首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The essential P-loop NTPases Cfd1 and Nbp35 of the cytosolic iron-sulfur (Fe-S) protein assembly machinery perform a scaffold function for Fe-S cluster synthesis. Both proteins contain a nucleotide binding motif of unknown function and a C-terminal motif with four conserved cysteine residues. The latter motif defines the Mrp/Nbp35 subclass of P-loop NTPases and is suspected to be involved in transient Fe-S cluster binding. To elucidate the function of these two motifs, we first created cysteine mutant proteins of Cfd1 and Nbp35 and investigated the consequences of these mutations by genetic, cell biological, biochemical, and spectroscopic approaches. The two central cysteine residues (CPXC) of the C-terminal motif were found to be crucial for cell viability, protein function, coordination of a labile [4Fe-4S] cluster, and Cfd1-Nbp35 hetero-tetramer formation. Surprisingly, the two proximal cysteine residues were dispensable for all these functions, despite their strict evolutionary conservation. Several lines of evidence suggest that the C-terminal CPXC motifs of Cfd1-Nbp35 coordinate a bridging [4Fe-4S] cluster. Upon mutation of the nucleotide binding motifs Fe-S clusters could no longer be assembled on these proteins unless wild-type copies of Cfd1 and Nbp35 were present in trans. This result indicated that Fe-S cluster loading on these scaffold proteins is a nucleotide-dependent step. We propose that the bridging coordination of the C-terminal Fe-S cluster may be ideal for its facile assembly, labile binding, and efficient transfer to target Fe-S apoproteins, a step facilitated by the cytosolic iron-sulfur (Fe-S) protein assembly proteins Nar1 and Cia1 in vivo.  相似文献   

2.
Escherichia coli thioredoxin is a small monomeric protein that reduces disulfide bonds in cytoplasmic proteins. Two cysteine residues present in a conserved CGPC motif are essential for this activity. Recently, we identified mutations of this motif that changed thioredoxin into a homodimer bridged by a [2Fe-2S] iron-sulfur cluster. When exported to the periplasm, these thioredoxin mutants could restore disulfide bond formation in strains lacking the entire periplasmic oxidative pathway. Essential for the assembly of the iron-sulfur was an additional cysteine that replaced the proline at position three of the CGPC motif. We solved the crystalline structure at 2.3 Angstroms for one of these variants, TrxA(CACA). The mutant protein crystallized as a dimer in which the iron-sulfur cluster is replaced by two intermolecular disulfide bonds. The catalytic site, which forms the dimer interface, crystallized in two different conformations. In one of them, the replacement of the CGPC motif by CACA has a dramatic effect on the structure and causes the unraveling of an extended alpha-helix. In both conformations, the second cysteine residue of the CACA motif is surface-exposed, which contrasts with wildtype thioredoxin where the second cysteine of the CXXC motif is buried. This exposure of a pair of vicinal cysteine residues apparently allows thioredoxin to acquire an iron-sulfur cofactor at its active site, and thus a new activity and mechanism of action.  相似文献   

3.
IscA is a key member of the iron-sulfur cluster assembly machinery found in bacteria and eukaryotes, but the mechanism of its function in the biogenesis of iron-sulfur cluster remains elusive. In this paper, we demonstrate that Acidithiobacillus ferrooxidans IscA is a [4Fe-4S] cluster binding protein, and it can bind iron in the presence of DTT with an apparent iron association constant of 4·1020 M?1. The iron binding in IscA can be promoted by oxygen through oxidizing ferrous iron to ferric iron. Furthermore, we show that the iron bound form of IscA can be converted to iron-sulfur cluster bound form in the presence of IscS and L-cysteine in vitro. Substitution of the invariant cysteine residues Cys35, Cys99, or Cys101 in IscA abolishes the iron binding activity of the protein; the IscA mutants that fail to bind iron are unable to assemble the iron-sulfur clusters. Further studies indicate that the iron-loaded IscA could act as an iron donor for the assembly of iron-sulfur clusters in the scaffold protein IscU in vitro. Taken together, these findings suggest that A. ferrooxidans IscA is not only an iron-sulfur protein, but also an iron binding protein that can act as an iron donor for biogenesis of iron-sulfur clusters.  相似文献   

4.
SNAP-25 and its ubiquitously expressed homologue, SNAP-23, are SNARE proteins that are essential for regulated exocytosis in diverse cell types. Recent work has shown that SNAP-25 and SNAP-23 are partly localized in sphingolipid/cholesterol-rich lipid raft domains of the plasma membrane and that the integrity of these domains is important for exocytosis. Here, we show that raft localization is mediated by a 36-amino-acid region of SNAP-25 that is also the minimal sequence required for membrane targeting; this domain contains 4 closely spaced cysteine residues that are sites for palmitoylation. Analysis of endogenous levels of SNAP-25 and SNAP-23 present in lipid rafts in PC12 cells revealed that SNAP-23 (54% raft-associated) was almost 3-fold more enriched in rafts when compared with SNAP-25 (20% raft-associated). We report that the increased raft association of SNAP-23 occurs due to the substitution of a highly conserved phenylalanine residue present in SNAP-25 with a cysteine residue. Intriguingly, although the extra cysteine in SNAP-23 enhances its raft association, the phenylalanine at the same position in SNAP-25 acts to repress the raft association of this protein. These different raft-targeting signals within SNAP-25 and SNAP-23 are likely important for fine-tuning the exocytic pathways in which these proteins operate.  相似文献   

5.
SNAP-25, syntaxin, and synaptobrevin are SNARE proteins that mediate fusion of synaptic vesicles with the plasma membrane. Membrane attachment of syntaxin and synaptobrevin is achieved through a C-terminal hydrophobic tail, whereas SNAP-25 association with membranes appears to depend upon palmitoylation of cysteine residues located in the center of the molecule. This process requires an intact secretory pathway and is inhibited by brefeldin A. Here we show that the minimal plasma membrane-targeting domain of SNAP-25 maps to residues 85-120. This sequence is both necessary and sufficient to target a heterologous protein to the plasma membrane. Palmitoylation of this domain is sensitive to brefeldin A, suggesting that it uses the same membrane-targeting mechanism as the full-length protein. As expected, the palmitoylated cysteine cluster is present within this domain, but surprisingly, membrane anchoring requires an additional five-amino acid sequence that is highly conserved among SNAP-25 family members. Significantly, the membrane-targeting module coincides with the protease-sensitive stretch (residues 83-120) that connects the two alpha-helices that SNAP-25 contributes to the four-helix bundle of the synaptic SNARE complex. Our results demonstrate that residues 85-120 of SNAP-25 represent a protein module that is physically and functionally separable from the SNARE complex-forming domains.  相似文献   

6.
In Escherichia coli, biotin synthase (bioB gene product) catalyzes the key step in the biotin biosynthetic pathway, converting dethiobiotin (DTB) to biotin. Previous studies have demonstrated that BioB is a homodimer and that each monomer contains an iron-sulfur cluster. The purified BioB protein, however, does not catalyze the formation of biotin in a conventional fashion. The sulfur atom in the iron-sulfur cluster or from the cysteine residues in BioB have been suggested to act as the sulfur donor to form the biotin molecule, and yet unidentified factors were also proposed to be required to regenerate the active enzyme. In order to understand the catalytic mechanism of BioB, we employed an approach involving chemical modification and site-directed mutagenesis. The properties of the modified and mutated BioB species were examined, including DTB binding capability, biotin converting activity, and Fe(2+) content. From our studies, four cysteine residues (Cys 53, 57, 60, and 97) were assigned as the ligands of the iron-sulfur cluster, and Cys to Ala mutations completely abolished biotin formation activity. Two other cysteine residues (Cys 128 and 188) were found to be involved mainly in DTB binding. The tryptophan and histidine residues were suggested to be involved in DTB binding and dimer formation, respectively. The present study also reveals that the iron-sulfur cluster with its ligands are the key components in the formation of the DTB binding site. Based on the current results, a refined model for the reaction mechanism of biotin synthase is proposed.  相似文献   

7.
8.
9.
Increasing evidence suggests that IscS, a cysteine desulfurase, provides sulfur for assembly of transient iron-sulfur clusters in IscU. IscU appears to act as a scaffold and eventually transfers the assembled clusters to target proteins. However, the iron donor for the iron-sulfur cluster assembly largely remains elusive. Here we find that Escherichia coli IscU fails to assemble iron-sulfur clusters when the accessible "free" iron in solution is limited by an iron chelator sodium citrate. Remarkably, IscA, an iron-sulfur cluster assembly protein with an iron association constant of 3.0 x 10(19) m(-1), is able to overcome the iron limitation due to sodium citrate and deliver iron for the IscS-mediated iron-sulfur cluster assembly in IscU. Substitution of the invariant cysteine residues Cys-99 or Cys-101 in IscA with serine completely abolishes the iron binding activity of the protein. The IscA mutants that fail to bind iron are unable to mediate iron delivery for the iron-sulfur cluster assembly in IscU under the limited accessible "free" iron conditions. The results suggest that IscA is capable of recruiting intracellular iron and providing iron for the iron-sulfur cluster assembly in IscU in cells in which the accessible "free" iron content is probably restricted.  相似文献   

10.
Respiratory-defective mutants of Saccharomyces cerevisiae assigned to a single complementation group (G12) have been determined to have lesions in the iron-sulfur protein (Rieske protein) of ubiquinol: cytochrome c reductase. Mutants capable of expressing the protein were chosen for further studies. The genes from 13 independent isolates were cloned and their mutations sequenced. Twelve mutations were ascertained to cause single amino acid substitutions in the carboxyl-terminal regions of the protein between residues 127 and 173. This region is proposed to be part of the catalytic domain with the ligands responsible for co-ordinating the two irons of the 2Fe-2S cluster. Based on the catalytic properties of the ubiquinol: cytochrome c reductase complex and the electron paramagnetic resonance (e.p.r.) signals of the iron-sulfur protein, the mutants describe two different phenotypes. A subset of mutants have no detectable iron-sulfur cluster and are completely deficient in ubiquinol: cytochrome c reductase activity. These strains identify mutations in residues considered to be essential for binding of the iron or for maintaining a proper tertiary structure of the catalytic domain. A second group of mutants have reduced levels of enzymatic activity and exhibit e.p.r. spectra characteristic of the Rieske iron-sulfur cluster. The mutations in the latter strains have been ascribed to residues that influence the redox properties of the cluster by distorting the iron-binding pocket. A secondary and tertiary structure model is presented of the carboxyl-terminal 65 residues constituting the catalytic domain of the iron-sulfur protein. It is postulated that the two irons of the cluster are co-ordinated by three cysteine and a single histidine residue located in a loop structure. The catalytic domain also contains two short alpha-helices and three beta-strands that form a partial beta-barrel. Most of the hydrophilic amino acids are present in turns that map to one pole of the domain. When viewed in the context of the model, mutations that abolish the iron-sulfur cluster are mostly in residues defining the boundaries of the alpha-helices and beta-strands. The notable exception is a cysteine residue that has been assigned to the loop with the iron ligands. This cysteine residue is proposed to co-ordinate one iron of the cluster. Mutations that reduce ubiquinol: cytochrome c reductase activity and alter the redox potential of the cluster occur in residues located in the loop that contains the ligands of the cluster.  相似文献   

11.
《The Journal of cell biology》1989,109(6):3039-3052
cDNA clones of a neuronal-specific mRNA encoding a novel 25-kD synaptosomal protein, SNAP-25, that is widely, but differentially expressed by diverse neuronal subpopulations of the mammalian nervous system have been isolated and characterized. The sequence of the SNAP- 25 cDNA revealed a single open reading frame that encodes a primary translation product of 206 amino acids. Antisera elicited against a 12- amino acid peptide, corresponding to the carboxy-terminal residues of the predicted polypeptide sequence, recognized a single 25-kD protein that is associated with synaptosomal fractions of hippocampal preparations. The SNAP-25 polypeptide remains associated with synaptosomal membrane components after hypoosmotic lysis and is released by nonionic detergent but not high salt extraction. Although the SNAP-25 polypeptide lacks a hydrophobic stretch of residues compatible with a transmembrane region, the amino terminus may form an amphiphilic helix that may facilitate alignment with membranes. The predicted amino acid sequence also includes a cluster of four closely spaced cysteine residues, similar to the metal binding domains of some metalloproteins, suggesting that the SNAP-25 polypeptide may have the potential to coordinately bind metal ions. Consistent with the protein fractionation, light and electron microscopic immunocytochemistry indicated that SNAP-25 is located within the presynaptic terminals of hippocampal mossy fibers and the inner molecular layer of the dentate gyrus. The mRNA was found to be enriched within neurons of the neocortex, hippocampus, piriform cortex, anterior thalamic nuclei, pontine nuclei, and granule cells of the cerebellum. The distribution of the SNAP-25 mRNA and the association of the protein with presynaptic elements suggest that SNAP-25 may play an important role in the synaptic function of specific neuronal systems.  相似文献   

12.
Iron-sulfur cluster is one of the most common prosthetic groups, and it functions in numerous biological processes. However, little is currently known about the mechanisms of iron-sulfur cluster biosynthesis. In this study, we cloned and purified iron-sulfur cluster assembly proteins from Escherichia coli and assembled the cluster in vitro. The results showed that the assembly of iron-sulfur cluster is completed in about 20 min. Although iron or sulfur binds with IscU equivalently, 2-fold amount of iron or cysteine compared with that of IscU is better for the cluster formation, while high concentrations of IscS (IscS/IscU > 1: 10) do not facilitate the cluster formation. Environmental pH plays an important role in iron-sulfur cluster assembly; the cluster was well assembled at pH 7.6–8.0, but was inhibited at pH less than 7.4. On supply of a catalytic amount of IscS (1/50 of IscU) and excess of other substrates, with increasing each of IscU, iron, or cysteine concentration, the iron-sulfur cluster assembly process developed from first order reaction, mixed order reaction to zero order reaction, and up to 64% of apo-IscU was converted to the [2Fe-2S] cluster-bound IscU under the optimal laboratory conditions.  相似文献   

13.
 Cysteine is the ubiquitous ligand of iron-sulfur clusters in proteins, although chemical models have indicated that functional groups other than thiolates can coordinate iron in iron-sulfur compounds. Only a small number of naturally occurring examples of hydroxyl, histidinyl or carboxyl coordination have been clearly established but many others are suspected. Quite a few site-directed mutagenesis experiments have been aimed at replacing the cysteine ligands of iron-sulfur centers by other amino acids in various systems. The available data set shows that substituting one ligand, even by another functional residue, is very often destabilizing enough to impair cluster assembly; in some cases, the apoprotein cannot even be detected. One for one replacements have been demonstrated, but they have been so far almost exclusively confined to clusters with no more than one or two iron atoms. In contrast, changes of the cluster nuclearity or recruitment of free cysteine residues seem preferred ways for proteins containing larger clusters to cope with removal of a ligand, rather than using coordinating amino acids bearing different chemical functions. Furthermore, the possibility of replacing cysteines by other residues as ligands in iron-sulfur proteins does not uniquely depend on the ability of the cluster to accept other kinds of coordination than cysteinate; other factors such as the local flexibility of the polypeptide chain, the accessibility of the solvent and the electronic distribution on the active centers may also play a prominent role.  相似文献   

14.
It was generally accepted that plants, algae, and phototrophic bacteria use adenosine 5'-phosphosulfate (APS) for assimilatory sulfate reduction, whereas bacteria and fungi use phosphoadenosine 5'-phosphosulfate (PAPS). The corresponding enzymes, APS and PAPS reductase, share 25-30% identical amino acids. Phylogenetic analysis of APS and PAPS reductase amino acid sequences from different organisms, which were retrieved from the GenBank(TM), revealed two clusters. The first cluster comprised known PAPS reductases from enteric bacteria, cyanobacteria, and yeast. On the other hand, plant APS reductase sequences were clustered together with many bacterial ones, including those from Pseudomonas and Rhizobium. The gene for APS reductase cloned from the APS-reducing cyanobacterium Plectonema also clustered together with the plant sequences, confirming that the two classes of sequences represent PAPS and APS reductases, respectively. Compared with the PAPS reductase, all sequences of the APS reductase cluster contained two additional cysteine pairs homologous to the cysteine residues involved in binding an iron-sulfur cluster in plants. M?ssbauer analysis revealed that the recombinant APS reductase from Pseudomonas aeruginosa contains a [4Fe-4S] cluster with the same characteristics as the plant enzyme. We conclude, therefore, that the presence of an iron-sulfur cluster determines the APS specificity of the sulfate-reducing enzymes and thus separates the APS- and PAPS-dependent assimilatory sulfate reduction pathways.  相似文献   

15.
SNAP-23 and SNAP-25 are palmitoylated in vivo.   总被引:6,自引:0,他引:6  
The neuronal presynaptic membrane t-SNARE complex consists of the transmembrane protein syntaxin with the palmitoylated protein SNAP-25. In non-neuronal tissues, SNAP-23 replaces SNAP-25 in the t-SNARE complex, although the mechanism of membrane anchoring of SNAP-23 has not been determined. We now report that like SNAP-25, SNAP-23 is palmitoylated in vivo on one or more cysteine residues present in a central "palmitoylation domain." Interestingly, SNAP-23 is palmitoylated less well than SNAP-25, and in vivo binding studies indicate a correlation between the extent of palmitoylation and the ability of SNAP-23 or SNAP-25 to bind to syntaxin in vivo.  相似文献   

16.
Increasing evidence suggests that sulfur in ubiquitous iron-sulfur clusters is derived from L-cysteine via cysteine desulfurases. In Escherichia coli, the major cysteine desulfurase activity for biogenesis of iron-sulfur clusters has been attributed to IscS. The gene that encodes IscS is a member of an operon iscSUA, which also encodes two highly conserved proteins: IscU and IscA. Previous studies suggested that both IscU and IscA may act as the iron-sulfur cluster assembly scaffold proteins. However, recent evidence indicated that IscA is an iron-binding protein that can provide iron for the iron-sulfur cluster assembly in IscU (Ding, H., Harrison, K., and Lu, J. (2005) J. Biol. Chem. 280, 30432-30437). To further elucidate the function of IscA in biogenesis of iron-sulfur clusters, we evaluate the iron-sulfur cluster binding activity of IscA and IscU under physiologically relevant conditions. When equal amounts of IscA and IscU are incubated with an equivalent amount of ferrous iron in the presence of IscS, L-cysteine and dithiothreitol, iron-sulfur clusters are assembled in IscU, but not in IscA, suggesting that IscU is a preferred iron-sulfur cluster assembly scaffold protein. In contrast, when equal amounts of IscA and IscU are incubated with an equivalent amount of ferrous iron in the presence of IscS and dithiothreitol but without L-cysteine, nearly all iron is bound to IscA. The iron binding in IscA appears to prevent the formation of the biologically inaccessible ferric hydroxide under aerobic conditions. Subsequent addition of L-cysteine efficiently mobilizes the iron center in IscA and transfers the iron for the iron-sulfur cluster assembly in IscU. The results suggest an intriguing interplay between IscA and IscU in which IscA acts as an iron chaperon that recruits "free" iron and delivers the iron for biogenesis of iron-sulfur clusters in IscU under aerobic conditions.  相似文献   

17.
Han D  Canali R  Garcia J  Aguilera R  Gallaher TK  Cadenas E 《Biochemistry》2005,44(36):11986-11996
Aconitases are iron-sulfur cluster-containing proteins present both in mitochondria and cytosol of cells; the cubane iron-sulfur (Fe-S) cluster in the active site is essential for catalytic activity, but it also renders aconitase highly vulnerable to reactive oxygen and nitrogen species. This study examined the sites and mechanisms of aconitase inactivation by peroxynitrite (ONOO-), a strong oxidant and nitrating agent readily formed from superoxide anion and nitric oxide generated by mitochondria. ONOO- inactivated aconitase in a dose-dependent manner (half-maximal inhibition was observed with approximately 3 microM ONOO-). Low levels of ONOO- caused the conversion of the Fe-S cluster from the [4Fe-4S]2+ form to the inactive [3Fe-4S]1+ form with the loss of labile iron, as confirmed by low-temperature EPR analysis. In the presence of the substrate, citrate, 66-fold higher concentrations of ONOO- were required for half-maximal inhibition. The protective effects of citrate corresponded to its binding to the active site. The inactivation of aconitase in the presence of citrate was due to ONOO--mediated cysteine thiol loss and tyrosine nitration in the enzyme as shown by Western blot analyses. LC/MS/MS analyses revealed that ONOO- treatment to aconitase resulted in nitration of tyrosines 151 and 472 and oxidation to sulfonic acid of cysteines 126 and 385. The latter is one of the three cysteine residues in aconitase that binds to the Fe-S cluster. All other modified tyrosine and cysteine residues were adjacent to the binding site, thus suggesting that these modifications caused conformational changes leading to active-site disruption. Aconitase cysteine thiol modifications other than oxidation to sulfonic acid, such as S-glutathionylation, also decreased aconitase activity, thus indicating that glutathionylation may be an important means of modulating aconitase activity under oxidative and nitrative stress. Taken together, these results demonstrate that the Fe-S cluster in the active site, cysteine 385 bound to the Fe-S cluster, and tyrosine and cysteine residues in the vicinity of the active site are important targets of oxidative and/or nitrative attack, which is selectively controlled by the mitochondrial matrix citrate levels. The mechanisms inherent in aconitase inactivation by ONOO- are discussed in terms of the mitochondrial matrix metabolic and thiol redox state.  相似文献   

18.
1. We have isolated a cDNA encoding the 24 kDa subunit, an iron-sulfur protein, of mitochondrial NADH dehydrogenase from a human fibroblast cDNA library by colony hybridization using a rat 24 kDa subunit cDNA as a probe. 2. The presequence predicted from the human cDNA sequence is typical of precursors to mitochondrial proteins in a high content of basic residues and in the absence of acidic ones. 3. The mature form of the human 24 kDa subunit shows 95% homology with its rat counterpart. Five cysteine residues are conserved among human, rat and bovine; four of these are expected to be involved in the binding of a binuclear iron-sulfur cluster.  相似文献   

19.
The amino acid sequences of two very different high-potential iron-sulfur protein (HiPIP) isozymes have been determined from the moderately halophilic purple phototrophic bacterium, Rhodospirillum salinarum. Iso-1 HiPIP, which is monomeric and contains 57 amino acid residues, is most similar to the Thiobacillus ferrooxidans iron-oxidizing enzyme (45% identity and a 6-residue deletion). On the other hand, iso-2 HiPIP, which is isolated as an oligomer, contains a peptide chain with 54 amino acid residues. It is the smallest reported to date and is only 31% identical to iso-1 HiPIP. A massive deletion of 17 residues is found at the N-terminus, such that only 2 residues remain prior to the first cysteine. Iso-2 HiPIP also has a 12-residue insertion and a 5-residue deletion. Prior to this study, there were only 2 absolutely conserved residues (Tyr 19 and Gly 75, Chromatium numbering) in addition to the 4 iron-sulfur cluster binding cysteine residues among the 13 HiPIPs sequenced to date. We found that Tyr 19 is absent in iso-2 HiPIP along with the entire N-terminal loop. Moreover, Gly 75 is substituted in both R. salinarum HiPIPs. These characteristics make the R. salinarum HiPIPs, and especially iso-2, the most divergent yet characterized.  相似文献   

20.
The 5'-adenylyl sulfate (APS) reductase from the marine macrophytic green alga Enteromorpha intestinalis uses reduced glutathione as the electron donor for the reduction of APS to 5'-AMP and sulfite. The E. intestinalis enzyme (EiAPR) is composed of a reductase domain and a glutaredoxin-like C-terminal domain. The enzyme contains a single [4Fe-4S] cluster as its sole prosthetic group. Three of the enzyme's eight cysteine residues (Cys166, Cys257, and Cys260) serve as ligands to the iron-sulfur cluster. Site-directed mutagenesis experiments and resonance Raman spectroscopy are consistent with the presence of a cluster in which only three of the four ligands to the cluster irons contributed by the protein are cysteine residues. Site-directed mutagenesis experiments suggest that the thiol group of Cys250, a residue found only in algal APS reductases, is not an absolute requirement for activity. The other four cysteines that do not serve as cluster ligands, all of which are required for activity, are involved in the formation of two redox-active disulfide/dithiol couples. The couple involving Cys342 and Cys345 has an E(m) value at pH 7.0 of -140 mV, and the one involving Cys165 and Cys285 has an E(m) value at pH 7.0 of -290 mV. The C-terminal portion of EiAPR, expressed separately, exhibits the cystine reductase activity characteristic of glutaredoxins. It is proposed that the Cys342-Cys345 disulfide provides the site for entry of electrons from reduced glutathione and that the Cys166-Cys285 disulfide may serve as a structural element that is essential for keeping the enzyme in the catalytically active conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号