首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(+/-)-3alpha-hydroxy homoepibatidine 4 has been synthesized from the alkaloid scopolamine 5 and its properties as a nicotinic agonist assessed. While still binding strongly, the compound showed reduced agonist potency for the alpha(4)beta(2) nAChR compared with the parent compound epibatidine 1. Compound 4 also displayed generally similar binding and selectivity profiles at alpha(4)beta(2), alpha(2)beta(4), alpha(3)beta(4), and alpha(4)beta(4) nAChR subtypes to those for nicotine.  相似文献   

2.
Comparison of [125I]epibatidine and 5-[125I]iodo-3-(2-azetidinylmethoxy)pyridine ([125I]A-85380) autoradiography showed evidence for nicotinic receptor heterogeneity. To identify the receptor subtypes, we performed [125I]epibatidine autoradiography in the presence of cytisine or A-85380. By comparing these results with binding data from human embryonic kidney (HEK) 293 cells stably transfected with different combinations of rat nicotinic receptor subunits, we were able to quantify three distinct populations of [125I]epibatidine binding sites with characteristics of alpha4beta2, alpha3beta2 and alpha3beta4 receptors. Although the predominant subtype in rat brain was alpha4beta2, non-alpha4beta2 binding sites were prominent in many regions. In the habenulo-peduncular system, cerebellum, substantia gelatinosa, and many medullary nuclei, alpha3beta4-like binding accounted for more than 40% of [125I]epibatidine binding, and nearly all binding in superior cervical ganglion and pineal gland. Other regions enriched in alpha3beta4-like binding included locus ceruleus, dorsal tegmentum, subiculum and anteroventral thalamic nucleus. Regions enriched in alpha3beta2-like binding included the habenulo-peduncular system, many visual system structures, certain geniculate nuclei, and dopaminergic regions. The combination of autoradiography using a broad spectrum radioligand in the presence of selective competitors, and data from binding to defined receptor subtypes in expression systems, allowed us to quantify the relative populations of these three subtypes.  相似文献   

3.
The beta2 nicotinic acetylcholine receptor subunit null mutation eliminated most high affinity [(3) H]epibatidine binding in mouse brain, but significant binding remained in accessory olfactory nucleus, medial habenula, inferior colliculus and interpeduncular nucleus. Residual [(125) I]epibatidine binding sites in the inferior colliculus and interpeduncular nucleus were subsequently characterized. Inhibition of [(125) I]epibatidine binding by 12 agonists and six antagonists was very similar in these regions. Most acetylcholine-stimulated (86) Rb(+) efflux is eliminated in thalamus and superior colliculus of beta2 null mutants, but significant activity remained in inferior colliculus and interpeduncular nucleus. This residual activity was subsequently characterized. The 12 nicotinic agonists tested elicited concentration-dependent (86) Rb(+) efflux. Epibatidine was the most potent agonist. Cytisine was also potent and efficacious. EC(50) values for quaternary agonists were relatively high. Cytisine-stimulated (86) Rb(+) efflux was inhibited by six classical nicotinic antagonists. Mecamylamine and D-tubocurarine were most potent, while decamethonium was the least potent. Agonists and antagonists exhibited similar potency in both brain regions. Alpha-bungarotoxin (100 nm) did not significantly inhibit cytisine-stimulated (86) Rb(+) efflux, while the alpha3beta4 selective antagonist, alphaConotoxinAuIB, inhibited a significant fraction of the response in both brain regions. Thus, beta2 null mutant mice express residual nicotinic activity with properties resembling those of alpha3beta4*-nAChR.  相似文献   

4.
Neuronal nicotinic receptors (nAChRs) are expressed in the brain but also in the peripheral tissues including the adrenal medulla. However, it is unclear which nAChRs are present in the human adrenal medulla. In the study, receptor binding assay, Western blot and RT-PCR have been performed to investigate the expression of nAChRs in adrenal medulla from human, rat and mouse. The results showed that in human adult adrenal medulla, mRNAs for nAChR alpha3, alpha4, alpha5, alpha7, beta2, beta3, and beta4 subunits but not beta2 in the fetal human adrenal medulla were expressed. Saturation binding of [3H]epibatidine showed two binding sites in human aged adrenal medulla. The specific binding of [3H]epibatidine (0.1 nM) was significantly higher in human fetal compared to human aged adrenal medulla. mRNAs for the alpha3, alpha4, alpha5, alpha7, beta2, and beta4 subunits but not the beta3 were detectable in adult rat and mouse adrenal medulla. No differences in gene-expression of the nAChRs were observed between new born, adult and aged rat adrenal medulla. Saturation binding of [3H]epibatidine showed only one binding site in rat adrenal medulla. Lower protein levels for the nAChR subunits were observed in the rat adrenal medulla compared to rat brain. There was lower protein levels of the nAChRs in aged rat adrenal medulla compared to the young rats. Sub-chronic treatment of nicotine to rats did not influence level of the nAChRs in the adrenal medulla. In conclusion, the expression of nAChRs in adrenal medulla is age- related and species dependent.  相似文献   

5.
A series of epibatidine analogues was synthesized and characterized in vitro. These compounds are high affinity ligands for the nicotinic acetylcholine receptors (nAChR). They display binding selectivity for the alpha(x)beta2 subtypes of nAChRs over the alpha(x)beta4 subtypes, and especially for the alpha4beta2 and alpha2beta2 subtypes. Furthermore, most of these new nicotinic compounds display little, if any, agonist activities at alpha3beta4 nAChR. As a result they might become lead structures for the design and synthesis of highly selective ligands for nAChR subtypes containing the beta2 subunit.  相似文献   

6.
The predominant nicotinic acetylcholine receptor (nAChR) expressed in vertebrate brain is a pentamer containing alpha4 and beta2 subunits. In this study we have examined how temperature and the expression of subunit chimeras can influence the efficiency of cell-surface expression of the rat alpha4beta2 nAChR. Functional recombinant alpha4beta2 nAChRs, showing high affinity binding of nicotinic radioligands (K(d) = 41 +/- 22 pM for [(3)H]epibatidine), are expressed in both stably and transiently transfected mammalian cell lines. Despite this, only very low levels of alpha4beta2 nAChRs can be detected on the cell surface of transfected mammalian cells maintained at 37 degrees C. At 30 degrees C, however, cells expressing alpha4beta2 nAChRs show a 12-fold increase in radioligand binding (with no change in affinity), and a 5-fold up-regulation in cell-surface receptors with no increase in total subunit protein. In contrast to "wild-type" alpha4 and beta2 subunits, chimeric nicotinic/serotonergic subunits ("alpha4chi" and "beta2chi") are expressed very efficiently on the cell surface (at 30 degrees C or 37 degrees C), either as hetero-oligomeric complexes (e.g. alpha4chi+beta2 or alpha4chi+beta2chi) or when expressed alone. Compared with alpha4beta2 nAChRs, expression of complexes containing chimeric subunits typically results in up to 20-fold increase in nicotinic radioligand binding sites (with no change in affinity) and a similar increase in cell-surface receptor, despite a similar level of total chimeric and wild-type protein.  相似文献   

7.
A series of bivalent ligands 6a-d of epibatidine were synthesized. All four ligands showed nanomolar binding affinities at six neuronal nicotinic acetylcholine receptor (nAChR) subtypes in competition binding assays. In contrast to epibatidine, these bivalent ligands are weak partial agonists at the alpha3beta4 nAChR as shown by functional assays.  相似文献   

8.
Models of the extracellular ligand-binding domain of nicotinic acetylcholine receptors (nAChRs), which are pentameric integral membrane proteins, are attractive for structural studies because they potentially are water-soluble and better candidates for x-ray crystallography and because their smaller size is more amenable for NMR spectroscopy. The complete N-terminal extracellular domain is a promising foundation for such models, based on previous studies of alpha7 and muscle-type subunits. Specific design requirements leading to high structural fidelity between extracellular domain nAChRs and full-length nAChRs, however, are not well understood. To study these requirements in heteromeric nAChRs, the extracellular domains of alpha4 and beta2 subunits with or without the first transmembrane domain (M1) were expressed in Xenopus oocytes and compared with alpha4beta2 nAChRs based on ligand binding and subunit assembly properties. Ligand affinities of detergent-solubilized, extracellular domain alpha4beta2 nAChRs formed from subunits with M1 were nearly identical to affinities of alpha4beta2 nAChRs when measured with [3H]epibatidine, cytisine, nicotine, and acetylcholine. Velocity sedimentation suggested that these extracellular domain nAChRs predominantly formed pentamers. The yield of these extracellular domain nAChRs was about half the yield of alpha4beta2 nAChRs. In contrast, [3H]epibatidine binding was not detected from the extracellular domain alpha4 and beta2 subunits without M1, implying no detectable expression of extracellular domain nAChRs from these subunits. These results suggest that M1 domains on both alpha4 and beta2 play an important role for efficient expression of extracellular domain alpha4beta2 nAChRs that are high fidelity structural models of full-length alpha4beta2 nAChRs.  相似文献   

9.
Epibatidine is a potent but nonselective nAChR agonist. Its biological effects appear to be mediated largely by alpha4beta2 nAChRs. Surprisingly, only a limited number of epibatidine analogues have been synthesized and evaluated in in vitro assays. Even fewer analogues have received in vivo pharmacological evaluation. In this paper, SAR studies directed toward epibatidine analogues will be reviewed.  相似文献   

10.
Recent evidence suggests that in addition to alpha4beta2 and alpha3-containing nicotinic receptors, alpha6-containing receptors are present in midbrain dopaminergic neurons and involved in the nicotine reward pathway. Using heterologous expression, we found that alpha6beta2, like alpha3beta2 and alpha4beta2 receptors, formed high affinity epibatidine binding complexes that are pentameric, trafficked to the cell surface, and produced acetylcholine-evoked currents. Chronic nicotine exposure up-regulated alpha6beta2 receptors with differences in up-regulation time course and concentration dependence compared with alpha4beta2 receptors, the predominant high affinity nicotine binding site in brain. The alpha6beta2 receptor up-regulation required higher nicotine concentrations than for alpha4beta2 but lower than for alpha3beta2 receptors. The alpha6beta2 up-regulation occurred 10-fold faster than for alpha4beta2 and slightly faster than for alpha3beta2. Our data suggest that nicotinic receptor up-regulation is subtype-specific such that alpha6-containing receptors up-regulate in response to transient, high nicotine exposures, whereas sustained, low nicotine exposures up-regulate alpha4beta2 receptors.  相似文献   

11.
We compared the main properties of human recombinant alpha3beta4beta3 neuronal nicotinic receptors with those of alpha3beta4 receptors, expressed in Xenopus oocytes. beta3 incorporation decreased the channel mean open time (from 5.61 to 1.14 ms, after approximate correction for missed gaps) and burst length. There was also an increase in single channel slope conductance from 28.8 picosiemens (alpha3beta4) to 46.7 picosiemens (alpha3beta4beta3; in low divalent external solution). On the other hand, the calcium permeability (determined by a reversal potential method in chloride-depleted oocytes) and the pharmacological properties of beta3-containing receptors differed little from those of alpha3beta4. The main pharmacological difference in alpha3beta4beta3 "triplet" receptors was a 3-fold decrease in the potency of lobeline relative to acetylcholine. Nevertheless, there was no change in the rank order of potency for agonists (epibatidine > lobeline > cytisine, 1,1-dimethyl-4-phenylpiperazinium iodide, nicotine > acetylcholine > carbachol for both receptors; measured at low agonist concentrations). Sensitivity to the competitive antagonists trimetaphan (0.2-1 microM) and dihydro-beta-erythroidine (30 microM) was similar for the two combinations, with a Schild KB for trimetaphan of 76 and 66 nM on alpha3beta4 and alpha3beta4beta3, respectively. The change in single channel conductance confirms that beta3 replaces a beta4 subunit in the pentamer. The absence of pronounced differences in the pharmacological profile of the triplet receptor argues against a role for the beta3 subunit in the formation of agonist binding sites, whereas the changes in channel kinetics suggest an important effect on receptor gating. The shortening of the burst length of beta3-containing receptors implies that any synaptic currents mediated by such channels would have faster decay kinetics.  相似文献   

12.
Neuronal nicotinic acetylcholine receptors (nAChRs) were measured in CNS and peripheral tissues following continuous exposure to saline or nicotine hydrogen tartrate (3.3 or 10 mg/kg/day) for 14 days via osmotic pumps. Initially, binding of [3H](-)nicotine, [3H]cytisine and [3H]epibatidine to nAChRs was compared to determine the suitability of each for these kinds of studies. The predominant nAChR labeled by agonists in the cerebral cortex is an alpha 4 beta 2 subtype, whereas the predominant nicotinic receptors in the adrenal gland, superior cervical ganglia and pineal gland contain an alpha 3 subunit, and they do not bind either [3H](-)nicotine or [3H]cytisine with high affinity. In retina some nAChRs bind all three ligands with high affinity, and others appear to bind only [3H]epibatidine. Thus, only [3H]epibatidine had high enough affinity to be useful for measuring the nAChRs in all of the tissues. The receptors from nicotine-treated rats were then measured using [125I]epibatidine, which has binding characteristics very similar to [3H]epibatidine. Treatment with the two doses of nicotine hydrogen tartrate increased binding sites in the cerebral cortex by 40% and 70%, respectively. In contrast, no significant changes in the density of receptor binding sites were found in the adrenal gland, superior cervical ganglia, pineal gland or retina. These data indicate that chronic administration of nicotine even at high doses does not increase all nicotinic receptor subtypes, and that receptors containing alpha 3 subunits may be particularly resistant to this nicotine-induced change.  相似文献   

13.
The new epibatidine analogue exo-2-(2-pyridyl)-7-azabicyclo[2.2.1]heptane (2PABH) was synthesised. Separation of enantiomers was performed on chiral HPLC chromatography in polar-organic phase mode at 0 degree C. Enantiomeric purity was greater than 99.8%ee for the (-)- and 90.5%ee for the (+)-enantiomer respectively. Optical rotation was determined to be [alpha]23D = +/- 13 degrees. Electrophysiological studies of 2PABH were carried out on alpha 4 beta 2, alpha 3 beta 4 and alpha 7 nAChR subtypes cloned from rat and reconstituted in Xenopus oocytes. Both enantiomers could not significantly activate the heteromeric subtypes. The homomeric alpha 7 nAChR displays a high sensitivity only towards (-)-2PABH. The EC50 for (-)-2PABH and ACh were determined (32.5 +/- 9.5 microM, 137.3 +/- 16.5 microM). (-)-2PABH was shown to be a partial agonist (80% of ACh). Thus the efficacy of 2PABH differs markedly from that of epibatidine. The intramolecular N-N-distance and the spatial pyridine nitrogen orientation play a central role in nAChR recognition.  相似文献   

14.
Homoepiboxidine (3) and the corresponding N-methyl (4) and N-benzyl (5) derivatives were prepared from a 6beta-carbomethoxynortropane (8). Affinities and functional activities at neuromuscular, central neuronal and ganglionic-type nicotinic receptors were compared to those of epibatidine 1, and epiboxidine 2. Homoepiboxidine had equivalent affinity/activity to epiboxidine at neuromuscular, neuronal alpha4beta2, and most alpha3-containing ganglionic-type nicotinic receptors. The N-substituted derivatives showed reduced affinity/activity at most receptor subtypes. Replacement of the methylisoxazole moiety of 3 and 4 with a methyloxadiazole moiety provided analogues 6 and 7, which had greatly reduced affinity/activity in virtually all assays at nicotinic receptors. Marked analgetic activity in mice occurred at the following ip doses: epibatidine 10 microg/kg; epiboxidine 25 microg/kg; homoepiboxidine 100 microg/kg; N-methylhomoepiboxidine 100 microg/kg; the methyloxadiazole (6) 100 microg/kg. The time course at such ip doses was significantly longer for homoepiboxidine 3 with marked analgesia still manifest at 30 min post-injection. Epiboxidine and the homoepiboxidines were less toxic than epibatidine.  相似文献   

15.
A series of 3'-(substituted phenyl)deschloroepibatidine analogs (5a-j) were synthesized. The alpha4beta2( *) and alpha7 nicotinic acetylcholine receptor (nAChR) binding properties and functional activity in the tail-flick, hot-plate, locomotor, and body temperature tests in mice of 5a-j were compared to those of the nAChR agonist, nicotine (1), epibatidine (4), and deschloroepibatidine (13), the partial agonist, varenicline (3), and the antagonist 2'-fluoro-3'-(substituted phenyl)deschloroepibatidine analogs (7a-j). Unlike epibatidine and deschloroepibatidine, which are potent agonists in the tail-flick test, 5a-k show no or very low antinociceptive activity in the tail-flick or hot-plate test. However, they are potent antagonists in nicotine-induced antinociception in the tail-flick test, but weaker than the corresponding 2'-fluoro-3'-(substituted phenyl)deschloroepibatidines.  相似文献   

16.
We recently showed that at desensitized muscle nicotinic receptors, epibatidine selects by 300-fold between the two agonist binding sites. To determine whether receptors in the resting, activatible state show similar site selectivity, we studied epibatidine-induced activation of mouse fetal and adult receptors expressed in 293 HEK cells. Kinetic analysis of single-channel currents reveals that (-)-epibatidine binds with 15-fold selectivity to sites of adult receptors and 75-fold selectivity to sites of fetal receptors. For each receptor subtype, site selectivity arises solely from different rates of epibatidine dissociation from the two sites. To determine the structural basis for epibatidine selectivity, we introduced mutations into either the gamma or the delta subunit and measured epibatidine binding and epibatidine-induced single-channel currents. Complexes formed by alpha and mutant gamma(K34S+F172I) subunits bind epibatidine with increased affinity compared to alphagamma complexes, whereas the kinetics of alpha2betadeltagamma(K34S+F172I) receptors reveal no change in affinity of the low-affinity site, but increased affinity of the high-affinity site. Conversely, complexes formed by alpha and mutant delta(S36K+I178F) subunits bind epibatidine with decreased affinity compared to alphadelta complexes, whereas the kinetics of alpha2betagammadelta(S36K+I178F) and alpha2betaepsilondelta(S36K+I178F) receptors show markedly reduced sensitivity to epibatidine. The overall data show that epibatidine activates muscle receptors by binding with high affinity to alphagamma and alphaepsilon sites, but with low affinity to the alphadelta site.  相似文献   

17.
The homology models of the alpha4beta2 and alpha3beta4 nicotinic acetylcholine receptors (nAChRs) suggest that the two nAChR subtypes are different in their ligand-binding pockets due to the non-conserved residues in the beta-subunits. The docking of nicotine, epibatidine, A-84543, and the two analogs of A-84543 ligands 1 and 2 to the homology models of alpha4beta2 and alpha3beta4 is presented. It is found that the protonated amino groups of these ligands bind to the alpha-subunits, whereas the remaining parts of the ligands bind to the beta-subunits. The two non-conserved amino acids Lys77 and Phe117 in the beta2-subunit corresponding to Ile77 and Gln117 in the beta4-subunit are identified to be the key players determining the binding modes of the ligands. We demonstrate how the increase in the number of the atoms connecting the pyrrolidine and pyridine rings in A-84543, 1, and 2, and an introduction of the alkynyl substituent in the pyridine ring affect the binding and shift the selectivity of these ligands toward the beta2-containing receptors. Further improvement in affinity and selectivity in this and other series of the ligands may be achieved by designing molecules that would specifically target the non-conserved regions in nAChRs.  相似文献   

18.
The expression and function of nicotinic ACh receptors (nAChRs) in rat coronary microvascular endothelial cells (CMECs) were examined using RT-PCR and whole cell patch-clamp recording methods. RT-PCR revealed expression of mRNA encoding for the subunits alpha(2), alpha(3), alpha(4), alpha(5), alpha(7), beta(2), and beta(4) but not beta(3). Focal application of ACh evoked an inward current in isolated CMECs voltage clamped at negative membrane potentials. The current-voltage relationship of the ACh-induced current exhibited marked inward rectification and a reversal potential (E(rev)) close to 0 mV. The cholinergic agonists nicotine, epibatidine, and cytisine activated membrane currents similar to those evoked by ACh. The nicotine-induced current was abolished by the neuronal nAChR antagonist mecamylamine. The direction and magnitude of the shift in E(rev) of nicotine-induced current as a function of extracellular Na(+) concentration indicate that the nAChR channel is cation selective and follows that predicted by the Goldman-Hodgkin-Katz equation assuming K(+)/Na(+) permeability ratio of 1.11. In fura-2-loaded CMECs, application of ACh, but not of nicotine, elicited a transient increase in intracellular free Ca(2+) concentration. Taken together, these results demonstrate that neuronal nAChR activation by cholinergic agonists evokes an inward current in CMECs carried primarily by Na(+), which may contribute to the plasma nicotine-induced changes in microvascular permeability and reactivity induced by elevations in plasma nicotine.  相似文献   

19.
In smoker's brain, rodent brain, and in cultured cells expressing nicotinic receptors, chronic nicotine treatment induces an increase in the total number of high affinity receptors for acetylcholine and nicotine, a process referred to as up-regulation. Up-regulation induced by 1 mm nicotine reaches 6-fold for alpha3beta2 nicotinic receptors transiently expressed in HEK 293 cells, whereas it is much smaller for alpha3beta4 receptors, offering a rationale to investigate the molecular mechanism underlying up-regulation. In this expression system binding sites are mainly intracellular, as shown by [(3)H]epibatidine binding experiments and competition with the impermeant ligand carbamylcholine. Systematic analysis of beta2/beta4 chimeras demonstrates the following. (i) The extracellular domain critically contributes to up-regulation. (ii) Only residues belonging to two beta2 segments, 74-89 and 106-115, confer up-regulation to beta4, mainly by decreasing the amount of binding sites in the absence of nicotine; on an atomic three-dimensional model of the alpha3beta2 receptor these amino acids form a compact microdomain that mainly contributes to the subunit interface and also faces the acetylcholine binding site. (iii) The beta4 microdomain is sufficient to confer to beta2 a beta4-like up-regulation. (iv) This microdomain makes an equivalent contribution to the up-regulation differences between alpha4beta2 and alpha4beta4. We propose that nicotine, by binding to immature oligomers, elicits a conformational reorganization of the microdomain, strengthening the interaction between adjacent subunits and, thus, facilitating maturation processes toward high affinity receptors. This mechanism may be central to nicotine addiction, since alpha4beta2 is the subtype exhibiting the highest degree of up-regulation in the brain.  相似文献   

20.
Liquid chromatography columns containing stationary phases based upon immobilized nicotinic acetylcholine receptors (nAChRs) were used to screen a series of conformationally constrained nicotine and anabasine derivatives for agonist activity. The alpha3beta4 nAChR and alpha4beta2 nAChR subtypes were used to prepare the chromatographic columns and [(3)H] epibatidine dihydrochloride ([(3)H] EB) was used as the marker ligand. Single displacement experiments were conducted with the test ligands and with nicotine and carbachol. Nicotine was used as an internal control for compounds with agonist activity and carbachol was used as an internal control for compounds with very weak agonistic activity (K(d) > 4700 nM for alpha3beta4). The displacement of [(3)H] EB by each of the test compounds and internal controls was calculated and expressed as Deltaml. Functional studies were then conducted using a stably transfected cell line that expresses the alpha3beta4 nAChR and EC(50) values were determined for the test compounds and the internal controls. A comparison of the Deltaml and EC(50) values indicated that 9/11 compounds had been correctly identified as agonists or non-agonists of the alpha3beta4 nAChR. A similar comparison could not be made for the alpha4beta2 nAChR, since the intact cell line was not available for testing. The results of the study suggest that the immobilized nAChR columns can be used for the rapid on-line screening of compounds for their relative affinities for the immobilized receptor and as an initial determination of qualitative functional activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号