首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
《Life sciences》1995,57(10):PL117-PL124
A quantitative trait locus (QTL) was detected and mapped to proximal chromosome 10 near the markers Mpmv5 and D10Mit51 with a strong influence on morphine-induced analgesia in the BXD recombinant inbred (Rl) strains and in an F2 cross (B6D2F2) between the BXD progenitor strains, C57BL/6 and DBA/2. A LOD score of 3.9 (p <. 00002) was seen for analgesia using the hot plate assay. Naloxone Bmax was also associated with this chromosome region in BXD RI mice. The mu opioid receptor gene (Oprm) has recently been mapped to this same chromosome region. The observation that several morphine-related traits and naloxone Bmax appear to be partly determined by this presumed single locus is consistent with the hypothesis that the mu opioid receptor gene, or one of its modulators, is the basis for the QTL.  相似文献   

5.
Z K Blandova  A E Rat'kin 《Genetika》1987,23(7):1334-1336
A new spontaneous mutation of the H-2b haplotype was found in skin graft tests with BC3 mice derived from B10.R111 (71NS) and C57BL/10SnY outcrossing. The mutation site localized in the F1 test in the H-2Kb gene is nonidentical to and noncomplementary with bm1, bm3, bm4 mutations. The novel mutation is maintained as B10.R111-H-2bm25 strain.  相似文献   

6.
Mice from the inbred C57BL/6 strain have been commonly used for the generation and analysis of transgenic and knockout animal models. However, several C57BL/6 substrains exist, and these are genetically and phenotypically different. In addition, each of these substrains can be purchased from different animal providers and, in some cases, they have maintained their breeding stocks separated for a long time, allowing genetic differences to accumulate due to individual variability and genetic drift. With the aim of describing the differences in the genotype of several C57BL/6 substrains, we applied the Illumina® Mouse Medium Density Linkage Mapping panel, with 1,449 single nucleotide polymorphisms (SNPs), to individuals from ten C57BL/6-related strains: C57BL/6JArc, C57BL/6J from The Jackson Lab, C57BL/6J from Crl, C57BL6/JRccHsd, C57BL/6JOlaHsd, C57BL/6JBomTac, B6(Cg)-Tyr c?2j /J, C57BL/6NCrl, C57BL/6NHsd and C57BL/6NTac. Twelve SNPs were found informative to discriminate among the mouse strains considered. Mice derived from the original C57BL/6J: C57BL/6JArc, C57BL/6J from The Jackson Lab and C57BL/6J from Crl, were indistinguishable. Similarly, all C57BL/6N substrains displayed the same genotype, whereas the additional substrains showed intermediate cases with substrain-specific polymorphisms. These results will be instrumental for the correct genetic monitoring and appropriate mouse colony handling of different transgenic and knockout mice produced in distinct C57BL/6 inbred substrains.  相似文献   

7.
《Genome biology》2013,14(7):R82

Background

The mouse inbred line C57BL/6J is widely used in mouse genetics and its genome has been incorporated into many genetic reference populations. More recently large initiatives such as the International Knockout Mouse Consortium (IKMC) are using the C57BL/6N mouse strain to generate null alleles for all mouse genes. Hence both strains are now widely used in mouse genetics studies. Here we perform a comprehensive genomic and phenotypic analysis of the two strains to identify differences that may influence their underlying genetic mechanisms.

Results

We undertake genome sequence comparisons of C57BL/6J and C57BL/6N to identify SNPs, indels and structural variants, with a focus on identifying all coding variants. We annotate 34 SNPs and 2 indels that distinguish C57BL/6J and C57BL/6N coding sequences, as well as 15 structural variants that overlap a gene. In parallel we assess the comparative phenotypes of the two inbred lines utilizing the EMPReSSslim phenotyping pipeline, a broad based assessment encompassing diverse biological systems. We perform additional secondary phenotyping assessments to explore other phenotype domains and to elaborate phenotype differences identified in the primary assessment. We uncover significant phenotypic differences between the two lines, replicated across multiple centers, in a number of physiological, biochemical and behavioral systems.

Conclusions

Comparison of C57BL/6J and C57BL/6N demonstrates a range of phenotypic differences that have the potential to impact upon penetrance and expressivity of mutational effects in these strains. Moreover, the sequence variants we identify provide a set of candidate genes for the phenotypic differences observed between the two strains.  相似文献   

8.
C57BL/6N inbred mice are used as the genetic background for producing knockout mice in large-scale projects worldwide; however, the genetic divergence among C57BL/6N-derived substrains has not been verified. Here, we identified novel single nucleotide polymorphisms (SNPs) specific to the C57BL/6NJ strain and selected useful SNPs for the genetic monitoring of C57BL/6N-derived substrains. Informative SNPs were selected from the public SNP database at the Wellcome Trust Sanger Institute by comparing sequence data from C57BL/6NJ and C57BL/6J mice. A total of 1,361 candidate SNPs from the SNP database could distinguish the C57BL/6NJ strain from 12 other inbred strains. We confirmed 277 C57BL/6NJ-specific SNPs including 10 nonsynonymous SNPs by direct sequencing, and selected 100 useful SNPs that cover all of the chromosomes except Y. Genotyping of 11 C57BL/6N-derived substrains at these 100 SNP loci demonstrated genetic differences among the substrains. This information will be useful for accurate genetic monitoring of mouse strains with a C57BL/6N-derived background.  相似文献   

9.
C57BL/6 (H-2 b ) mice, and four mutants (B6.C-H-2 ba , B6-H-2 bg1 , B6-H-2 bg2 , B6-H-2 bh ) derived from this strain after separate mutations had occurred at the same locus within theH-2 complex, were analyzed to determine whether the mutations had led to anyH-2 (or Ia) difference which could be detected serologically. The strains were typed directly with antisera specific for H-2K and H-2D public and private specificities and for the Ia specificities; quantitative absorption studies were also performed for the relevant H-2Kb, H-2Dd and Iab specificities. In no case was any quantitative or qualitative difference detected serologically between any of the strains. In addition, by using a variety of techniques to produce and assay for antibody, we failed to produce any antisera between the parental strains and the four mutants. TheH-2 mutations therefore appear to give rise to a type of antigenic specificity which is recognized byT cells and which generateT, but notB cell responses; nor are they recognized by H-2 or Ia alloantisera. The location of the mutating locus within theH-2 complex was shown by the complementation method to be within theK orIA region and not in theIB region, since crosses of the mutant strains with B10.A(4R) or D2.GD failed to complement for a subsequent C57BL/6 skin graft.  相似文献   

10.
Mice from the inbred strain C57BLKS/J (BKS) exhibit increased susceptibility to both diabetes and atherosclerosis compared to C57BL/6J (B6) mice. To determine whether the differences in diabetes and atherosclerosis are related, we carried out a cross between B6-db/db and BKS. We selected 99 female F2-db/db progeny, tested the progeny for plasma lipids, plasma glucose, and fatty-streak lesions, and used quantitative trait loci (QTL) analysis to identify the chromosomal regions associated with these phenotypes. No major QTL were found for total cholesterol, VLDL-cholesterol, or triglycerides. Two suggestive QTL were found for HDL-cholesterol (LOD scores of 2. 7 and 2.8), and two suggestive loci were found for plasma glucose (LOD scores of 2.3 and 2.0). Lesion size was not correlated with plasma lipid levels or glucose. Lesion size was determined by a locus at D12Mit49 with a LOD score of 2.5 and a significant likelihood ratio statistic. The gene for apolipoprotein apoB lies within the region, but apoB levels were similar in strains B6 and BKS. The QTL on Chr 12 was confirmed by constructing a congenic strain with BKS alleles in the QTL region on a B6 genetic background. We conclude that susceptibilities to diabetes and atherosclerosis are not conferred by the same genes in these strains and that a major gene on Chr 12, which we name Ath6, determines the difference in atherosclerosis susceptibility.  相似文献   

11.
12.
Inbred mouse strains C57BL/6J (B6) (susceptible) and C3H/HeJ (C3H) (resistant) differ in atherosclerosis susceptibility due to a single gene, Ath-1. Plasma lipoproteins from female mice fed chow or an atherogenic diet displayed strain differences in lipoprotein particle sizes and apolipoprotein (apo) composition. High density lipoprotein (HDL) particle sizes were 9.5 +/- 0.1 nm for B6 and 10.2 +/- 0.1 nm for C3H. No major HDL particle size subclasses were observed. Plasma HDL level in the B6 strain was reduced by the atherogenic diet consumption while the HDL level in the resistant C3H mice was unaffected. The reduction in HDL in the B6 strain was associated with decreases in HDL apolipoproteins A-I(-34%) and A-II(-60%). The HDL apoC content in mice fed chow was two-fold higher in C3H than B6. Lipoproteins containing apolipoprotein B (VLDL, IDL, LDL) shifted from a preponderance of the B-100 (chow diet) to a preponderance of the B-48 (atherogenic diet). The LDL-particle size distribution was strain-specific with the chow diet but not genetically associated with the Ath-1 gene. In both strains on each diet, apolipoprotein E was largely distributed in the VLDL, LDL, and HDL fractions. The B6 strain became sixfold elevated in total lipoprotein E content which in the C3H strain was not significantly affected by diet. However, the C3H LDL apoE content was reduced. On both diets, the C3H strain exhibited apolipoprotein E levels comparable to the atherogenic diet-induced levels of the B6 mice.  相似文献   

13.
In the analysis of complex traits, congenic strains are powerful tools because they allow characterization of a single locus in the absence of genetic variation throughout the remainder of the genome. Here, we report the construction and initial characterization of a genome-wide panel of congenic strains derived from the donor strain DBA/2J on the background strain C57BL/6J. For many strains, we have carried out high-density SNP genotyping to precisely map the congenic interval and to identify any contaminating regions. Certain strains exhibit striking variation in litter size and in the ratio of females to males. We illustrate the utility of the set by "Mendelizing" the complex trait of myocardial calcification. These 65 strains cover more than 95% of the autosomal genome and should facilitate the analysis of the many genetic trait differences that have been reported between these parental strains.  相似文献   

14.
A random-bred strain (Q) was established and divided into six replicates. Each replicate was divergently selected for 6-week weight (for over 30 generations) and each had an unselected control. We have investigated the H-2 haplotype of individual mice of the 18 selected Q strains to determine whether selection for size had also selected for H-2 or H-2-linked genes. From the results it appeared that only the H-2 b and H-2 q haplotypes were present in the foundation stock. A large number of individuals of the six small sublines were of H-2 bhaplotype, while the majority of those of the six large sublines were of the H-2 q haplotype. Individuals in the six control strains were H-2 b , H-2 q or both (i. e., H-2 heterozygotes and/or H-2 recombinants). These results suggest that control of body size is associated with H-2 or an H-2-linked gene(s).  相似文献   

15.
16.
When compared with C57BL/6By mice, BALB/cBy mice had testes that were 41% heavier at 60 days of age and seminiferous tubules that were 41% greater in cross-sectional area at 120 days. Absolute testicular weight did not increase between 60 and 120 days of age in either C57BL/6By or C57BL/10ScSn mice but did in BALB mice, paralleling changes in the size of the seminiferous tubules. Significant testicular growth took place over this age period in mice of all seven of the CXB recombinant-inbred (RI) strains of mice derived from a cross of the BALB/cBy and C57BL/6By strains. The wide range of phenotypes shown by adult recombinant mice, which ranged from those with significantly heavier testes than BALB to those with testes the same size (at 60 days) as those of C57BL/10ScSn mice, implied the existence of several separable factors affecting testicular size in adults. At 30 days of age the RI lines fell into two groups; one with small testes like C57BL/6By and the other with larger testes like BALB/cBy mice. The segregation pattern for prepubertal testicular weight was identical to that for the H-2 histocompatibility locus.  相似文献   

17.
The pattern of breathing during sleep could be a heritable trait. Our intent was to test this genetic hypothesis in inbred mouse strains known to vary in breathing patterns during wakefulness (Han F, Subramanian S, Dick TE, Dreshaj IA, and Strohl KP. J Appl Physiol 91: 1962-1970, 2001; Han F, Subramanian S, Price ER, Nadeau J, and Strohl KP, J Appl Physiol 92: 1133-1140, 2002) to determine whether such differences persisted into non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Measures assessed in C57BL/6J (B6; Jackson Laboratory) and two A/J strains (A/J Jackson and A/J Harlan) included ventilatory behavior [respiratory frequency, tidal volume, minute ventilation, mean inspiratory flow, and duty cycle (inspiratory time/total breath time)], and metabolism, as performed by the plethsmography method with animals instrumented to record EEG, electromyogram, and heart rate. In all strains, there were reductions in minute ventilation and CO2 production in NREM compared with wakefulness (P < 0.001) and a further reduction in REM compared with NREM (P < 0.001), but no state-by-stain interactions. Frequency showed strain (P < 0.0001) and state-by-strain interactions (P < 0.0001). The A/J Jackson did not change frequency in REM vs. NREM [141 +/- 15 (SD) vs. 139 +/- 14 breaths/min; P = 0.92], whereas, in the A/J Harlan, it was lower in REM vs. NREM (168 +/- 14 vs. 179 +/- 12 breaths/min; P = 0.0005), and, in the B6, it was higher in REM vs. NREM (209 +/- 12 vs. 188 +/- 13 breaths/min; P < 0.0001). Heart rate exhibited strain (P = 0.003), state (P < 0.0001), and state-by-strain interaction (P = 0.017) and was lower in NREM sleep in the A/J Harlan (P = 0.035) and B6 (P < 0.0001). We conclude that genetic background affects features of breathing during NREM and REM sleep, despite broad changes in state, metabolism, and heart rate.  相似文献   

18.
Davis RC  Jin A  Rosales M  Yu S  Xia X  Ranola K  Schadt EE  Lusis AJ 《Genomics》2007,90(3):306-313
We previously reported the construction of two sets of heterozygous congenic strains spanning the mouse genome. For both sets, C57BL/6J was employed as the background strain while DNA from either DBA/2 or CAST/Ei was introgressed to form the congenic region. We have subsequently bred most of these strains to produce homozygous breeding stocks. Here, we report the characterization of the strain set based on CAST/Ei. CAST/Ei is the most genetically distant strain within the Mus mus species and many trait variations relevant to common diseases have been identified in CAST/Ei mice. Despite breeding difficulties for some congenic regions, presumably due to incompatible allelic variations between CAST/Ei and C57BL/6, the resulting congenic strains cover about 80% of the autosomal chromosomes and will be useful as a resource for the further analysis of quantitative trait loci between the strains.  相似文献   

19.
20.
Two new diabetic strains, C57BL/KsJ-db 2J and C57BL/6J-db 2J, have been developed. C57BL/KsJ-db 2J/db2J mice are indistinguishable from C57BL/KsJ-db/db mice, the original diabetes mutation. Both have severe diabetes characterized by hyperphagia, obesity, marked hyperglycemia, temporarily elevated plasma insulin concentrations, and typical degenerative changes in the islets of Langerhans. In contrast, C57BL/6J-db 2J/db2J mice, although also hyperphagic and obese, have mild diabetes characterized by transitory hyperglycemia and markedly elevated plasma insulin concentrations coupled with marked hypertrophy of the islets and increased proliferative capacity of beta cells. The mild diabetes-like syndrome produced by diabetes-2J on the C57BL/6J background is similar to that produced by the obese gene (ob) on the same background. The islet responses, whether atrophy or hypertrophy, appear to be due to the interaction of diabetes-2J (and possibly obese) with modifiers in the genetic background rather than being peculiar to the specific mutant. The markedly different disease patterns that result when the same gene is placed on different inbred backgrounds emphasize the importance of strict genetic control in biochemical and physiological studies with these and other obesity mutants.Supported in part by NIH Research Grants AM 14461 from the National Institute of Arthritis and Metabolic Diseases; CA 05873 from the National Cancer Institute; ACS E-162, a Janice M. Blood Memorial Grant for Cancer Research from the American Cancer Society; GB 27487 from the National Science Foundation; and an allocation from the Southwaite Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号