the inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3). In this study, catecholamine regulation of GSK-3beta was investigated in Rat-1 fibroblasts stably expressing the alpha1A-adrenergic receptor. Treatment of these cells with either insulin or phenylephrine (PE), an alpha1-adrenergic receptor agonist, induced Ser-9 phosphorylation of GSK-3beta and inhibited GSK-3beta activity. Insulin-induced GSK-3beta phosphorylation is mediated by the phosphatidylinositol 3-kinase/Akt signaling pathway. PE treatment does not activate phosphatidylinositol 3-kinase or Akt (Ballou, L. M., Cross, M. E., Huang, S., McReynolds, E. M., Zhang, B. X., and Lin, R. Z. (2000) J. Biol. Chem. 275, 4803-4809), but instead inhibits insulin-induced Akt activation and GSK-3beta phosphorylation. Experiments using protein kinase C (PKC) inhibitors suggest that phorbol ester-sensitive novel PKC and G? 6983-sensitive atypical PKC isoforms are involved in the PE-induced phosphorylation of GSK-3beta. Indeed, PE treatment of Rat-1 cells increased the activity of atypical PKCzeta, and expression of PKCzeta in COS-7 cells stimulated GSK-3beta Ser-9 phosphorylation. In addition, PE-induced GSK-3beta phosphorylation was reduced in Rat-1 cells treated with a cell-permeable PKCzeta pseudosubstrate peptide inhibitor. These results suggest that the alpha1A-adrenergic receptor regulates GSK-3beta through two signaling pathways. One pathway inhibits insulin-induced GSK-3beta phosphorylation by blocking insulin activation of Akt. The second pathway stimulates Ser-9 phosphorylation of GSK-3beta, probably via PKC.  相似文献   

13.
Hyaluronan oligosaccharides (molecular weight: approximately 2.5 x 10(3)) inhibit growth of several types of tumors in vivo. In vitro, the oligomers inhibit anchorage-independent growth of several tumor cell types. In accordance with this finding, the oligomers also induce apoptosis and stimulate caspase-3 activity under anchorage-independent conditions. Since inhibitors of phosphoinositide 3-kinase (PI 3-kinase) mimic the action of hyaluronan oligomers and since the PI 3-kinase/Akt (protein kinase B) cell survival pathway has previously been implicated in anchorage-independent growth of tumor cells, we examined the effect of oligomers on PI 3-kinase and its downstream activities in TA3/St murine mammary carcinoma and HCT 116 human colon carcinoma cells. We observed that 50-150 microg/ml hyaluronan oligomers inhibit PI 3-kinase activity and phosphorylation of Akt to approximately the same extent as optimal doses of wortmannin and LY294002, known inhibitors of PI 3-kinase. Similar inhibition of downstream events, i.e. phosphorylation of BAD and FKHR, was also observed. These effects were not observed on treatment with similar concentrations of chitin oligomers, chondroitin sulfate, or hyaluronan polymer. High molecular weight (approximately 2 x 10(6)) and low molecular weight (approximately 8 x 10(4)) preparations of hyaluronan polymer were equally ineffective. The effects of hyaluronan oligomers on these parameters were similar in magnitude to the effect of treatment with activity-blocking antibody against CD44. We interpret these results to indicate that the oligomers competitively block binding of endogenous hyaluronan polymer to CD44, consequently giving rise to attenuated signaling. Finally, we observed that hyaluronan oligomers, but not chitin oligomers, chondroitin sulfate, or hyaluronan polymer, stimulate expression of PTEN, a phosphatase that degrades the major signaling product of PI 3-kinase action, phosphoinositide 3,4,5-trisphosphate. We conclude that perturbation of hyaluronan-CD44 binding leads to suppression of the PI 3-kinase/Akt cell survival pathway and consequently to inhibition of anchorage-independent growth in culture and tumor growth in vivo.  相似文献   

14.
A critical issue in understanding receptor tyrosine kinase signaling is the individual contribution of diverse signaling pathways in regulating cellular growth, survival, and migration. We generated a functionally and biochemically inert c-Kit receptor that lacked the binding sites for seven early signaling pathways. Restoring the Src family kinase (SFK) binding sites in the mutated c-Kit receptor restored cellular survival and migration but only partially rescued proliferation and was associated with the rescue of the Ras/mitogen-activated protein kinase, Rac/JNK kinase, and phosphatidylinositol 3-kinase (PI-3 kinase)/Akt pathways. In contrast, restoring the PI-3 kinase binding site in the mutated receptor did not affect cellular proliferation but resulted in a modest correction in cell survival and migration, despite a complete rescue in the activation of the PI-3 kinase/Akt pathway. Surprisingly, restoring the binding sites for Grb2, Grb7, or phospholipase C-gamma had no effect on cellular growth or survival, migration, or activation of any of the downstream signaling pathways. These results argue that SFKs play a unique role in the control of multiple cellular functions and in the activation of distinct biochemical pathways via c-Kit.  相似文献   

15.
We demonstrate that POSH, a scaffold for the JNK signaling pathway, binds to Akt2. A POSH mutant that is unable to bind Akt2 (POSH W489A) exhibits enhanced-binding to MLK3, and this increase in binding is accompanied by increased activation of the JNK signaling pathway. In addition, we show that the association of MLK3 with POSH is increased upon inhibition of the endogenous phosphatidylinositol 3-kinase/Akt signaling pathway. Thus, the assembly of an active JNK signaling complex by POSH is negatively regulated by Akt2. Further, the level of Akt-phosphorylated MLK3 is reduced in cells expressing the Akt2 binding domain of POSH, which acts as a dominant interfering protein. Taken together, our results support a model in which Akt2 binds to a POSH-MLK-MKK-JNK complex and phosphorylates MLK3; phosphorylation of MLK3 by Akt2 results in the disassembly of the JNK complex bound to POSH and down-regulation of the JNK signaling pathway.  相似文献   

16.
The multifunctional cytokine interleukin-6 (IL-6) regulates growth and differentiation of many cell types and induces production of acute-phase proteins in hepatocytes. Here we report that IL-6 protects hepatoma cells from apoptosis induced by transforming growth factor-beta (TGF-beta), a well known apoptotic inducer in liver cells. Addition of IL-6 blocked TGF-beta-induced activation of caspase-3 while showing no effect on the induction of plasminogen activator inhibitor-1 and p15(INK4B) genes, indicating that IL-6 interferes with only a subset of TGF-beta activities. To further elucidate the mechanism of this anti-apoptotic effect of IL-6, we investigated which signaling pathway transduced by IL-6 is responsible for this effect. IL-6 stimulation of hepatoma cells induced a rapid tyrosine phosphorylation of the p85 subunit of phosphatidylinositol 3-kinase (PI 3-kinase) and its kinase activity followed by the activation of Akt. Inhibition of PI 3-kinase by wortmannin or LY294002 abolished the protection of IL-6 against TGF-beta-induced apoptosis. A dominant-negative Akt also abrogated this anti-apoptotic effect. Dominant-negative inhibition of STAT3, however, only weakly attenuated the IL-6-induced protection. Finally, inhibition of both STAT3 and PI 3-kinase by treating cells overexpressing the dominant-negative STAT3 with LY294002 completely blocked IL-6-induced survival signal. Thus, concomitant activation of the PI 3-kinase/Akt and the STAT3 pathways mediates the anti-apoptotic effect of IL-6 against TGF-beta, with the former likely playing a major role in this anti-apoptosis.  相似文献   

17.
The interleukin-2 receptor (IL-2R) is composed of one affinity-modulating subunit (IL-2Ralpha) and two essential signaling subunits (IL-2Rbeta and gammac). Although most known signaling events are mediated through tyrosine residues located within IL-2Rbeta, no functions have yet been ascribed to gammac tyrosine residues. In this study, we describe a role for gammac tyrosines in anti-apoptotic signal transduction. We have shown previously that a tyrosine-deficient IL-2Rbeta chain paired with wild type gammac stimulated enhancement of bcl-2 mRNA in IL-2-dependent T cells, but it was not determined which region of the IL-2R or which pathway was activated to direct this signaling response. Here we show that up-regulation of Bcl-2 by an IL-2R lacking IL-2Rbeta tyrosine residues leads to increased cell survival after cytokine deprivation; strikingly, this survival signal does not occur in the absence of gammac tyrosine residues. These gammac-dependent signals are revealed only in the absence of IL-2Rbeta tyrosines, indicating that the IL-2R engages at least two distinct signaling pathways to regulate apoptosis and Bcl-2 expression. Mechanistically, the gammac-dependent signal requires activation of Janus kinases 1 and 3 and is sensitive to wortmannin, implicating phosphatidylinositol 3-kinase. Consistent with involvement of phosphatidylinositol 3-kinase, Akt can be activated via tyrosine residues on gammac. Thus, gammac mediates an anti-apoptotic signaling pathway through Akt which cooperates with signals from its partner chain, IL-2Rbeta.  相似文献   

18.
19.
20.
Tie1 is an orphan receptor tyrosine kinase that is expressed almost exclusively in endothelial cells and that is required for normal embryonic vascular development. Genetic studies suggest that Tie1 promotes endothelial cell survival, but other studies have suggested that the Tie1 kinase has little to no activity, and Tie1-mediated signaling pathways are unknown. To begin to study Tie1 signaling, a recombinant glutathione S-transferase (GST)-Tie1 kinase fusion protein was produced in insect cells and found to be autophosphorylated in vitro. GST-Tie1 but not a kinase-inactive mutant associated with a recombinant p85 SH2 domain protein in vitro, suggesting that Tie1 might signal through phosphatidylinositol (PI) 3-kinase. To study Tie1 signaling in a cellular context, a c-fms-Tie1 chimeric receptor (fTie1) was expressed in NIH 3T3 cells. Ligand stimulation of fTie1 resulted in Tie1 autophosphorylation and downstream activation of PI 3-kinase and Akt. Stimulation of fTie1-expressing cells potently inhibited UV irradiation-induced apoptosis in a PI 3-kinase-dependent manner. Moreover, both Akt phosphorylation and inhibition of apoptosis were abrogated by mutation of tyrosine 1113 to phenylalanine, suggesting that this residue is an important PI 3-kinase binding site. These findings are the first biochemical demonstration of a signal transduction pathway and corresponding cellular function for Tie1, and the antiapoptotic effect of Tie1 is consistent with the results of previous genetic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号