首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bovine lung cGMP-binding phosphodiesterase (cG-BPDE) was purified to homogeneity and exhibited specific cGMP hydrolytic (Km = 5.6 microM) and cGMP binding (half-maximum approximately 0.2 microM) activities which comigrated throughout the purification. A chimeric structure was suggested for cG-BPDE since DEAE chromatography of a partial alpha-chymotryptic digest of cG-BPDE separated cGMP-binding fragments from a cGMP hydrolytic fragment. Native cG-BPDE (178 kDa) appeared to be a homodimer comprised of two 93-kDa subunits. The order of potency of inhibitors of cG-BPDE hydrolysis of cGMP was as follows: zaprinast greater than dipyridamole greater than 3-isobutyl-1-methyl-8-methoxymethylxanthine greater than 3-isobutyl-1-methylxanthine greater than cilostamide greater than theophylline greater than rolipram. Minimum [3H]cGMP binding stoichiometry was 0.93 mol of cGMP bound/mol of monomer, but [3H]cGMP dissociation from cG-BPDE in the presence of excess unlabeled cGMP was curvilinear, suggesting multiple cGMP-binding sites. Two chymotryptic cGMP-binding fragments of 35 and 45 kDa were specifically photoaffinity labeled with [32P] cGMP, exhibited [3H]cGMP association and dissociation behavior indistinguishable from native cG-BPDE, and each had the amino-terminal sequence: Thr-Ser-Pro-Arg-Phe-Asp-Asn-Asp-Glu-Gly-. Cochromatography of the two cGMP-binding fragments suggested that both a dimerization domain and a cGMP-binding domain were located in a 35-kDa segment of cG-BPDE. Increased [3H]cGMP binding to or [32P]cGMP photoaffinity labeling of cG-BPDE binding sites in the presence of hydrolytic site-specific cyclic nucleotide analogs suggested communication between hydrolytic and binding sites. The principle of reciprocity thus predicts that cGMP binding to the binding sites may affect the hydrolytic site. In the presence of cGMP, the binding fragments or native cG-BPDE exhibited an electronegative shift on high performance liquid chromatography-DEAE, consistent with a cGMP-induced change in cG-BPDE conformation.  相似文献   

2.
The cGMP-binding cGMP-specific phosphodiesterase (PDE5) contains a catalytic domain that hydrolyzes cGMP and a regulatory (R) domain that contains two GAFs (a and b; GAF is derived from the proteins mammalian cGMP-binding PDEs, Anabaena adenylyl cyclases, and Escherichia coli (FhlA)). The R domain binds cGMP allosterically, provides for dimerization, and is phosphorylated at a site regulated by allosteric cGMP binding. Quaternary structures and cGMP-binding properties of 10 human PDE5A1 constructs containing one or both GAFs were characterized. Results reveal that: 1) high affinity homo-dimerization occurs between GAF a modules (K(D) < 30 nM) and between GAF b modules (K(D) = 1-20 pM), and the sequence between the GAFs (Thr322-Asp403) contributes to dimer stability; 2) 176 amino acids (Val156-Gln331) in GAF a are adequate for cGMP binding; 3) GAF a has higher affinity for cGMP (K(D) < 40 nM) than does the isolated R domain (K(D) = 110 nM) or holoenzyme (K(D) = 200 nM), suggesting that the sequence containing GAF b and its flanking amino acids autoinhibits GAF a cGMP-binding affinity in intact R domain; 4) a mutant (Met1-Glu321) containing only GAF a has high affinity, biphasic cGMP-binding kinetics consistent with structural heterogeneity of GAF a, suggesting that the presence of GAF b is not required for biphasic cGMP-dissociation kinetics observed in holoenzyme or isolated R domain; 5) significant cGMP binding by GAF b was not detected; and 6) the sequence containing GAF b and its flanking amino acids is critical for cGMP stimulation of Ser102 phosphorylation by cyclic nucleotide-dependent protein kinases. Results yield new insights into PDE5 functions, further define boundaries that provide for allosteric cGMP binding, and identify regions that contribute to dimerization.  相似文献   

3.
In addition to its cGMP-selective catalytic site, cGMP-binding cGMP-specific phosphodiesterase (PDE5) contains two allosteric cGMP-binding sites and at least one phosphorylation site (Ser92) on each subunit [Thomas, M.K., Francis, S.H. & Corbin, J.D. (1990) J. Biol. Chem. 265, 14971-14978]. In the present study, prior incubation of recombinant bovine PDE5 with a phosphorylation reaction mixture [cGMP-dependent protein kinase (PKG) or catalytic subunit of cAMP-dependent protein kinase (PKA), MgATP, cGMP, 3-isobutyl-1-methylxanthine], shown earlier to produce Ser92 phosphorylation, caused a 50-70% increase in enzyme activity and also increased the affinity of cGMP binding to the allosteric cGMP-binding sites. Both effects were associated with increases in its phosphate content up to 0.6 mol per PDE5 subunit. Omission of any one of the preincubation components caused loss of stimulation of catalytic activity. Addition of the phosphorylation reaction mixture to a crude bovine lung extract, which contains PDE5, also produced a significant increase in cGMP PDE catalytic activity. The increase in recombinant PDE5 catalytic activity brought about by phosphorylation was time-dependent and was obtained with 0.2-0.5 microM PKG subunit, which is approximately the cellular level of this enzyme in vascular smooth muscle. Significantly greater stimulation was observed using cGMP substrate concentrations below the Km value for PDE5, although stimulation was also seen at high cGMP concentrations. Considerably higher concentration of the catalytic subunit of PKA than of PKG was required for activation. There was no detectable difference between phosphorylated and unphosphorylated PDE5 in median inhibitory concentration for the PDE5 inhibitors, sildenafil, or zaprinast 3-isobutyl-1-methylxanthine. Phosphorylation reduced the cGMP concentration required for half-maximum binding to the allosteric cGMP-binding sites from 0.13 to 0.03 microM. The mechanism by which phosphorylation of PDE5 by PKG could be involved in physiological negative-feedback regulation of cGMP levels is discussed.  相似文献   

4.
The binding of [3H]cGMP (guanosine 3',5'-monophosphate) to purified bovine adrenal cGMP-stimulated phosphodiesterase was measured by Millipore filtration on cellulose ester filter. [3H]cGMP-binding activity was enhanced when the assay was terminated in buffer containing 70% of saturated ammonium sulfate to dilute the enzyme and wash the filters. The cGMP-binding activity was co-purified with the phosphodiesterase activity. The binding of [3H]cGMP to purified enzyme was measured in the presence or absence of the phosphodiesterase inhibitor, 1-methyl-3-isobutylxanthine. 1-Methyl-3-isobutylxanthine showed linear competitive inhibition with respect to cGMP as substrate in the phosphodiesterase reaction but stimulated the [3H]cGMP-binding activity in the binding assay. The stimulatory effect appeared not to be the result of preservation from [3H]cGMP hydrolysis; no cGMP phosphodiesterase activity has been measured under the cGMP-binding assay conditions, in the absence or presence of the inhibitor. Half-maximal stimulation by 1-methyl-3-isobutylxanthine occurred in the 5-7 microM concentration range. The specificity of binding of [3H]cGMP was investigated by adding increasing concentration of unlabeled analogs of cAMP (adenosine 3',5'-monophosphate) and cGMP. The binding of [3H]cGMP (50 nM) was displaced by unlabeled cGMP and cAMP with the following potency: 50% displacement was reached at the 0.1 microM cGMP range and only at a fiftyfold higher cAMP concentration. Our data with comparative series of analogs (e.g. 5'-amino-5'-deoxyguanosine 3',5'-monophosphate and 3'-amino-3'-deoxyguanosine 3',5'-monophosphate) showed that the potencies of stimulation of cAMP phosphodiesterase activity parallels displacement curves or [3H]cGMP binding to purified enzyme with no correlation with phosphodiesterase inhibition sequences. Those experiments suggest that the cGMP-binding activity is directly related to the non-catalytic (allosteric) cGMP-binding site.  相似文献   

5.
To date, relative cellular levels of cGMP and cGMP-binding proteins have not been considered important in the regulation of smooth muscle or any other tissue. In rabbit penile corpus cavernosum, intracellular cGMP was determined to be 18 +/- 4 nM, whereas the cGMP-binding sites of types Ialpha and Ibeta cGMP-dependent protein kinase (PKG) and cGMP-binding cGMP-specific phosphodiesterase (PDE5) were 58 +/- 14 nM and 188 +/- 6 nM, respectively, as estimated by two different methods for each protein. Thus, total cGMP-binding sites (246 nM) greatly exceed total cGMP. Given this excess of cGMP-binding sites and the high affinities of PKG and PDE5 for cGMP, it is likely that a large portion of intracellular cGMP is associated with these proteins, which could provide a dynamic reservoir for cGMP. Phosphorylation of PDE5 by PKG is known to increase the affinity of PDE5 allosteric sites for cGMP, suggesting the potential for regulation of a reservoir of cGMP bound to this protein. Enhanced binding of cGMP by phosphorylated PDE5 could reduce the amount of cGMP available for activation of PKG, contributing to feedback inhibition of smooth muscle relaxation or other processes. This introduces a new concept for cyclic nucleotide signaling.  相似文献   

6.
Binding of oligonucleotides to cell membranes at acidic pH.   总被引:1,自引:0,他引:1  
Antisense oligodeoxynucleotides [oligo(dN)] have the ability to enter living cells and block the expression of specific genes. However, little is known about the mechanism of cellular uptake of oligo(dN). We have found that oligo(dN) can bind to the cell membranes of eukaryotic cells with much greater efficiency under acidic conditions (pH 4.0-4.5) than at neutral pH. The binding appears to be specific to poly nucleic acids since various sizes of oligo(dN), DNA and RNA, but not mononucleotides, compete for the binding. We have identified a 34 kDa membrane protein from T-cells, which binds to oligo(dT) cellulose at pH 4.5 and can be eluted at pH 7.5. This protein fraction blocked the binding of oligo(dN) to living T-cells in a competitive fashion. Our results suggest that eukaryotic cells have a receptor for oligo(dN) at acidic pH and that the 34 kDa dalton protein on the cell membrane may mediate such binding.  相似文献   

7.
We describe here a novel sensor for cGMP based on the GAF domain of the cGMP-binding, cGMP-specific phosphodiesterase 5 (PDE5) using bioluminescence resonance energy transfer (BRET). The wild type GAFa domain, capable of binding cGMP with high affinity, and a mutant (GAFa F163A) unable to bind cGMP were cloned as fusions between GFP and Rluc for BRET (2) assays. BRET (2) ratios of the wild type GAFa fusion protein, but not GAFa F163A, increased in the presence of cGMP but not cAMP. Higher basal BRET (2) ratios were observed in cells expressing the wild type GAFa domain than in cells expressing GAFa F163A. This was correlated with elevated basal intracellular levels of cGMP, indicating that the GAF domain could act as a sink for cGMP. The tandem GAF domains in full length PDE5 could also sequester cGMP when the catalytic activity of PDE5 was inhibited. Therefore, these results describe a cGMP sensor utilizing BRET (2) technology and experimentally demonstrate the reservoir of cGMP that can be present in cells that express cGMP-binding GAF domain-containing proteins. PDE5 is the target for the anti-impotence drug sildenafil citrate; therefore, this GAF-BRET (2) sensor could be used for the identification of novel compounds that inhibit cGMP binding to the GAF domain, thereby regulating PDE5 catalytic activity.  相似文献   

8.
Regulation of cyclic GMP binding to retinal rod membranes by calcium   总被引:1,自引:0,他引:1  
The apparently cooperative binding of 8-(5-thioacetamidofluorescein)-cGMP (SAF-cGMP) to cGMP-binding sites of the rod outer segments is regulated by Ca2+ in the 0.1-1 microM activity range. High Ca2+ reduces, and low Ca2+ increases the affinity of SAF-cGMP binding. This regulation involves only intrinsic membrane components. It is proposed that an allosteric regulation of cGMP binding by Ca2+ can contribute to photoreceptor potential adaptation.  相似文献   

9.
The binding of [3H]cGMP to purified beef lung cGMP-dependent protein kinase (cG kinase) was examined using two methods of membrane filtration which avoided loss of bound [3H]cGMP. The enzyme bound 1.6-2.0 mol of [3H]cGMP/mol of monomer. If the kinase was saturated with [3H]cGMP and then excess unlabeled cGMP was added, [3H]cGMP dissociated from the enzyme as two approximately equal components (Sites 1 and 2). When 8-bromo-cGMP or cIMP was added to the [3H]cGMP-binding reaction at a concentration sufficient to competitively inhibit binding by greater than 50%, the relative amount of the slower or faster component, respectively, of [3H]cGMP dissociation decreased during the cGMP chase. The data indicated that the cG kinase, like its cAMP-dependent protein kinase homologue, possesses two highly conserved intrachain cyclic nucleotide-binding sites which have different dissociation rates and analog specificity. The Ka of the kinase for cGMP was about 20-fold lower using histone instead of heptapeptide as substrate. Aging of the enzyme caused conversion to a higher Ka form of the kinase and an apparent increase in the Site 1 cGMP dissociation rate. Using fresh enzyme and heptapeptide as substrate, Site 1 occupation occurred at lower concentrations of cGMP than did Site 2 occupation, and was associated with an increase in protein kinase activity. However, kinase activity appeared to correlate better with total cGMP binding than with binding to either of the two sites, and the activation by cGMP exhibited positive cooperativity (n = 1.57). It is suggested that both intrachain sites are involved in protein kinase activation. E2 + 4 cGMP in equilibrium E2 . cGMP4 The cG kinase could be photoaffinity-labeled using 8-azido-[32P]cAMP. When the labeled cG kinase was trypsin-treated followed by sodium dodecyl sulfate-slab gel electrophoresis, a single major peptide of approximate Mr = 12,000 was resolved.  相似文献   

10.
cGMP-specific, cGMP-binding phosphodiesterase (PDE5) regulates such physiological processes as smooth muscle relaxation and neuronal survival. PDE5 contains two N-terminal domains (GAF A and GAF B), but the functional roles of these domains have not been determined. Here we show that recombinant PDE5 is activated directly upon cGMP binding to the GAF A domain, and this effect does not require PDE5 phosphorylation. PDE5 exhibited time- and concentration-dependent reversible activation in response to cGMP, with the highest activation (9- to 11-fold) observed at low substrate concentrations (0.1 micro M cGMP). A monoclonal antibody directed against GAF A blocked cGMP binding, prevented PDE5 activation and decreased basal activity, revealing that PDE5 in its non-activated state has low intrinsic catalytic activity. Activated PDE5 showed higher sensitivity towards sildenafil than non-activated PDE5. The stimulatory effect of cGMP binding on the catalytic activity of PDE5 suggests that this mechanism of enzyme activation may be common among other GAF domain-containing proteins. The data also suggest that development of agonists and antagonists of PDE5 activity based on binding to this site might be possible.  相似文献   

11.
Phosphodiesterase-5 (PDE5) is a dimer containing a cGMP-specific catalytic domain and an allosteric cGMP-binding subdomain (GAF A) on each subunit. PDE5 exhibits three conformational forms that can be separated by Native PAGE and are denoted as Bands 1, 2, and 3 in decreasing order of mobility. A preparation comprised mainly of Band 2 PDE5 was partially converted to Band 3 PDE5 by 1 h incubation with cGMP or the PDE5-specific inhibitors sildenafil, vardenafil, or tadalafil, but not with cAMP, milrinone (PDE3-specific), or rolipram (PDE4-specific). Band 2 PDE5 was converted almost entirely to Band 3 PDE5 by overnight incubation with sildenafil at 30 °C. This time-dependent conversion was accompanied by a 7-fold increase in allosteric cGMP-binding activity, suggesting that Band 3 PDE5 is a much more active form than Band 2 PDE5 for allosteric cGMP binding. Conversion of Band 2 PDE5 to Band 3 PDE5 occurred faster by pre-incubation with cGMP, which binds to both the allosteric and catalytic sites of PDE5, than with catalytic site-specific sildenafil. Overnight incubation of a Band 2/Band 3 PDE5 mixture with EDTA caused time-dependent conversion to Band 1 PDE5 (apoenzyme), and this conversion was accompanied by a 50% loss in cGMP-binding activity. After incubation with EDTA, addition of Mn++ or Mg++ caused reversion of Band 1 to a Band 2/Band 3 PDE5 mixture in which Band 3 PDE5 predominated. This reversion was accompanied by a 3-fold increase in allosteric cGMP-binding activity. The combination of results implied that physiological conversion of Band 2 to Band 3 PDE5 by cGMP and/or divalent metal ion occupancy of the catalytic domain would increase allosteric cGMP binding to the enzyme. This conversion would produce a greater negative feedback effect on cGMP action by increasing sequestration of cGMP at the allosteric cGMP-binding site of PDE5 and by increasing cGMP degradation at the catalytic site of the enzyme. This conversion would also increase PDE5 inhibitor binding to the enzyme.  相似文献   

12.
Studies of cGMP binding to both the native cyclic GMP-stimulated phosphodiesterase and to two unique isolated chymotryptic fragments lacking the catalytic domain suggest that the enzyme contains two noncatalytic cGMP-binding sites/homodimer. In the presence of high concentrations of ammonium sulfate, 2 mol of cGMP are bound/mol of cGMP-stimulated phosphodiesterase homodimer. Under these conditions, linear Scatchard plots of binding are obtained that give an apparent Kd of approximately 2 microM. The inclusion of 3-isobutyl-1-methylxanthine produces a curvilinear plot. In the absence of ammonium sulfate, the dissociation of cGMP from the holoenzyme is rapid, having a t1/2 of less than 10 s, and addition of ammonium sulfate to the incubation greatly decreases this rate of dissociation. The native enzyme is resistant to degradation by chymotrypsin in the absence of cGMP; however, in its presence, chymotrypsin treatment produces several discrete fragments. Similarly, in the presence but not in the absence of cGMP, dicyclohexylcarbodiimide causes an irreversible activation of the enzyme without cross-linking the nucleotide to the phosphodiesterase. Both observations provide evidence that a different conformation in the enzyme results from cGMP binding. Only the conformation formed upon cGMP binding is easily attacked by chymotrypsin or permanently activated by treatment with dicyclohexylcarbodiimide. One major chymotryptic cleavage site exposed by cGMP binding is at tyrosine 553, implying that this region takes part in the conformational change. Limited proteolysis experiments indicate that these noncatalytic binding sites are located within a region of internal sequence homology previously proposed to include the cGMP-binding site(s) and that they retain a high affinity and specificity for cGMP independent of the catalytic domain of the enzyme. The products formed by partial proteolysis can be separated into individual catalytically active and cGMP-binding fractions by anion exchange chromatography. Gel filtration and electrophoresis analysis of the isolated fractions suggest that the cGMP-binding peak has a dimeric structure. Moreover, it can be further resolved by polyethyleneimine high performance liquid chromatography into two peaks (Peaks IIIA and IIIB). Peak IIIA binds 2 mol of cGMP/mol of dimer with an apparent Kd of 0.2 microM. Peak IIIB, however, has greatly reduced cGMP binding. Further digestion of these fragments with cyanogen bromide show that the differences between Peaks IIIA and IIIB are due to one or more additional proteolytic nicks in IIIB that remove a few residues near its C terminus, most probably residues 523-550 or 534-550. This in turn suggests that this region is essential for cGMP-binding activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Characterization of the domain structure of DNA polymerase beta is reported. Large scale overproduction of the rat protein in Escherichia coli was achieved, and the purified recombinant protein was verified by sequencing tryptic peptides. This protein is both a single-stranded DNA binding protein and a DNA polymerase consisting of one polypeptide chain of 334 amino acids. As revealed by controlled proteolysis experiments, the protein is organized in two relatively protease-resistant segments linked by a short protease-sensitive region. One of these protease-resistant segments represents the NH2-terminal 20% of the protein. This NH2-terminal domain (of about 75 residues) has strong affinity for single-stranded nucleic acids. The other protease-resistant segment, representing the COOH-terminal domain of approximately 250 residues, does not bind to nucleic acids. Neither domain, tested as purified proteins, has substantial DNA polymerase activity. The results suggest that the NH2-terminal domain is principally responsible for the template binding activity of the intact protein.  相似文献   

14.
Photoreceptor cGMP phosphodiesterases (PDE6) are uniquely qualified to serve as effector enzymes in the vertebrate visual transduction cascade. In the dark-adapted photoreceptors, the activity of PDE6 is blocked via tight association with the inhibitory gamma-subunits (Pgamma). The Pgamma block is removed in the light-activated PDE6 by the visual G protein, transducin. Transducin-activated PDE6 exhibits an exceptionally high catalytic rate of cGMP hydrolysis ensuring high signal amplification. To identify the structural determinants for the inhibitory interaction with Pgamma and the remarkable cGMP hydrolytic ability, we sought to reproduce the PDE6 characteristics by mutagenesis of PDE5, a related cyclic GMP-specific, cGMP-binding PDE. PDE5 is insensitive to Pgamma and has a more than 100-fold lower k(cat) for cGMP hydrolysis. Our mutational analysis of chimeric PDE5/PDE6alpha' enzymes revealed that the inhibitory interaction of cone PDE6 catalytic subunits (PDE6alpha') with Pgamma is mediated primarily by three hydrophobic residues at the entry to the catalytic pocket, Met(758), Phe(777), and Phe(781). The maximal catalytic rate of PDE5 was enhanced by at least 10-fold with substitutions of PDE6alpha'-specific glycine residues for the corresponding PDE5 alanine residues, Ala(608) and Ala(612). The Gly residues are adjacent to the highly conserved metal binding motif His-Asn-X-X-His, which is essential for cGMP hydrolysis. Our results suggest that the unique Gly residues allow the PDE6 metal binding site to adopt a more favorable conformation for cGMP hydrolysis.  相似文献   

15.
Interaction of nucleolar phosphoprotein B23 with nucleic acids   总被引:16,自引:0,他引:16  
T S Dumbar  G A Gentry  M O Olson 《Biochemistry》1989,28(24):9495-9501
The interaction of eukaryotic nucleolar phosphoprotein B23 with nucleic acids was examined by gel retardation and filter binding assays, by fluorescence techniques, and by circular dichroism. All studies utilized protein prepared under native conditions by a newly developed purification procedure. Electrophoretic gel mobility shift assays with phage M13 DNA suggested that protein B23 is a single-stranded nucleic acid binding protein. This was confirmed in competition binding assays with native or heat-denatured linearized plasmid pUC18 DNA where the protein showed a marked preference for the denatured form. In other competition assays, there was no apparent preference for single-stranded synthetic ribo- versus deoxyribonucleotides. Equilibrium binding with poly(riboethenoadenylic acid) indicated cooperative ligand binding with a protein binding site size of 11 nucleotides and an apparent binding constant (K omega) of 5 x 10(7) M-1 which includes an intrinsic binding constant (K) of 6.3 x 10(4) M-1 and a cooperativity factor (omega) of 800. In circular dichroism (CD) studies, protein B23, when combined with the single-stranded synthetic nucleic acids poly(rA) and poly(rC), effected a decrease in ellipticity and a shift of the positive peak at 260-270 nm toward higher wavelengths, indicating helix destabilizing activity. No CD changes were seen with double-stranded poly(dA.dT). The change in ellipticity of poly(rA) was sigmoidal upon addition of protein, confirming the cooperative behavior seen with fluorescence methods. These studies indicate that protein B23 binds cooperatively with high affinity for single-stranded nucleic acids and exhibits RNA helix destabilizing activity. These features may be related to its role in ribosome assembly.  相似文献   

16.
The cGMP phosphodiesterase (PDE) of retinal rods plays a central role in phototransduction. Illumination leads to its activation by a rod G-protein (Gt, transducin), thus causing a decrease in intracellular cGMP concentration, closure of plasma membrane cationic channels gated by cGMP, and development of the photoresponse. The PDE holoenzyme is an alpha beta gamma 2 tetramer. The alpha- and beta-subunits each contain one catalytic and one, or possibly two, noncatalytic cGMP-binding sites. Two identical gamma-subunits serve as protein inhibitors of the enzyme. Their inhibition is removed when they bind to Gt-GTP during PDE activation. Here we report that the noncatalytic cGMP-binding sites regulate the binding of PDE alpha beta with PDE gamma and as a result determine the mechanism of PDE activation by Gt. If the noncatalytic sites are empty, Gt-GTP physically removes PDE gamma from PDE alpha beta upon activation. Alternatively, if the noncatalytic sites are occupied by cGMP, Gt-GTP releases PDE gamma inhibitory action but remains bound in a complex with the PDE heterotetramer. The kinetic parameters of activated PDE in these two cases are indistinguishable. This mechanism appears to have two implications for the physiology of photoreceptor cells. First, the tight binding of PDE gamma with PDE alpha beta when the noncatalytic sites are occupied by cGMP may be responsible for the low level of basal PDE activity observed in dark-adapted cells. Second, occupancy of the noncatalytic sites ultimately controls the rate of PDE inactivation (cf. Arshavsky, V. Yu., and Bownds, M. D. (1992) Nature 357, 416-417), for the GTPase activity that terminates PDE activity is slower when these sites are occupied and Gt stays in a complex with PDE holoenzyme. In contrast GTPase acceleration is maximal when the noncatalytic sites are empty and Gt-PDE gamma dissociates from PDE alpha beta. Because cGMP levels are known to decrease upon illumination over a concentration range corresponding to the binding constants of the noncatalytic sites, the binding might be involved in determining the lifetime of activated PDE, after a single flash and/or during dark adaptation.  相似文献   

17.
Isolated gene 5 protein from bacteriophage fd-infected Escherichia coli has been shown by sedimentation equilibrium to exist primarily as a dimer under non-denaturing conditions. The dimer was stable under conditions of high ionic strength, extremes in pH, dilution to 0.075 mg/ml, and increased temperature. Gene 5 protein did not undergo the indefinite self-association observed with gene 32 protein.Three lines of evidence for co-operative binding of gene 5 protein to DNA were developed. First, the interaction between gene 5 protein and phage T4 DNA was examined using a nitrocellulose filter assay. Scatchard plots of the binding data indicated that the interaction was co-operative. Similar results were obtained with gene 32 protein. Second, the co-operative binding of both proteins to DNA was shown by the sensitivity of the protein-DNA interaction to increasing ionic strength at various ratios of protein to DNA. Finally, by using the cross-linking agent, dimethyl suberixmidate, oligomeric structures containing at least seven monomers were found when the DNA was less than saturated.The possibility that gene 5 protein dimers undergo indefinite self-association in the presence of oligonucleotides was examined by sedimentation equilibrium. With oligo[d(pT)4], the protein dimer was complexed with this oligonucleotide but no self-association was observed. With oligo[d(pT)8], gene 5 protein formed tetramers, but no significant indefinite association was noted. These results do not suggest a DNA-induced conformational change, which results in indefinite association. A model for the co-operative binding of gene 5 protein to DNA is presented.  相似文献   

18.
Bacteriophage T4 gene 32 protein (gp32) is a single-stranded DNA binding protein, which is essential for DNA replication, recombination, and repair. In a recent article, we described a new method using single DNA molecule stretching measurements to determine the noncooperative association constants K(ds) to double-stranded DNA for gp32 and *I, a truncated form of gp32. In addition, we developed a single molecule method for measuring K(ss), the association constant of these proteins to single-stranded DNA. We found that in low salt both K(ds) and K(ss) have a very weak salt dependence for gp32, whereas for *I the salt dependence remains strong. In this article we propose a model that explains the salt dependence of gp32 and *I binding to single-stranded nucleic acids. The main feature of this model is the strongly salt-dependent removal of the C-terminal domain of gp32 from its nucleic acid binding site that is in pre-equilibrium to protein binding to both double-stranded and single-stranded nucleic acid. We hypothesize that unbinding of the C-terminal domain is associated with counterion condensation of sodium ions onto this part of gp32, which compensates for sodium ion release from the nucleic acid upon its binding to the protein. This results in the salt-independence of gp32 binding to DNA in low salt. The predictions of our model quantitatively describe the large body of thermodynamic and kinetic data from bulk and single molecule experiments on gp32 and *I binding to single-stranded nucleic acids.  相似文献   

19.
cDNA of bovine cGMP-dependent protein kinase (cGMP kinase) isozymes I alpha and I beta differ only in their amino-terminal domains (amino acids 1-89 and 1-104, respectively). Each recombinant isozyme (rI alpha and rI beta) was transiently expressed in COS-7 cells and its properties were compared with the cGMP kinase isozymes P-I and P-II purified from bovine trachea. The subunit of P-I, P-II, rI alpha and rI beta had a molecular mass of about 75 kDa. rI alpha and rI beta had S20,W values of 7.6 and 7.2, respectively, indicating that they were present as dimeric holoenzymes. Immunostaining with specific antibodies showed that P-I and rI alpha, and P-II and rI beta, were immunologically indistinguishable. P-I, P-II, rI alpha and rI beta had the same catalytic activity. However, rI alpha and rI beta were half-maximally activated at 0.1 microM and 1.3 microM cGMP, and 0.3 microM and 12 microM 8-bromoguanosine 3',5'-(cyclic)phosphate (Br8-cGMP), respectively. P-I and P-II had a similar shift in their apparent KA values. P-I and rI alpha bound 2 mol cGMP/mol subunit to high-affinity (site 1) and low-affinity (site 2) cGMP-binding sites. The exchange rates were 0.005-0.009 min-1 for site 1 and 3.7 min-1 for site 2. In contrast, P-II and rI beta bound and rI beta bound 2 mol cGMP/mol enzyme subunit at only two low-affinity binding sites (site 2) with k-1 values of 0.92 min-1 and 4.8 min-1. These results suggest that a change from the I alpha amino-terminal domain to that of I beta increases the apparent KA value for cGMP 10-fold by altering the binding properties of binding site 1. The differential expression of the cGMP kinase isozymes could be an important mechanism in vivo to dampen the effect of long-term elevation of cGMP level.  相似文献   

20.
Chemoattractants added to cells of the cellular slime mold dictyostelium discoideum induce a transient elevation of cyclic GMP levels, with a maximum at 10 s and a recovery of basal levels at approximately 25 s after stimulation. We analyzed the kinetics of an intracellular cGMP binding protein in vitro and in vivo. The cyclic GMP binding protein in vitro at 0 degrees C can be described by its kinetic constants K(1)=2.5 x 10(6) M(- 1)s(-1), k(-1)=3.5 x 10(-3)s(-1), K(d)=1.4 x 10(-9) M, and 3,000 binding sites/cell. In computer simulation experiments the occupancy of the cGMP binding protein was calculated under nonequilibrium conditions by making use of the kinetic constants of the binding protein and of the shape of the cGMP accumulations. These experiments show that under nonequilibrium conditions by making use of the kinetic constants of the binding protein and the shape of the cGMP accumulations. These experiments show that under nonequilibrium conditions the affinity of the binding protein for cGMP is determined by the rate constant of association (k(1)) and not by the dissociation constant (k(d)). Experiments in vivo were performed by stimulation of aggregative cells with the chemoattractant cAMP, which results in a transient cGMP accumulation. At different times after stimulation with various cAMP concentrations, the cells were homogenized and immediately thereafter the number of binding proteins which were not occupied with native cGMP were determined. The results of these experiments in vivo are in good agreement with the results of the computer experiments. This may indicate that: (a) The cGMP binding protein in vivo at 22 degrees C can be described by its kinetic constants: K(1)=4x10(6)M(-1)s(-1) and K(-1)=6x10(-3)s(-1). (b) Binding the cGMP to its binding protein is transient with a maximum at about 20-30 s after chemotactic stimulation, followed by a decay to basal levels, with a half-life of approximately 2 min. (c) The cGMP to its binding proteins get half maximally occupied at a cGMP accumulation of δ[cGMP](10)=2x10(-8) M, which corresponds to an extracellular stimulation of aggregative cells by 10(-10) M cAMP. (d) Since the mean basal cGMP concentration is approximately 2x10(-7) M, the small increase of cGMP cannot be detected accurately. Therefore the absence of a measurable cGMP accumulation does not argue against a cGMP function. (e) There may exist two compartments of cGMP: one contains almost all the cGMP of unstimulated cells, and the other contains cGMP binding proteins and the cGMP which accumulates after chemotactic stimulation. (f) From the kinetics of binding, the cellular responses to the chemoattractant can be divided into two classes: responses which can be mediated by this binding protein (such as light scattering, proton extrusion, PDE induction, and chemotaxis) and responses which cannot be (solely) mediated by this binding protein such as rlay, refractoriness, phospholipids methylation, and protein methylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号