首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Bcl-2 family members have been shown to be key mediators of apoptosis as either pro- or anti-apoptotic factors. It is thought that both classes of Bcl-2 family members act at the level of the mitochondria to regulate apoptosis, although the founding anti-apoptotic family member, Bcl-2 is localized to the endoplasmic reticulum (ER), mitochondrial, and nuclear membranes. In order to better understand the effect of Bcl-2 localization on its activity, we have utilized a Bcl-2 mutant that localizes only to the ER membrane, designated Bcl-2Cb5. Bcl-2Cb5 was expressed in MDA-MB-468 cells, which protected against apoptosis induced by the kinase inhibitor, staurosporine. Data presented here show that Bcl-2Cb5 inhibits this process by blocking Bax activation and cytochrome c release. Furthermore, we show that Bcl-2Cb5 can inhibit the activation of a constitutively mitochondrial mutant of Bax, indicating that an intermediate between Bcl-2 on the ER and Bax on the mitochondria must exist. We demonstrate that this intermediate is likely a BH3-only subfamily member. Data presented here show that Bcl-2Cb5 can sequester a constitutively active form of Bad (Bad3A) from the mitochondria and prevent it from activating Bax. These data suggest that Bcl-2 indirectly protects mitochondrial membranes from Bax, via BH3-only proteins.  相似文献   

2.
Bcl-2 family proteins are central regulators of apoptosis. Various family members are located in the cytoplasm, endoplasmic reticulum, and mitochondrial outer membrane in healthy cells. However during apoptosis most of the interactions between family members that determine the fate of the cell occur at the membranes of intracellular organelles. It has become evident that interactions with membranes play an active role in the regulation of Bcl-2 family protein interactions. Here we provide an overview of various models proposed to explain how the Bcl-2 family regulates apoptosis and discuss how membrane binding affects the structure and function of each of the three categories of Bcl-2 proteins (pro-apoptotic, pore-forming, and anti-apoptotic). We also examine how the Bcl-2 family regulates other aspects of mitochondrial and ER physiology relevant to cell death.  相似文献   

3.
Supramaximal dosage of the cholecystokinin analog caerulein leads to edematous pancreatitis with subsequent acinar cell destruction predominantly by apoptosis. We have used immunohistochemistry to reveal the expression of the anti-apoptotic protein galectin-3 in pancreatic acinar cells. Galectin-3, which occurs only in duct cells under physiological conditions, is expressed in a subset of acinar cells after the end of a 12-h caerulein infusion, giving rise to a patchy staining pattern. During the subsequent period of inflammation and regeneration, galectin-3 expression increases in those acinar cells that undergo apoptosis. By 48 h after the end of caerulein infusion, morphologically normal cells do not contain galectin-3 and participate in regeneration by proliferation. Tubular complexes, being transient structures from degenerative acini, accumulate galectin-3 in the remnants of the epithelium cells. Stimulation with supramaximal dosages of caerulein of the cell line AR4–2J, which is derived from rat pancreatic acinar cells, also results in a marked increase of galectin-3, confirming the in vivo results. We postulate that the high expression of the anti-apoptotic protein galectin-3 regulates the time course of the apoptotic process in pancreatic acinar cells.  相似文献   

4.
Nucleocytoplasmic lectins   总被引:10,自引:0,他引:10  
This review summarizes studies on lectins that have been documented to be in the cytoplasm and nucleus of cells. Of these intracellular lectins, the most extensively studied are members of the galectin family. Galectin-1 and galectin-3 have been identified as pre-mRNA splicing factors in the nucleus, in conjunction with their interacting ligand, Gemin4. Galectin-3, -7, and -12 regulate growth, cell cycle progression, and apoptosis. Bcl-2 and synexin have been identified as interacting ligands of galectin-3, involved in its anti-apoptotic activity in the cytoplasm. Although the annexins have been studied mostly as calcium-dependent phospholipid-binding proteins mediating membrane-membrane and membrane-cytoskeleton interactions, annexins A4, A5 and A6 also bind to carbohydrate structures. Like the galectins, certain members of the annexin family can be found both inside and outside cells. In particular, annexins A1, A2, A4, A5, and A11 can be found in the nucleus. This localization is consistent with the findings that annexin A1 possesses unwinding and annealing activities of a helicase and that annexin A2 is associated with a primer recognition complex that enhances the activity of DNA polymerase alpha. Despite these efforts and accomplishments, however, there is little evidence or information on an endogenous carbohydrate ligand for these lectins that show nuclear and/or cytoplasmic localization. Thus, the significance of the carbohydrate-binding activity of any particular intracellular lectin remains as a challenge for future investigations.  相似文献   

5.
Multidrug resistance (MDR), an unfavorable factor compromising the treatment efficacy of anticancer drugs, involves the upregulation of ATP binding cassette (ABC) transporters and induction of galectin-3 signaling. Galectin-3 plays an anti-apoptotic role in many cancer cells and regulates various pathways to activate MDR. Thus, the inhibition of galectin-3 has the potential to enhance the efficacy of the anticancer drug epirubicin. In this study, we examined the effects and mechanisms of silencing galectin-3 via RNA interference (RNAi) on the β-catenin/GSK-3β pathway in human colon adenocarcinoma Caco-2 cells. Galectin-3 knockdown increased the intracellular accumulation of epirubicin in Caco-2 cells; suppressed the mRNA expression of galectin-3, β-catenin, cyclin D1, c-myc, P-glycoprotein (P-gp), MDR-associated protein (MRP) 1, and MRP2; and downregulated the protein expression of P-gp, cyclin D1, galectin-3, β-catenin, c-Myc, and Bcl-2. Moreover, galectin-3 RNAi treatment significantly increased the mRNA level of GSK-3β, Bax, caspase-3, and caspase-9; remarkably increased the Bax-to-Bcl-2 ratio; and upregulated the GSK-3β and Bax protein expressions. Apoptosis was induced by galectin-3 RNAi and/or epirubicin as demonstrated by chromatin condensation, a higher sub-G1 phase proportion, and increased caspase-3 and caspase-9 activity, indicating an intrinsic/mitochondrial apoptosis pathway. Epirubicin-mediated resistance was effectively inhibited via galectin-3 RNAi treatment. However, these phenomena could be rescued after galectin-3 overexpression. We show for the first time that the silencing of galectin-3 sensitizes MDR cells to epirubicin by inhibiting ABC transporters and activating the mitochondrial pathway of apoptosis through modulation of the β-catenin/GSK-3β pathway in human colon cancer cells.  相似文献   

6.
Galectin-3, a beta-galactoside-binding protein, is implicated in cell growth, adhesion, differentiation, and tumor progression by interactions with its ligands. Recent studies have revealed that galectin-3 suppresses apoptosis and anoikis that contribute to cell survival during metastatic cascades. Previously, it has been shown that human galectin-3 undergoes post-translational signaling modification of Ser(6) phosphorylation that acts as an "on/off" switch for its sugar-binding capability. We questioned whether galectin-3 phosphorylation is required for its anti-apoptotic function. Serine to alanine (S6A) and serine to glutamic acid (S6E) mutations were produced at the casein kinase I phosphorylation site in galectin-3. The cDNAs were transfected into a breast carcinoma cell line BT-549 that innately expresses no galectin-3. Metabolic labeling revealed that only wild type galectin-3 undergoes phosphorylation in vivo. Expression of Ser(6) mutants of galectin-3 failed to protect cells from cisplatin-induced cell death and poly(ADP-ribose) polymerase from degradation when compared with wild type galectin-3. The non-phosphorylated galectin-3 mutants failed to protect cells from anoikis with G(1) arrest when cells were cultured in suspension. In response to a loss of cell-substrate interactions, only cells expressing wild type galectin-3 down-regulated cyclin A expression and up-regulated cyclin D(1) and cyclin-dependent kinase inhibitors, i.e. p21(WAF1/CIP1) and p27(KIP1) expression levels. These results demonstrate that galectin-3 phosphorylation regulates its anti-apoptotic signaling activity.  相似文献   

7.
8.
Release of apoptogenic proteins such as cytochrome c from mitochondria is regulated by pro- and anti-apoptotic Bcl-2 family proteins, with pro-apoptotic BH3-only proteins activating Bax and Bak. Current models assume that apoptosis induction occurs via the binding and inactivation of anti-apoptotic Bcl-2 proteins by BH3-only proteins or by direct binding to Bax. Here, we analyze apoptosis induction by the BH3-only protein Bim(S). Regulated expression of Bim(S) in epithelial cells was followed by its rapid mitochondrial translocation and mitochondrial membrane insertion in the absence of detectable binding to anti-apoptotic Bcl-2 proteins. This caused mitochondrial recruitment and activation of Bax and apoptosis. Mutational analysis of Bim(S) showed that mitochondrial targeting, but not binding to Bcl-2 or Mcl-1, was required for apoptosis induction. In yeast, Bim(S) enhanced the killing activity of Bax in the absence of anti-apoptotic Bcl-2 proteins. Thus, cell death induction by a BH3-only protein can occur through a process that is independent of anti-apoptotic Bcl-2 proteins but requires mitochondrial targeting.  相似文献   

9.
Epidermal growth factor (EGF) in high concentrations induces apoptosis of the tumor cells which express high levels of epidermal growth factor receptor. However, the precise mechanism for this induction is not clear. Galectin-3 is the most probable candidate for mediating this effect, as it is known to induce anti-apoptotic activity in a variety of tumor cells exposed to diverse apoptotic stimuli. In this study, we determined whether galectin-3 plays a role in high concentrations of EGF-induced apoptosis of HepG2 cells. We found that EGF in high concentrations led to the growth inhibition of HepG2 cells, which were associated with promotion of cell death. High concentrations of EGF suppressed cytoplasmic expression of galectin-3. Moreover, we demonstrated overexpression of galectin-3 could reduce EGF-induced apoptosis in HepG2 cells. Our study demonstrated for the first time that downregulation of cytoplasmic galectin-3 was essential for high concentrations of EGF-induced apoptosis in HepG2 cells.  相似文献   

10.
During mitochondrial apoptosis, pro-apoptotic BH3-only proteins cause the translocation of cytosolic Bcl-2-associated X protein (Bax) to the outer mitochondrial membrane (OMM) where it is activated to release cytochrome c from the mitochondrial intermembrane space, but the mechanism is under dispute. We show that most BH3-only proteins are mitochondrial proteins that are imported into the OMM via a C-terminal tail-anchor domain in isolated yeast mitochondria, independently of binding to anti-apoptotic Bcl-2 proteins. This C-terminal domain acted as a classical mitochondrial targeting signal and was sufficient to direct green fluorescent protein to mitochondria in human cells. When expressed in mouse fibroblasts, these BH3-only proteins localised to mitochondria and were inserted in the OMM. The BH3-only proteins Bcl-2-interacting mediator of cell death (Bim), tBid and p53-upregulated modulator of apoptosis sensitised isolated mitochondria from Bax/Bcl-2 homologous antagonist/killer-deficient fibroblasts to cytochrome c-release by recombinant, extramitochondrial Bax. For Bim, this activity is shown to require the C-terminal-targeting signal and to be independent of binding capacity to and presence of anti-apoptotic Bcl-2 proteins. Bim further enhanced Bax-dependent killing in yeast. A model is proposed where OMM-tail-anchored BH3-only proteins permit passive 'recruitment' and catalysis-like activation of extra-mitochondrial Bax. The recognition of C-terminal membrane-insertion of BH3-only proteins will permit the development of a more detailed concept of the initiation of mitochondrial apoptosis.  相似文献   

11.
Galectins are a family of proteins involved in several cell processes, including their survival and death. Galectin-3 has in particular been described as an anti-apoptotic molecule entangled with a number of subcellular activities including anoikis resistance. In this work we partially address the mechanisms underlying this activity pointing at two key factors in injury progression: the alteration of mitochondrial membrane potential and the formation of reactive oxygen species. Overexpression of galectin-3 appears in fact to exert a protective effect towards both these events. On the basis of these data, we propose a reappraisal of the role of galectin-3 as a regulator of mitochondrial homeostasis.  相似文献   

12.
13.
Evasion of apoptosis, which enables cells to survive and proliferate under metabolic stress, is one of the hallmarks of cancer. We have recently reported that SH3GLB1/Bif-1 functions as a haploinsufficient tumor suppressor to prevent the acquisition of apoptosis resistance and malignant transformation during Myc-driven lymphomagenesis. SH3GLB1 is a membrane curvature-inducing protein that interacts with BECN1 though UVRAG and regulates the post-Golgi trafficking of membrane-integrated ATG9A for autophagy. At the premalignant stage, allelic loss of Sh3glb1 enhances Myc-induced chromosomal instability and results in the upregulation of anti-apoptotic proteins, including MCL1 and BCL2L1. Notably, we found that Sh3glb1 haploinsufficiency increases mitochondrial mass in overproliferated prelymphomatous Eμ-Myc cells. Moreover, loss of Sh3glb1 suppresses autophagy-dependent mitochondrial clearance (mitophagy) in PARK2/Parkin-expressing mouse embryonic fibroblasts (MEFs) treated with the mitochondrial uncoupler CCCP. Interestingly, PARK2-expressing Sh3glb1-deficient cells accumulate ER-associated immature autophagosome-like structures after treatment with CCCP. Taken together, we propose a model of mitophagy in which SH3GLB1 together with the class III phosphatidylinositol 3-kinase complex II (PIK3C3CII) (PIK3R4-PIK3C3-BECN1-UVRAG) regulates the trafficking of ATG9A-containing Golgi-derived membranes (A9+GDMs) to damaged mitochondria for autophagosome formation to counteract oncogene-driven tumorigenesis.  相似文献   

14.
Insulin regulates glucose uptake in adipocytes and muscle by stimulating the movement of sequestered glucose transporter 4 (GLUT4) proteins from intracellular membranes to the cell surface. Here we report that optimal insulin-mediated GLUT4 translocation is dependent upon both microtubule and actin-based cytoskeletal structures in cultured adipocytes. Depolymerization of microtubules and F-actin in 3T3-L1 adipocytes causes the dispersion of perinuclear GLUT4-containing membranes and abolishes insulin action on GLUT4 movements to the plasma membrane. Furthermore, heterologous expression in 3T3-L1 adipocytes of the microtubule-binding protein hTau40, which impairs kinesin motors that move toward the plus ends of microtubules, markedly delayed the appearance of GLUT4 at the plasma membrane in response to insulin. The hTau40 protein had no detectable effect on microtubule structure or perinuclear GLUT4 localization under these conditions. These results are consistent with the hypothesis that both the actin and microtubule-based cytoskeleton, as well as a kinesin motor, direct the translocation of GLUT4 to the plasma membrane in response to insulin.  相似文献   

15.
The BH3-only protein PUMA plays an important role in the activation of apoptosis in response to p53. In different studies, PUMA has been described to function by either directly activating the pro-apoptotic proteins Bax and Bak, or by neutralizing anti-apoptotic members of the Bcl2 family. We have examined the contribution of regions of PUMA other than the BH3 domain to its localization and function. Although the hydrophobic domain in the C-terminus of PUMA is necessary for efficient mitochondrial localization of PUMA itself, PUMA proteins lacking this region can still induce apoptosis and localize to the mitochondria through binding to Bcl2. Even a nuclear localization signal (NLS)-tagged PUMA protein retains apoptotic activity and can be efficiently relocalized from the nucleus after interaction with ectopically expressed Bcl2, underscoring the efficiency of this interaction. Interestingly, unlike the Bcl2 interaction, the binding of PUMA to Bax is severely compromised by the loss of the C-terminal domain of PUMA. However, since the loss of the C-terminus does not compromise the ability of PUMA to induce cell death, our results indicate that the key apoptotic function of PUMA is through interaction with anti-apoptotic proteins such as Bcl2.  相似文献   

16.
S-Palmitoylation, the reversible post-translational acylation of specific cysteine residues with the fatty acid palmitate, promotes the membrane tethering and subcellular localization of proteins in several biological pathways. Although inhibiting palmitoylation holds promise as a means for manipulating protein targeting, advances in the field have been hampered by limited understanding of palmitoylation enzymology and consensus motifs. In order to define the complement of S-acylated proteins in the macrophage, we treated RAW 264.7 macrophage membranes with hydroxylamine to cleave acyl thioesters, followed by biotinylation of newly exposed sulfhydryls and streptavidin-agarose affinity chromatography. Among proteins identified by LC-MS/MS, S-acylation status was established by spectral counting to assess enrichment under hydroxylamine versus mock treatment conditions. Of 1183 proteins identified in four independent experiments, 80 proteins were significant for S-acylation at false discovery rate = 0.05, and 101 significant at false discovery rate = 0.10. Candidate S-acylproteins were identified from several functional categories, including membrane trafficking, signaling, transporters, and receptors. Among these were 29 proteins previously biochemically confirmed as palmitoylated, 45 previously reported as putative S-acylproteins in proteomic screens, 24 not previously associated with palmitoylation, and three presumed false-positives. Nearly half of the candidates were previously identified by us in macrophage detergent-resistant membranes, suggesting that palmitoylation promotes lipid raft-localization of proteins in the macrophage. Among the candidate novel S-acylproteins was phospholipid scramblase 3 (Plscr3), a protein that regulates apoptosis through remodeling the mitochondrial membrane. Palmitoylation of Plscr3 was confirmed through (3)H-palmitate labeling. Moreover, site-directed mutagenesis of a cluster of five cysteines (Cys159-161-163-164-166) abolished palmitoylation, caused Plscr3 mislocalization from mitochondrion to nucleus, and reduced macrophage apoptosis in response to etoposide, together suggesting a role for palmitoylation at this site for mitochondrial targeting and pro-apoptotic function of Plscr3. Taken together, we propose that manipulation of protein palmitoylation carries great potential for intervention in macrophage biology via reprogramming of protein localization.  相似文献   

17.
18.
19.
On the role of galectin-3 in cancer apoptosis   总被引:17,自引:0,他引:17  
Galectin-3, a member of the -galactoside-binding gene family, is a multifunctional protein implicated in a variety of biological functions, including tumor cell adhesion, proliferation, differentiation, angiogenesis, cancer progression and metastasis. Recent studies revealed that intracellular galectin-3 exhibits the activity to suppress drug induced apoptosis and anoikis (apoptosis induced by the loss of cell anchorage) that contribute to cell survival. Resistance to apoptosis is essential for cancer cell survival and plays a role in tumor progression. Conversely, it was recently shown that tumor cells secreted galectin-3 induces T-cells apoptosis, thus playing a role in the immune escape mechanism during tumor progression through induction of apoptosis of cancer-infiltrating T-cells. This review summarizes recent evidences on the role of galectin-3 as an anti-apoptotic and/or pro-apoptotic factor in various cell types and discusses the recent understanding of the molecular mechanisms of galectin-3 role in apoptosis. We also suggest potential directions for further analyses of this multifunctional protein.  相似文献   

20.
The mitochondrial pathway of apoptosis proceeds when molecules sequestered between the outer and inner mitochondrial membranes are released to the cytosol by mitochondrial outer membrane permeabilization (MOMP). This process is controlled by the BCL-2 family, which is composed of both pro- and anti-apoptotic proteins. Although there is no disagreement that BCL-2 proteins regulate apoptosis, the mechanism leading to MOMP remains controversial. Current debate focuses on what interactions within the family are crucial to initiate MOMP. Specifically, do the BH3-only proteins directly engage BAX and/or BAK activation or do these proteins solely promote apoptosis by neutralization of anti-apoptotic BCL-2 proteins? We describe these models and contend that BH3-only proteins must perform both functions to efficiently engage MOMP and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号