首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is a controversy in the literature as to the effects of gender on leucine kinetics. Two research groups found that men oxidize more leucine during exercise, whereas another group showed no gender effects. The purpose of our study was to examine the effects of gender on leucine and, for comparison purposes, lysine kinetics. Our subjects (n = 14) were seven matched pairs of men and women selected for their exercise habits and age. After 1 wk of a standardized diet, they exercised at 50% of maximal O(2) uptake for 1 h. There was an effect of exercise in both genders: an increased leucine oxidation and an attenuation in nonoxidative leucine disposal compared with rest (P < 0.05). Furthermore, our study confirms that there are gender differences in leucine, but not lysine, kinetics. Men had a higher rate of leucine oxidation and a lower rate of nonoxidative leucine disposal during exercise (P < 0.05). For women, a larger proportion of their exercise energy needs came from fat; for men, a greater fraction came from carbohydrate (P < 0.05). We conclude that female exercisers rely to a greater extent on fat as an energy source, thereby using less carbohydrate, amino acid, and protein as a fuel source.  相似文献   

2.
We recently reported that in light exercise (30% VO2max) the oxidation of [1-13C]leucine was significantly increased but the rate of urea production was unchanged (J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 52: 458-466, 1982). We have therefore tested three possible explanations for this apparent incongruity. 1) We infused NaH13CO3 throughout rest and exercise and found that, although altered bicarbonate kinetics in exercise resulted in greater recovery of 13CO2, the difference between rest and recovery was small compared with the increase in the rate of 13CO2 excretion during exercise when [1-13C]leucine was infused. 2) We infused [15N]leucine and isolated plasma urea N to determine directly the rate of incorporation of the 15N. During exercise there was no increase in the rate of 15N incorporation. Simultaneously, we infused [2,3-13C]alanine and quantified the rate of incorporation of 15N in alanine. We found that [15N]alanine production from [15N] leucine more than doubled in exercise, and by deduction, alanine production from other amino acids also doubled. 3) We tested our previous assumption that [1-13C]leucine metabolism in exercise was representative of the metabolism of other essential amino acids by infusing [1-13C] and [alpha-15N]lysine throughout rest and exercise. We found that the rate of breakdown of lysine during exercise was not increased in a manner comparable to that of leucine. Thus, these data confirm our original findings that leucine decarboxylation is enhanced in light exercise but urea production is unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The free amino acids in eccrine sweat collected from the forearms of 20 healthy trained and 20 healthy untrained men during controlled exercise were determined quantitatively using ion exchange column chromatography. Sweat was deproteinized by adding an equal volume of 5% sulphosalicylic acid. The amino acid concentrations showed a constant qualitative pattern in sweat and large individual differences. Essential amino acids, such as isoleucine, leucine, lysine, methionine, phenylalanine, and valine were excreted in relatively small amounts. As compared to the trained men, untrained men showed statistically significantly higher concentrations in sweat for the following amino acids: Alanine, arginine, glycine, histidine, isoleucine, leucine, lysine, ornithine, phenylalanine, serine, taurine, threonine, tyrosine, and valine. No significant differences were found for citrulline, cystine, ethanolamine, and methionine. The comparison of the amino acid excretions in sweat obtained under controlled exercise and in urine showed that the amounts of amino acids excreted in sweat under controlled exercise were comparable to the losses of amino acids in urine.  相似文献   

4.
We have studied eight endurance-trained women at rest and during exercise at 25, 65, and 85% of maximal oxygen uptake. The rate of appearance (R(a)) of free fatty acids (FFA) was determined by infusion of [(2)H(2)]palmitate, and fat oxidation rates were determined by indirect calorimetry. Glucose kinetics were assessed with [6,6-(2)H(2)]glucose. Glucose R(a) increased in relation to exercise intensity. In contrast, whereas FFA R(a) was significantly increased to the same extent in low- and moderate-intensity exercise, during high-intensity exercise, FFA R(a) was reduced compared with the other exercise values. Carbohydrate oxidation increased progressively with exercise intensity, whereas the highest rate of fat oxidation was during exercise at 65% of maximal oxygen uptake. After correction for differences in lean body mass, there were no differences between these results and previously reported data in endurance-trained men studied under the same conditions, except for slight differences in glucose metabolism during low-intensity exercise (Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, and Wolfe RR. Am J Physiol Endocrinol Metab 265: E380-E391, 1993). We conclude that the patterns of changes in substrate kinetics during moderate- and high-intensity exercise are similar in trained men and women.  相似文献   

5.
The aim of this study was to investigate gender-based differences in substrate use during exercise at a self-selected pace. Seventeen men and 17 women performed a maximal exercise test and a 20-minute bout of self-paced treadmill walking to determine carbohydrate and fat oxidation rates. Gas exchange measurements were performed throughout the tests, and stoichiometric equations were used to calculate substrate oxidation rates. For each individual, a best-fit polynomial curve was constructed using fat oxidation rate (g·min(-1)) vs. exercise intensity (percentage of maximal oxygen uptake, % VO(2)max). Each individual curve was used to obtain the following variables: maximal fat oxidation (MFO), the peak rate of fat oxidation measured over the entire range of exercise intensities; fat(max), the exercise intensity at which the MFO was observed; and fat(max) zone, range of exercise intensities with fat oxidation rates within 10% of fat oxidation rates at fat(max). Although the MFO was similar between genders, fat(max) was lower in men than in women. Similarly, the "low" and "high" borders of the fat(max) zone were lower in men than in women. During exercise at a self-selected pace, carbohydrate oxidation rates were greater in men than in women, despite no gender-based differences in fat oxidation rates. However, fat oxidation contribution to total energy expenditure (EE) was greater in women than in men, despite no gender-based differences in the exercise intensity. In conclusion, although both genders self-selected a similar exercise intensity, the contribution of fat oxidation to EE is greater in women than in men. Interestingly, both genders self-selected an exercise intensity that falls within the fat(max) zone.  相似文献   

6.
Leucine metabolism during fasting and exercise   总被引:2,自引:0,他引:2  
Whole body leucine kinetics were examined in seven healthy young men while in a 14-h postabsorptive state (PAS) and after a 3.5-day fast (FS). Subjects received a primed constant intravenous infusion of L-[1-13C]leucine while resting for 3 h and then while exercising on a cycle ergometer at 45% maximal O2 uptake to exhaustion. Blood samples drawn during isotopic steady state were analyzed for 13C enrichment of leucine and alpha-ketoisocaproic acid, and expired gas samples were analyzed for 13CO2. Resting leucine flux was higher in the FS, and there was a slight increase in leucine oxidation. During exercise, leucine flux did not differ between PAS and FS but leucine oxidation rose markedly. In the FS, leucine oxidation was 25 +/- 7 (SD) mumol.kg-1.h-1 at rest and rose to 75 +/- 21 mumol.kg-1.h-1 during exercise; in the PAS, oxidation was 20 +/- 5 mumol.kg-1.h-1 at rest and 52 +/- 17 mumol.kg-1.h-1 during exercise. These data indicate that the high rate of leucine oxidation previously found during exercise was increased further by a 3.5-day fast.  相似文献   

7.
Protein metabolism during endurance exercise   总被引:2,自引:0,他引:2  
After reviewing all the available results from our laboratory and numerous reports in the literature concerning changes that have occurred in various aspects of protein metabolism during exercise, a number of conclusions can be drawn with some degree of confidence. During exercise, protein synthesis is depressed and this change leaves amino acids available for catabolic processes. The rate of leucine oxidation appears to be increased during exercise, and there is a movement of amino acids, mostly in the form of alanine, from muscle to liver where the rate of gluconeogenesis is increased as a result of exercise. These changes in protein metabolism are probably physiologically significant in at least three ways: amino acid conversion to citric acid cycle intermediates enhances the rate of oxidation of acetyl-CoA generated from glucose and fatty acid oxidation; increased conversion of amino acids to glucose helps to prevent hypoglycemia; oxidation of some amino acids may provide energy for muscular contraction.  相似文献   

8.
To examine the role of beta-adrenergic mechanisms in the regulation of endogenous glucose (Glu) production [rate of appearance (R(a))] and utilization [rate of disappearance (R(d))] and carbohydrate (CHO) metabolism, six horses completed consecutive 30-min bouts of exercise at approximately 30% (Lo) and approximately 60% (Hi) of estimated maximum O(2) uptake with (P) and without (C) prior administration of the beta-blocker propranolol (0.22 mg/kg iv). All horses completed exercise in C; exercise duration in P was 49.9 +/- 1.2 (SE) min. Plasma Glu was unchanged in C during Lo but increased progressively in Hi. In P, plasma Glu rose steadily during Lo and Hi and was higher (P < 0.05) than in C throughout exercise. Plasma insulin declined during exercise in P but not in C; beta-blockade attenuated (P < 0.05) the rise in plasma glucagon and free fatty acids and exaggerated the increases in epinephrine and norepinephrine. Glu R(a) was 8.1 +/- 0.8 and 8.4 +/- 1.0 micromol. kg(-1). min(-1) at rest and 30.5 +/- 3.6 and 42.8 +/- 4.1 micromol. kg(-1). min(-1) at the end of Lo in C and P, respectively. During Hi, Glu R(a) increased to 54.4 +/- 4.4 and 73.8 +/- 4.7 micromol. kg(-1). min(-1) in C and P, respectively. Similarly, Glu R(d) was approximately 40% higher in P than in C during Lo (27.3 +/- 2.0 and 39.5 +/- 3.3 micromol. kg(-1). min(-1) in C and P, respectively) and Hi (37.4 +/- 2.6 and 61.5 +/- 5.3 micromol. kg(-1). min(-1) in C and P, respectively). beta-Blockade augmented CHO oxidation (CHO(ox)) with a concomitant reduction in fat oxidation. Inasmuch as estimated muscle glycogen utilization was similar between trials, the increase in CHO(ox) in P was due to increased use of plasma Glu. We conclude that beta-blockade increases Glu R(a) and R(d) and CHO(ox) in horses during exercise. The increase in Glu R(d) under beta-blockade suggests that beta-adrenergic mechanisms restrain Glu R(d) during exercise.  相似文献   

9.
Creatine monohydrate (CrM) supplementation during resistance exercise training results in a greater increase in strength and fat-free mass than placebo. Whether this is solely due to an increase in intracellular water or whether there may be alterations in protein turnover is not clear at this point. We examined the effects of CrM supplementation on indexes of protein metabolism in young healthy men (n = 13) and women (n = 14). Subjects were randomly allocated to CrM (20 g/day for 5 days followed by 5 g/day for 3-4 days) or placebo (glucose polymers) and tested before and after the supplementation period under rigorous dietary and exercise controls. Muscle phosphocreatine, creatine, and total creatine were measured before and after supplementation. A primed-continuous intravenous infusion of L-[1-(13)C]leucine and mass spectrometry were used to measure mixed-muscle protein fractional synthetic rate and indexes of whole body leucine metabolism (nonoxidative leucine disposal), leucine oxidation, and plasma leucine rate of appearance. CrM supplementation increased muscle total creatine (+13.1%, P < 0.05) with a trend toward an increase in phosphocreatine (+8.8%, P = 0.09). CrM supplementation did not increase muscle fractional synthetic rate but reduced leucine oxidation (-19.6%) and plasma leucine rate of appearance (-7.5%, P < 0.05) in men, but not in women. CrM did not increase total body mass or fat-free mass. We conclude that short-term CrM supplementation may have anticatabolic actions in some proteins (in men), but CrM does not increase whole body or mixed-muscle protein synthesis.  相似文献   

10.
In vitro and in vivo studies were made on the tissue specificity of oxidation of the ketogenic amino acids, leucine, tyrosine, and lysine. In in vitro studies the abilities of slices of various tissues of rats to form 14CO2 from 14C-amino acids were examined. With liver, but not kidney slices, addition of alpha-ketoglutarate was required for the maximum activities with these amino acids. Among the various tissues tested, kidney had the highest activity for lysine oxidation, followed by liver; other tissues showed very low activity. Kidney also had the highest activity for leucine oxidation, followed by diaphragm; liver and adipose tissue had lower activities. Liver had the highest activity for tyrosine oxidation, but kidney also showed considerable activity; other tissues had negligible activity. In in vivo studies the blood flow through the liver or kidney was stopped by ligation of the blood vessels. Then labeled amino acids were injected and recovery of radioactivity in respiratory 14CO2 was measured. In contrast to results with slices, no difference was found in the respiratory 14CO2 when the renal blood vessels were or were not ligated. On the contrary ligation of the hepatic vessels suppressed the oxidations of lysine and tyrosine completely and that of leucine partially. Thus in vivo, lysine and tyrosine seem to be metabolized mainly in the liver, whereas leucine is metabolized mostly in extrahepatic tissues and partly in liver. Use of tissue slices seems to be of only limited value in elucidating the metabolisms of these amino acids.  相似文献   

11.
This study was conducted to investigate alterations in excretion of urea and total nitrogen after6-8 weeks of daily exercise and to establish if the capacity for amino acid oxidation in muscle is influenced by endurance training. Urea nitrogen excretion was increased in trained compared with untrained rats and nitrogen balance was less positive in trained than in untrained rats. Increased [14C]leucine oxidation with training was observed both in vivo and in vitro. The results of this study demonstrate that amino acid catabolism is increased during exercise training and that the muscle enzymes involved in leucine oxidation adapt to endurance training in a manner similar to the enzymes of carbohydrate and fat catabolism.  相似文献   

12.
The aim of this study was to determine the effects of exercise at different intensities on 24-h energy expenditure (EE) and substrate oxidation. Sixteen adults (8 men and 8 women) were studied on three occasions [sedentary day (Con), a low-intensity exercise day (LI; 400 kcal at 40% of maximal oxygen consumption) and a high-intensity exercise day (HI; 400 kcal at 70% of maximal oxygen consumption)] by using whole room indirect calorimetry. Both 24-h EE and carbohydrate oxidation were significantly elevated on the exercise days (Con < LI = HI), but 24-h fat oxidation was not different across conditions. Muscle enzymatic profile was not consistently related to 24-h fat or carbohydrate oxidation. With further analysis, it was found that, compared with men, women sustained slightly higher rates of 24-h fat oxidation (mg x kg FFM(-1) x min(-1)) and had a muscle enzymatic profile favoring fat oxidation. It is concluded that exercise intensity has no effect on 24-h EE or nutrient oxidation. Additionally, it appears that women may sustain slightly greater 24-h fat oxidation rates during waking and active periods of the day.  相似文献   

13.
We evaluated lipid metabolism during 90 min of moderate-intensity (50% VO(2) peak) cycle ergometer exercise in five men and five women who were matched on adiposity (24 +/- 2 and 25 +/- 1% body fat, respectively) and aerobic fitness (VO(2) peak: 49 +/- 2 and 47 +/- 1 ml x kg fat-free mass(-1) x min(-1), respectively). Substrate oxidation and lipid kinetics were measured by using indirect calorimetry and [(13)C]palmitate and [(2)H(5)]glycerol tracer infusion. The total increase in glycerol and free fatty acid (FFA) rate of appearance (R(a)) in plasma during exercise (area under the curve above baseline) was approximately 65% greater in women than in men (glycerol R(a): 317 +/- 40 and 195 +/- 33 micromol/kg, respectively; FFA R(a): 652 +/- 46 and 453 +/- 70 micromol/kg, respectively; both P < 0.05). Total fatty acid oxidation was similar in men and women, but the relative contribution of plasma FFA to total fatty acid oxidation was higher in women (76 +/- 5%) than in men (46 +/- 5%; P < 0.05). We conclude that lipolysis of adipose tissue triglycerides during moderate-intensity exercise is greater in women than in men, who are matched on adiposity and fitness. The increase in plasma fatty acid availability leads to a greater rate of plasma FFA tissue uptake and oxidation in women than in men. However, total fat oxidation is the same in both groups because of a reciprocal decrease in the oxidation rate of fatty acids derived from nonplasma sources, presumably intramuscular and possibly plasma triglycerides, in women.  相似文献   

14.
The uptake of L-leucine and L-lysine into vascular smooth muscle cells cultured from the aortas of rats has been investigated. Both amino acids are taken up by saturable systems that are independent of the presence of a ·Na+ gradient and can be stimulated in trans by neutral bulky amino acids for leucine and cationic amino acids for lysine. Leucine uptake is inhibited competitively in cis by several neutral amino acids, whereas lysine uptake is inhibited strongly by other cationic amino acids but also significantly by neutral amino acids such as leucine. The leucine inhibition is noncompetitive. Cells preloaded with leucine and lysine could also export these amino acids and the rate of efflux was stimulated by the presence of appropriate amino acids in trans. These data are all consistent with leucine being transported largely if not entirely by System L and lysine by the System y+ transporter. © 1993 Wiley-Liss, Inc.  相似文献   

15.
Effects of a single exercise bout on insulin action were compared in men (n = 10) and women (n = 10). On an exercise day, subjects cycled for 90 min at 85% lactate threshold, whereas on a rest (control) day, they remained semirecumbent. The period of exercise, or rest, was followed by a 3-h hyperinsulinemic-euglycemic clamp (30 mU.m(-2).min(-1)) and indirect calorimetry. Glucose kinetics were measured isotopically by using an infusion of [6,6-2H2]glucose. Glucose infusion rate (GIR) during the clamp on the rest day was not different between the genders. However, GIR on the exercise day was significantly lower in men compared with women (P = 0.01). This was mainly due to a significantly lower glucose rate of disappearance in men compared with women (P = 0.05), whereas no differences were observed in the endogenous glucose rate of appearance. Nonprotein respiratory quotient (NPRQ) increased significantly during the clamp from preclamp measurements in men and women on the rest day (P < 0.01). Exercise abolished the increase in NPRQ seen during the clamp on the rest day and tended to decrease NPRQ in men. Our results indicate the following: 1) exercise abolishes the usual increase in NPRQ observed during a hyperinsulinemic-euglycemic clamp in both genders, 2) men exhibit relatively lower whole body insulin action in the 3-4 h after exercise compared with women, and 3) gender differences in insulin action may be explained by a lower glucose rate of disappearance in the men after acute exercise. Together, these data imply gender differences in insulin action postexercise exist in peripheral tissues and not in liver.  相似文献   

16.
This study was designed to determine the response of muscle protein to the bolus ingestion of a drink containing essential amino acids and carbohydrate after resistance exercise. Six subjects (3 men, 3 women) randomly consumed a treatment drink (6 g essential amino acids, 35 g sucrose) or a flavored placebo drink 1 h or 3 h after a bout of resistance exercise on two separate occasions. We used a three-compartment model for determination of leg muscle protein kinetics. The model involves the infusion of ring-(2)H(5)-phenylalanine, femoral arterial and venous blood sampling, and muscle biopsies. Phenylalanine net balance and muscle protein synthesis were significantly increased above the predrink and corresponding placebo value (P < 0.05) when the drink was taken 1 or 3 h after exercise but not when the placebo was ingested at 1 or 3 h. The response to the amino acid-carbohydrate drink produced similar anabolic responses at 1 and 3 h. Muscle protein breakdown did not change in response to the drink. We conclude that essential amino acids with carbohydrates stimulate muscle protein anabolism by increasing muscle protein synthesis when ingested 1 or 3 h after resistance exercise.  相似文献   

17.
Ingestion of carbohydrate during exercise may blunt the stimulation of fat oxidative pathways by raising plasma insulin and glucose concentrations and lowering plasma free fatty acid (FFA) levels, thereby causing a marked shift in substrate oxidation. We investigated the effects of a single 2-h bout of moderate-intensity exercise on the expression of key genes involved in fat and carbohydrate metabolism with or without glucose ingestion in seven healthy untrained men (22.7 +/- 0.6 yr; body mass index: 23.8 +/- 1.0 kg/m(2); maximal O(2) consumption: 3.85 +/- 0.21 l/min). Plasma FFA concentration increased during exercise (P < 0.01) in the fasted state but remained unchanged after glucose ingestion, whereas fat oxidation (indirect calorimetry) was higher in the fasted state vs. glucose feeding (P < 0.05). Except for a significant decrease in the expression of pyruvate dehydrogenase kinase-4 (P < 0.05), glucose ingestion during exercise produced minimal effects on the expression of genes involved in carbohydrate utilization. However, glucose ingestion resulted in a decrease in the expression of genes involved in fatty acid transport and oxidation (CD36, carnitine palmitoyltransferase-1, uncoupling protein 3, and 5'-AMP-activated protein kinase-alpha(2); P < 0.05). In conclusion, glucose ingestion during exercise decreases the expression of genes involved in lipid metabolism rather than increasing genes involved in carbohydrate metabolism.  相似文献   

18.
Resistance exercise and amino acids are two major factors that influence muscle protein turnover. Here, we examined the effects of resistance exercise and branched-chain amino acids (BCAA), individually and in combination, on the expression of anabolic and catabolic genes in human skeletal muscle. Seven subjects performed two sessions of unilateral leg press exercise with randomized supplementation with BCAA or flavored water. Biopsies were collected from the vastus lateralis muscle of both the resting and exercising legs before and repeatedly after exercise to determine levels of mRNA, protein phosphorylation, and amino acid concentrations. Intake of BCAA reduced (P < 0.05) MAFbx mRNA by 30 and 50% in the resting and exercising legs, respectively. The level of MuRF-1 mRNA was elevated (P < 0.05) in the exercising leg two- and threefold under the placebo and BCAA conditions, respectively, whereas MuRF-1 total protein increased by 20% (P < 0.05) only in the placebo condition. Phosphorylation of p70(S6k) increased to a larger extent (~2-fold; P < 0.05) in the early recovery period with BCAA supplementation, whereas the expression of genes regulating mTOR activity was not influenced by BCAA. Muscle levels of phenylalanine and tyrosine were reduced (13-17%) throughout recovery (P < 0.05) in the placebo condition and to a greater extent (32-43%; P < 0.05) following BCAA supplementation in both resting and exercising muscle. In conclusion, BCAA ingestion reduced MAFbx mRNA and prevented the exercise-induced increase in MuRF-1 total protein in both resting and exercising leg. Further-more, resistance exercise differently influenced MAFbx and MuRF-1 mRNA expression, suggesting both common and divergent regulation of these two ubiquitin ligases.  相似文献   

19.
Beta-adrenergic blockade alters whole-body leucine metabolism in humans   总被引:1,自引:0,他引:1  
This study examined the effects of a nonselective beta-blocking agent on whole-body leucine metabolism in humans. Five normal, healthy subjects (4 male, 1 female) underwent a 6-h primed, constant-rate infusion of L-[1-13C]leucine after 5 days of twice daily oral use of 80 mg propranolol and a placebo. Leucine turnover was determined by tracer dilution and leucine oxidation by 13C enrichment of the expired CO2. Propranolol decreased the total daily energy expenditure from 1,945 +/- 177.5 to 1,619 +/- 92.5 kcal/day (P less than 0.05). A fasting associated decrease in blood glucose and an attenuated rise in free fatty acids and ketones were observed during beta-blockade. Propranolol also increased plasma leucine concentrations (73.1 +/- 8.7 to 103.4 +/- 7.3 mumol/l; P less than 0.05) and leucine oxidation (13.2 +/- 1.2 to 17.1 +/- 1.3 mumol.kg-1.h-1; P less than 0.05), although leucine turnover was not significantly altered (100.5 +/- 7.3 vs. 126.0 +/- 12.3 mumol.kg-1.h-1). In addition, the urinary urea nitrogen-to-creatinine ratio was greater during propranolol administration (0.24 +/- 0.04 vs. 0.34 +/- 0.02 mol/g; P less than 0.05). These data suggest that the beta-adrenergic system plays a role in the modulation of whole-body leucine metabolism in humans. Whether these changes are the result of a direct effect on skeletal muscle or an indirect effect mediated by altering the fuel supply to skeletal muscle cannot be discriminated by the present study.  相似文献   

20.
Sex-specific influence of aging on exercising leg blood flow.   总被引:1,自引:0,他引:1  
Our previous work suggests that healthy human aging is associated with sex-specific differences in leg vascular responses during large muscle mass exercise (2-legged cycling) (Proctor DN, Parker BA. Microcirculation 13: 315-327, 2006). The present study determined whether age x sex interactions in exercising leg hemodynamics persist during small muscle mass exercise that is not limited by cardiac output. Thirty-one young (20-30 yr; 15 men/16 women) and 31 older (60-79 yr; 13 men/18 women) healthy, normally active adults performed graded single-leg knee extensions to maximal exertion. Femoral artery blood velocity and diameter (Doppler ultrasound), heart rate (ECG), and beat-to-beat arterial blood pressure (mean arterial pressure, radial artery tonometry) were measured during each 3-min work rate (4.8 and 8 W/stage for women and men, respectively). The results (means +/- SE) were as follows. Despite reduced resting leg blood flow and vascular conductance, older men exhibited relatively preserved exercising leg hemodynamic responses. Older women, by contrast, exhibited attenuated hyperemic (young: 52 +/- 3 ml.min(-1).W(-1); vs. older: 40 +/- 4 ml.min(-1).W(-1); P = 0.02) and vasodilatory responses (young: 0.56 +/- 0.06 ml.min(-1).mmHg(-1).W(-1) vs. older: 0.37 +/- 0.04 ml.min(-1).mmHg(-1) W(-1); P < 0.01) to exercise compared with young women. Relative (percentage of maximal) work rate comparisons of all groups combined also revealed attenuated vasodilator responses in older women (P < 0.01 for age x sex x work rate interaction). These sex-specific age differences were not abolished by consideration of hemoglobin, quadriceps muscle, muscle recruitment, and mechanical influences on muscle perfusion. Collectively, these findings suggest that local factors contribute to the sex-specific effects of aging on exercising leg hemodynamics in healthy adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号