首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ongoing discovery of disease-associated epitopes detected by CD8 T cells greatly facilitates peptide-based vaccine approaches and the construction of multimeric soluble recombinant proteins (e.g. tetramers) for isolation and enumeration of antigen-specific CD8 T cells. Related to these outcomes of epitope discovery is the recent demonstration that MHC class I/peptide complexes can be expressed as single chain trimers (SCTs) with peptide, beta(2)m and heavy chain connected by linkers to form a single polypeptide chain. Studies using clinically relevant mouse models of human disease have shown that SCTs expressed by DNA vaccination are potent stimulators of cytotoxic T lymphocytes. Their vaccine efficacy has been attributed to the fact that SCTs contain a preprocessed and preloaded peptide that is stably displayed on the cell surface. Although SCTs of HLA class I/peptide complexes have been previously reported, they have not been characterized for biochemical stability or susceptibility to exogenous peptide binding. Here we demonstrate that human SCTs remain almost exclusively intact when expressed in cells and can incorporate a disulfide trap that dramatically excludes the binding of exogenous peptides. The mechanistic and practical applications of these findings for vaccine development and T cell isolation/enumeration are discussed.  相似文献   

2.
Immunodominant peptides in CD8 T cell responses to pathogens and tumors are not always tight binders to MHC class I molecules. Furthermore, antigenic peptides that bind weakly to the MHC can be problematic when designing vaccines to elicit CD8 T cells in vivo or for the production of MHC multimers for enumerating pathogen-specific T cells in vitro. Thus, to enhance peptide binding to MHC class I, we have engineered a disulfide bond to trap antigenic peptides into the binding groove of murine MHC class I molecules expressed as single-chain trimers or SCTs. These SCTs with disulfide traps, termed dtSCTs, oxidized properly in the endoplasmic reticulum, transited to the cell surface, and were recognized by T cells. Introducing a disulfide trap created remarkably tenacious MHC/peptide complexes because the peptide moiety of the dtSCT was not displaced by high-affinity competitor peptides, even when relatively weak binding peptides were incorporated into the dtSCT. This technology promises to be useful for DNA vaccination to elicit CD8 T cells, in vivo study of CD8 T cell development, and construction of multivalent MHC/peptide reagents for the enumeration and tracking of T cells-particularly when the antigenic peptide has relatively weak affinity for the MHC.  相似文献   

3.
Chemical cross-linking and gel permeation chromatography were used to examine early events in the biogenesis of class I histocompatibility molecules. We show that newly synthesized class I heavy chains associate rapidly and quantitatively with an 88-kD protein in three murine tumor cell lines. This protein (p88) does not appear to possess Asn-linked glycans and it is not the abundant ER protein, GRP94. The class I-p88 complex exists transiently (t1/2 = 20-45 min depending on the specific class I heavy chain) and several lines of evidence suggest that p88 dissociates from the complex while still in the ER. Dissociation is not triggered upon binding of beta 2-microglobulin to the heavy chain (t1/2 = 2-5 min). However, the rate of dissociation does correlate with the characteristic rate of ER to Golgi transport for the particular class I molecule studied. Consequently, dissociation of p88 may be rate limiting for ER to Golgi transport. Class I molecules bind antigenic peptides, apparently in the ER, for subsequent presentation to cytotoxic T lymphocytes at the cell surface. p88 could promote peptide binding or it may retain class I molecules in the ER during formation of the ternary complex of heavy chain, beta 2-microglobulin, and peptide.  相似文献   

4.
MHC class I and class II molecules transport foreign and self peptides to the cell surface and present them to T lymphocytes. Detection of these peptide:MHC complexes has thus far been limited to analysis of the response of a T cell. Previously, we showed that a mAb, Y-Ae, reacts with 10 to 15% of class II molecules on peripheral B lymphocytes and on cells in the thymus medulla but not thymus cortex in mice that express both I-Ab and I-Eb molecules. Elsewhere, we show that Y-Ae detects a self E alpha peptide bound to I-Ab molecules. Data presented here suggest that the antibody binds over the peptide binding groove of class II molecules, and, like a TCR, appears to recognize both the self peptide and polymorphic class II residues. In addition to B lymphocytes, the Y-Ae determinant is expressed at comparable levels on other APC, including macrophages and dendritic cells. Finally, the antibody does not react with invariant chain-associated class II complexes, thus providing direct evidence that invariant chain:class II complexes and peptide:class II complexes are mutually exclusive. These data provide further evidence that immunologic self is of limited complexity, and have important implications for T cell selection, self tolerance, and autoreactivity.  相似文献   

5.
Transgenic mice that expressed a transplantation antigen, H-2Kb, in an unusual tissue distribution have been developed. Gene-regulatory elements from the immunoglobulin heavy-chain locus (Emu enhancer and heavy chain promoter) were linked to the class I Kb gene and the construct microinjected into fertilized mouse eggs of a different haplotype. It was expected that such gene-regulatory elements would direct expression of the foreign class I molecules only to B and T lymphocytes. However, expression was also detected in a subset of thymus medullary epithelium. The Kb molecules expressed on this thymic subset were unable to positively select T cells for passage to the periphery. The mice were, however, tolerant of the cell types expressing the foreign Kb molecules and were also tolerant of Kb presented as skin grafts. These results suggest that not all components of thymic epithelium are involved in positive selection of T cells and that transplantation antigens expressed on non-dendritic cells can induce tolerance.  相似文献   

6.
Soluble forms of the mouse MHC class I molecule, Dd, were produced in which the peptide binding groove was uniformly occupied by peptides attached via a covalent flexible peptide linker to the N terminus of the associated beta2-microglobulin. The MHC heavy chain and beta2-microglobulin were firmly associated, and the molecules displayed an Ab epitope requiring proper occupancy of the peptide binding groove. Soluble Dd containing a covalent version of a well-characterized Dd-binding peptide from HIV stimulated a T cell hybridoma specific for this combination. Furthermore, a tetravalent version of this molecule bound specifically with apparent high avidity to this hybridoma.  相似文献   

7.
Upon Ag exposure, most memory T cells undergo restimulation-induced cell death. In this article, we describe a novel synthetic agonist, an N-terminal extended decamer peptide expressed as a single-chain trimer, the amino-terminal extended peptide MHC class I single-chain trimer (AT-SCT), which preferentially promotes the growth of memory human CD8(+) T cells with minimal restimulation-induced cell death. Using CMV pp65 and melanoma gp100 Ags, we observe the in vitro numerical expansion of a clonally diverse polyfunctional population of Ag-specific CD8(+) T cells from healthy individuals and vaccinated melanoma patients, respectively. Memory CD8(+) T cells stimulated with AT-SCT presented on MHC class I/II-null cells show reduced cytokine production, slower kinetics of TCR downregulation, and decreased cell death compared with native nonamer MHC class I single-chain trimer (SCT)-activated T cells. However, both ERK phosphorylation and cell cycle kinetics are identical in AT-SCT- and SCT-activated T cells. Probing of SCT and AT-SCT peptide-MHC complexes using fluorochrome-conjugated TCR multimers suggests that nonamer- and decamer-linked peptides may be anchored differently to the HLA-A2 peptide-binding groove. Our findings demonstrate that modified peptide-MHC structures, such as AT-SCT, can be engineered as T cell agonists to promote the growth and expansion of memory human CD8(+) T cells.  相似文献   

8.
The poor immunogenicity of many tumors can be partly explained by the inefficiency of the MHC class I peptide presentation pathway. MHC-I-based single-chain trimers (SCT) represent a new class of molecules with the potential to overcome this limitation. We here evaluated the ability of SCT presenting a melanoma antigen peptide (TRP-2) to prime cytotoxic T lymphocyte (CTL) responses in mice when given as DNA vaccines via Gene Gun or when expressed by dendritic cells. The SCT was unable to induce detectable priming or significant anti-tumor activity of CTL using either vaccination strategy, whereas control SCT (with an exogenous peptide) primed strong responses. This study thus provides the first data related to the use of SCT in combination with DC and their application toward self antigens and suggest this potent technology, alone, is insufficient to overcome self tolerance.  相似文献   

9.
MHC class I molecules devoid of peptide are expressed on the cell surface of the mouse mutant lymphoma cell line RMA-S upon culture at reduced temperature. Empty class I molecules are thermolabile at the cell surface and in detergent lysates, but can be stabilized by the addition of presentable peptide; peptide binding appears to be a rapid process. Furthermore, class I molecules on the surface of RMA-S (H-2b haplotype) cells cultured at 26 degrees C can efficiently and specifically bind iodinated peptide presented by H-2Kb. Binding of iodinated peptide is also observed at a lower level for nonmutant cells (RMA) cultured at 26 degrees C. These experiments underscore the role for peptide in maintenance of the structure of class I molecules and, more importantly, provide two assay systems to study the interactions of peptides with MHC class I molecules independent of the availability of T cells that recognize a particular peptide-MHC class I complex.  相似文献   

10.
The endoplasmic reticulum protein tapasin is considered to be a class I-dedicated chaperone because it facilitates peptide loading by proposed mechanisms such as peptide editing, endoplasmic reticulum retention of nonpeptide-bound molecules, and/or localizing class I near the peptide source. Nonetheless, the primary functions of tapasin remain controversial as do the relative dependencies of different class I molecules on tapasin for optimal peptide loading and surface expression. Tapasin dependencies have been addressed in previous studies by transfecting different class I alleles into tapasin-deficient LCL721.220 cells and then monitoring surface expression and Ag presentation to T cells. Indeed, by these criteria, class I alleles have disparate tapasin-dependencies. In this study, we report a novel and more direct method of comparing tapasin dependency by monitoring the ratio of folded vs open forms of the different mouse class I heavy chains, L(d), K(d), and K(b). Furthermore, we determine the amount of de novo heavy chain synthesis required to attain comparable expression in the presence vs absence of tapasin. Our findings show that tapasin dramatically improves peptide loading of all three of these mouse molecules.  相似文献   

11.
ERp57 is a thiol oxidoreductase of the endoplasmic reticulum that appears to be recruited to substrates indirectly through its association with the molecular chaperones calnexin and calreticulin. However, its functions in living cells have been difficult to demonstrate. During the biogenesis of class I histocompatibility molecules, ERp57 has been detected in association with free class I heavy chains and, at a later stage, with a large complex termed the peptide loading complex. This implicates ERp57 in heavy chain disulfide formation, isomerization, or reduction as well as in the loading of peptides onto class I molecules. In this study, we show that ERp57 does indeed participate in oxidative folding of the heavy chain. Depletion of ERp57 by RNA interference delayed heavy chain disulfide bond formation, slowed folding of the heavy chain alpha(3) domain, and caused slight delays in the transport of class I molecules from the endoplasmic reticulum to the Golgi apparatus. In contrast, heavy chain-beta(2)-microglobulin association kinetics were normal, suggesting that the interaction between heavy chain and beta(2) -microglobulin does not depend on an oxidized alpha(3) domain. Likewise, the peptide loading complex assembled properly, and peptide loading appeared normal upon depletion of ERp57. These studies demonstrate that ERp57 is involved in disulfide formation in vivo but do not support a role for ERp57 in peptide loading of class I molecules. Interestingly, depletion of another thiol oxidoreductase, ERp72, had no detectable effect on class I biogenesis, consistent with a specialized role for ERp57 in this process.  相似文献   

12.
Soluble MHC class I molecules loaded with antigenic peptides are available either to detect and to enumerate or, alternatively, to sort and expand MHC class I-restricted and peptide-reactive T cells. A defined number of MHC class I/peptide complexes can now be implemented to measure T cell responses induced upon Ag-specific stimulation, including CD3/CD8/zeta-chain down-regulation, pattern, and quantity of cytokine secretion. As a paradigm, we analyzed the reactivity of a Melan-A/MART-1-specific and HLA-A2-restricted CD8(+) T cell clone to either soluble or solid-phase presented peptides, including the naturally processed and presented Melan-A/MART-1 peptide AAGIGILTV or the peptide analog ELAGIGILTV presented either by the HLA-A2 wild-type (wt) or mutant (alanineright arrowvaline aa 245) MHC class I molecule, which reduces engagement of the CD8 molecule with the HLA-A2 heavy chain. Soluble MHC class I complexes were used as either monomeric or tetrameric complexes. Soluble monomeric MHC class I complexes, loaded with the Melan-A/MART-1 peptide, resulted in CD3/CD8 and TCR zeta-chain down-regulation, but did not induce measurable cytokine release. In general, differences pertaining to CD3/CD8/zeta-chain regulation and cytokine release, including IL-2, IFN-gamma, and GM-CSF, were associated with 1) the format of Ag presentation (monomeric vs tetrameric MHC class I complexes), 2) wt vs mutant HLA-A2 molecules, and 3) the target Ag (wt vs analog peptide). These differences are to be considered if T cells are exposed to recombinant MHC class I Ags loaded with peptides implemented for detection, activation, or sorting of Ag-specific T cells.  相似文献   

13.
Members of the CD1 family of membrane glycoproteins can present antigenic lipids to T lymphocytes. Like major histocompatibility complex class I molecules, they form a heterodimeric complex of a heavy chain and beta(2)-microglobulin (beta(2)m) in the endoplasmic reticulum (ER). Binding of lipid antigens, however, takes place in endosomal compartments, similar to class II molecules, and on the plasma membrane. Unlike major histocompatibility complex class I or CD1b molecules, which need beta(2)m to exit the ER, CD1d can be expressed on the cell surface as either a free heavy chain or associated with beta(2)m. These differences led us to investigate early events of CD1d biosynthesis and maturation and the role of ER chaperones in its assembly. Here we show that CD1d associates in the ER with both calnexin and calreticulin and with the thiol oxidoreductase ERp57 in a manner dependent on glucose trimming of its N-linked glycans. Complete disulfide bond formation in the CD1d heavy chain was substantially impaired if the chaperone interactions were blocked by the glucosidase inhibitors castanospermine or N-butyldeoxynojirimycin. The formation of at least one of the disulfide bonds in the CD1d heavy chain is coupled to its glucose trimming-dependent association with ERp57, calnexin, and calreticulin.  相似文献   

14.
T lymphocytes recognize antigens in the form of peptides presented by major histocompatibility complex (MHC) molecules on the cell surface. Only a small proportion of MHC class I and class II molecules are loaded with foreign antigenic peptides; the vast majority are loaded with thousands of different self peptides. It was suggested that MHC molecules presenting self peptides may serve either to decrease (antagonistic effect) or increase (synergistic effect) the T cell response to a specific antigen. Here, we present our finding that transfected mouse fibroblasts presenting a single antigenic peptide covalently bound to a class II MHC molecule stimulated specific mouse T cell hybridoma cells to an interleukin-2 response less efficiently than fibroblasts presenting a similar amount of antigenic peptide in the presence of class II molecules loaded with heterogenous bystander peptides.  相似文献   

15.
E Joly  M B Oldstone 《Neuron》1992,8(6):1185-1190
Virally infected neurons avoid destruction by cytotoxic T lymphocytes (CTLs) by failing to express major histocompatibility complex (MHC) class I molecules. Like neurons in vivo and in primary culture, the OBL21 neuronal cell line expressed barely detectable levels of MHC class I molecules. This correlated with very low levels of mRNAs for the MHC class I heavy chains (alpha C). OBL21 cells also fail to provide MHC class I molecules with the peptides necessary for their efficient assembly and transport to the cell surface. This function can be restored by treatment with interferon-gamma (IFN-gamma). The mRNA for peptide transporters HAM1 and HAM2 was not detectable in OBL21 neuronal cells, but was induced by IFN-gamma treatment. Hence, the ability of neurons to evade CTL-mediated killing results from expression at low levels of the MHC class I alpha C, the peptide transporters HAM1 and HAM2, and possibly other genes of the peptide-loading machinery.  相似文献   

16.
We report here that the expression of major histocompatibility complex (MHC) class I heavy chains not associated with beta 2-microglobulin is induced on resting human T cells by a variety of stimuli. These beta 2m-free class I heavy chains are not transported as such from the endoplasmic reticulum but originate from surface beta 2m-associated MHC class I molecules. beta 2m-free class I heavy chains are spontaneously released from the surface of activated cells. Cross-linking of beta 2m-free class I heavy chains with specific monoclonal antibodies results in the rapid down-regulation and internalization of these molecules. In contrast, beta 2m-associated MHC class I molecules display a different pattern of modulation. Previously, we reported that beta 2m-free class I heavy chains interact with CD8 molecules expressed on the same activated T cells. We propose that interactions between these molecules are involved in a mechanism regulating the function of activated T cells.  相似文献   

17.
It has been reported that the assembly of MHC class I molecules in mutagenized cell lines could be induced by specific binding peptides. We have now demonstrated that the defect in assembly between heavy and light chains of class I molecules naturally occurred in tumor cells of one spontaneous ovarian carcinoma detected by one-dimensional isoelectric focusing of immunoprecipitates with anti-monomorphic class I MAb (W6/32) and by immunostaining with free heavy chain and beta 2m-specific MAbs. In vitro treatment of the tumor cells with IFN-gamma induced the assembly and surface expression of majority class I molecules (A2.1, B7, B15, Cw6, Cw7 out of A2.1, A2*, B7, B15, Cw6, Cw7). Moreover, assembly of A2 and Cw6 was induced by exposure of the tumor cells to a HLA A2-binding peptide K62 derived from influenza A matrix protein. Autologous blood T lymphocytes were activated in mixed lymphocyte-tumor cell culture (MLTC) by the IFN-gamma-treated but not by the unmanipulated tumor cells. Although activated lymphocytes damaged both IFN-gamma-treated and untreated tumor cells, the alpha class I MAb (W6/32) efficiently inhibited the lysis of IFN-gamma-treated targets, but not the untreated targets. These results indicate that the defect of MHC class I assembly may result in the escape of tumor cells from immune response.  相似文献   

18.
Major histocompatibility complex (MHC) class II molecules are membrane-anchored heterodimers on the surface of antigen presenting cells (APCs) that bind the T cell receptor, initiating a cascade of interactions that results in antigen-specific activation of clonal populations of T cells. The peptide binding/T cell recognition domains of rat MHC class II (alpha-1 and beta-1 domains) were expressed as a single exon for structural and functional characterization. These recombinant single-chain T cell receptor ligands (termed 'beta1alpha1' molecules) of approximately 200 amino acid residues were designed using the structural backbone of MHC class II molecules as template, and have been produced in Escherichia coli with and without N-terminal extensions containing antigenic peptides. Structural characterization using circular dichroism predicted that these molecules retained the antiparallel beta-sheet platform and antiparallel alpha-helices observed in the native MHC class II heterodimer. The proteins exhibited a cooperative two-state thermal folding-unfolding transition. Beta1alpha1 molecules with a covalently linked MBP-72-89 peptide showed increased stability to thermal unfolding relative to the empty beta1alpha1 molecules. This new class of small soluble polypeptide provides a template for designing and refining human homologues useful in detecting and regulating pathogenic T cells.  相似文献   

19.
The T cell response to complex protein Ag typically focuses on a few, and frequently a single, immunodominant epitope. Several groups have proposed that the mechanism of immunodominance is determined by the steps of Ag processing and presentation including protein unfolding, the sites of proteolytic cleavage, and the affinity of binding to MHC molecules. Also, the failure of the TCR repertoire to recognize MHC-bound peptides, termed a hole in the repertoire, can prevent recognition of a potentially dominant processed peptide. In the present study, we demonstrate that immunodominance can be determined by intermolecular competition for binding to MHC class II molecules between covalently linked T cell epitopes. In addition, we have analyzed the factors controlling T cell recognition of the covalently linked epitopes. In our system, T cell recognition of the dominant epitope is not altered by Ag processing, and is not simply a function of MHC-binding affinity. We propose that adjacent sequences can subtly alter the conformation of an epitope, creating significant changes in T cell recognition. These observations are discussed in terms of the mechanisms of immunodominance and in terms of the development of synthetic peptide vaccines.  相似文献   

20.
Class II Major Histocompatibility (MHC) molecules are cell surface heterodimeric glycoproteins that play a central role in the immune response by presenting peptide antigens for surveillance by T cells. Due to the inherent instability of the class II MHC heterodimer, and its dependence on bound peptide for proper assembly, the production of electrophoretically pure samples of class II MHC proteins in complex with specific peptides has been problematic. A soluble form of the murine class II MHC molecule, I-Ad, with a leucine zipper tail added to each chain to enhance dimer assembly and secretion, has been produced in Drosophila melanogaster SC2 cells. To facilitate peptide loading, a high affinity ovalbumin peptide was covalently engineered to be attached by a six-residue linker to the amino terminus of the I-Adbeta chain. This modified I-Ad molecule was purified using preparative IEF and one fraction, after removal of the leucine zipper tails, produced crystals suitable for X-ray crystallographic analysis. The protein engineering and purification methods described here should be of general value for the expression of I-A and other class II MHC-peptide complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号