首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The efficiency of ionizing photon radiation for inducing mutations, chromosome aberrations, neoplastic cell transformation, and cell killing depends on the photon energy. We investigated the induction and rejoining of DNA double-strand breaks (DSBs) as possible contributors for the varying efficiencies of different photon energies. A specialized pulsed-field gel electrophoresis assay based on Southern hybridization of single Mbp genomic restriction fragments was employed to assess DSB induction and rejoining by quantifying the restriction fragment band. Unrejoined and misrejoined DSBs were determined in dose fractionation protocols using doses per fraction of 2.2 and 4.4 Gy for CK characteristic X rays, 4 and 8 Gy for 29 kVp X rays, and 5, 10 and 20 Gy for 60Co gamma rays. DSB induction by CK characteristic X rays was about twofold higher than for 60Co gamma rays, whereas 29 kVp X rays showed only marginally elevated levels of induced DSBs compared with 60Co gamma rays (a factor of 1.15). Compared with these modest variations in DSB induction, the variations in the levels of unrejoined and misrejoined DSBs were more significant. Our results suggest that differences in the fidelity of DSB rejoining together with the different efficiencies for induction of DSBs can explain the varying biological effectiveness of different photon energies.  相似文献   

2.
The repair kinetics of the gamma rays induced DNA damage was determined in murine peripheral blood leukocytes in vivo by the comet assay. Mice were exposed to 1.0 Gy of gamma rays in a 137Cs source and samples of peripheral blood were taken from their tails at different times. The repair was evaluated per mice in separate experiments by measuring the proportion of cells with tail (comets) in each sample. An average of nearly 80% of comets was obtained at the initial time after the exposure; 2 min later the frequency decreased to 45% and continued diminishing to 22% at 15 min. This evidences the presence of a rapid repair mechanism. For a period of 25 to 40 min after exposure there was a slight but consistent increase of comets from 22 to 38% followed by a second reduction, which could be due to a late repair process that causes strand breaks and then joined them. In summary our results indicated that this system seems to be appropriate for the study of the repair capacity of cells following exposure to ionizing radiation.  相似文献   

3.
A new model for the survival of bacteria exposed to ionizing radiation is constructed in the framework of a target theory based on microdosimetric concepts, where single- and double-strand breaks of DNA and their repair in vivo can be described consistently in terms of the microdosimetric quantity j (number of effective primary events per track per target). In this model, the ability of cells to repair DNA damage is taken into consideration in terms of the repair capacities for single- and double-strand breaks of DNA, xi 1 and xi 2 (0 less than or equal to xi 1, xi 2 less than or equal to 1). To apply this model to Escherichia coli K-12 strains with different repair abilities, values of the repair capacity for single-strand breaks, xi 1, were derived from experimental survival curves. The theoretical survival curves for 60Co gamma rays were found to be effectively insensitive to the value of xi 2. Experimental survival curves for the wild-type, uvr, and rec strains of E. coli K-12 were well reproduced in this model. From these results, it is concluded that the theoretical formulation for the survival fraction of bacteria can afford a quantitative method for analysis of the repair process for radiation-induced single-strand breaks in DNA in vivo.  相似文献   

4.
Human adenovirus type 2 (Ad 2) was irradiated with 137Cs gamma rays in the liquid state at 0 degree C. DNA breaks were correlated with the inactivation of several viral functions and compared to results obtained previously for irradiation of Ad 2 under frozen conditions at -75 degrees C. Irradiation at 0 degree C induced 170 +/- 20 single-strand breaks and 2.6 +/- 0.4 double-strand breaks/Gy/10(12) Da in the viral DNA. Viral adsorption to human KB cells was inactivated with a D0 of 9.72 +/- 1.18 kGy, whereas the inactivation of Ad 2 plaque formation had a D0 of 0.99 +/- 0.14 or 1.1 +/- 0.29 kGy when corrected for the effect of radiation on virus adsorption. For the adsorbed virus, an average of 4.3 +/- 1.7 single-strand and 0.065 +/- 0.02 double-strand breaks were induced in the viral DNA per lethal hit. In contrast, irradiation of Ad 2 at -75 degrees C results in 2.6- to 3.4-fold less DNA breakage per Gy and a 5.6-fold increase in D0 for plaque formation of the adsorbed virus. Furthermore, although host cell reactivation (HCR) of Ad 2 viral structural antigen production for irradiated virus was substantially reduced in the xeroderma pigmentosum fibroblast strain (XP25RO) compared to normal strains for irradiation at -75 degrees C (57% HCR), it was only slightly reduced compared to normal for irradiation at 0 degree C (88% HCR). These results indicate that the spectrum of DNA damage is both quantitatively and qualitatively different for the two conditions of irradiation.  相似文献   

5.
The induction of chromosome aberrations in human lymphocytes irradiated in vitro with X rays generated at a tube voltage of 29 kV was examined to assess the maximum low-dose RBE (RBE(M)) relative to higher-energy X rays or 60Co gamma rays. Since blood was taken from the same male donor whose blood had been used for previous irradiation experiments using widely varying photon energies, the greatest possible accuracy was available for such an estimation of the RBE(M), avoiding the interindividual variations in sensitivity or differences in methodology usually associated with interlaboratory comparisons. The magnitude of the linear coefficient alpha of the linear-quadratic dose-effect relationship obtained for the production of dicentric chromosomes by 29 kV X rays (alpha = 0.0655 +/- 0.0097 Gy(-1)) confirms earlier observations of a strong increase in alpha with decreasing photon energy. Relating this value to previously published values of alpha for the dose-effect curves for dicentrics obtained in our own laboratory, RBE(M) values of 1.6 +/- 0.3 in comparison with weakly filtered 220 kV X rays, 3.0 +/- 0.7 compared to heavily filtered 220 kV X rays, and 6.1 +/- 2.5 compared to 60Co gamma rays have been obtained. These data emphasize that the choice of the reference radiation is of fundamental importance for the RBE(M) obtained. A special survey of the RBE(M) values obtained by different investigators in the narrow quality range from about 30 to 350 kV X rays indicates that the present RBE is in fairly good agreement with previously published findings for the induction of chromosome aberrations or micronuclei in human lymphocytes but differs from recently published findings for neoplastic transformation in a human hybrid cell line.  相似文献   

6.
Schmid et al. recently reported on the maximum low-dose RBE for mammography X rays (29 kV) for the induction of dicentrics in human lymphocytes. To obtain additional information on the RBE for this radiation quality, experiments with monochromatized synchrotron radiation were performed. Monochromatic 17.4 keV X rays were chosen for comparison with the diagnostic mammography X-ray spectrum to evaluate the spectral influence, while monochromatic 40 keV X rays represent a higher-energy reference radiation, within the experiment. The induction of dicentric chromosomes in human lymphocytes from one blood donor irradiated in vitro with 17.4 keV and 40 keV monochromatic X rays resulted in alpha coefficients of (3.44 +/- 0.87) x 10(-2) Gy(-1) and (2.37 +/- 0.93) x 10(-2) Gy(-1), respectively. These biological effects are only about half of the alpha coefficients reported earlier for exposure of blood from the same donor with the broad energy spectra of 29 kV X rays (mean energy of 17.4 keV) and 60 kV X rays (mean energy of 48 keV). A similar behavior is evident in terms of RBEM. Relative to weakly filtered 220 kV X rays, the RBEM for 17.4 and 40 keV monochromatic X rays is 0.86 +/- 0.23 and 0.59 +/- 0.24, respectively, which is in contrast to the RBEM of 1.64 +/- 0.27 for 29 kV X rays and 1.10 +/- 0.19 for 60 kV X rays. It is evident that the monochromatic radiations are less effective in inducing dicentric chromosomes than broad-spectrum X rays with the corresponding mean energy value. Therefore, it can be assumed that, for these X-ray qualities with broad energy spectra, a large fraction of the effects should be attributed predominantly to photons with energies well below the mean energy.  相似文献   

7.
Ionizing radiation is a potent inducer of DNA damage because it causes single- and double-strand breaks, alkali-labile sites, base damage, and crosslinks. The interest in ionizing radiation is due to its environmental and clinical implications. Single-strand breaks, which are the initial damage induced by a genotoxic agent, can be used as a biomarker of exposure, whereas the more biologically relevant double-strand breaks can be analyzed to quantify the extent of damage. In the present study the effects of 137Cs γ-radiation at doses of 1, 5, and 10 Gray on DNA and subsequent repair by C3H10T1/2 cells (mouse embryo fibroblasts) were investigated. Two versions of the comet assay, a sensitive method for evaluating DNA damage, were implemented: the alkaline one to detect single-strand breaks, and the neutral one to identify double-strand breaks. The results show a good linear relation between DNA damage and radiation dose, for both single-strand and double-strand breaks. A statistically significant difference with respect to controls was found at the lowest dose of 1 Gy. Heterogeneity in DNA damage within the cell population was observed as a function of radiation dose. Repair kinetics showed that most of the damage was repaired within 2 h after irradiation, and that the highest rejoining rate occurred with the highest dose (10 Gy). Single-strand breaks were completely repaired 24 h after irradiation, whereas residual double-strand breaks were still present. This finding needs further investigation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The fundamental assumption implicit in the use of the atomic bomb survivor data to derive risk estimates is that the gamma rays of Hiroshima and Nagasaki are considered to have biological efficiencies equal to those of other low-LET radiations up to 10 keV/microm, including mammography X rays. Microdosimetric and radiobiological data contradict this assumption. It is therefore of scientific and public interest to evaluate the efficiency of mammography X rays (25-30 kVp) to induce cancer. In this study, the efficiency of mammography X rays relative to 200 kVp X rays to induce neoplastic cell transformation was evaluated using cells of a human hybrid cell line (CGL1). For both radiations, a linear-quadratic dose-effect relationship was observed for neoplastic transformation of CGL1 cells; there was a strong linear component for the 29 kVp X rays. The RBE(M) of mammography X rays relative to 200 kVp X rays was determined to be about 4 for doses < or = 0.5 Gy. A comparison of the electron fluences for both X rays provides strong evidence that electrons with energies of < or = 15 keV can induce neoplastic transformation of CGL1 cells. Both the data available in the literature and the results of the present study strongly suggest an increase of RBE(M) for carcinogenesis in animals, neoplastic cell transformation, and clastogenic effects with decreasing photon energy or increasing LET to an RBE(M) approximately 8 for mammography X rays relative to 60Co gamma rays.  相似文献   

9.
The influence of thymine starvation on the single-strand molecular weight of deoxyribonucleic acid (DNA) from Escherichia coli was determined by sedimentation through gradients of alkaline sucrose. Growth of cells for as long as 150 min in thymineless medium did not significantly reduce the molecular weight below the control value of 2.4 +/- 0.3 x 10(8) daltons. Incubation of cells in thymineless medium after exposure to 500 ergs/mm(2) of ultraviolet light or 20 krad of (137)Cs gamma rays did not appear to block the rejoining of single-strand breaks associated with irradiation. Thus, DNA repair enzymes, presumably including DNA ligase, are not significantly inhibited by thymine starvation.  相似文献   

10.
Chromatid breaks have previously been shown to be induced in G2-phase cells after exposure to ionizing radiation (X and gamma rays) as a linear function of dose, consistent with a single-event mechanism. DNA double-strand breaks (DSBs) are thought to be the initiating lesion, and experiments with a genetically engineered cell line containing a single DSB site also indicate that a single DSB is sufficient to induce a chromatid break. Although the precise mechanism of conversion of an isolated DSB into a chromatid break is not yet understood, it is known that a proportion of chromatid breaks result from rearrangements between sister chromatids. Here we report further evidence for the single-event hypothesis for the formation of chromatid breaks. The evidence derives from experiments in which chromatid breaks have been induced by exposure of Chinese hamster cells to ultrasoft carbon K-shell X rays. Since the energy of carbon K-shell X rays is not sufficient for the secondary electrons to span more than one DNA double helix, we conclude that single traversals, and hence single (complex) DSBs, are responsible for the formation of chromatid breaks. We find that, as for 60Co gamma rays, around 10% of the carbon K-shell X-ray-induced chromatid breaks have associated color switches at breakpoints, indicating that they arise through sister chromatid rearrangements.  相似文献   

11.
Summary Some aspects of DNA repair in several radiation-resistant and radiation-sensitive strains of Dictyostelium discoideum were investigated by using alkaline sucrose gradients to analyze for the production and resealing of single-strand breaks following irradiation with 254 nm UV. All radiation-resistant strains and all mutants assayed that are sensitive to both UV and 60Co gamma rays produced singlestrand breaks in their nuclear DNA after a UV fluence of 15 J/m2. Mutants at the radC locus which are sensitive to UV but as resistant as their parental strains to 60Co gamma rays produced many fewer single-strand breaks in their DNA after irradiation with UV. Thus, the radC mutations alter a repair pathway specific for UV-induced DNA damage and presumably affect the activity of a UV-damage-specific endonuclease involved in excision repair. All radiation-resistant strains and all of our mutants sensitive to gamma rays rejoined much of their DNA during a three-hour post-UV-irradiation incubation, suggesting that these strains have at least a partially intact excision repair system.Abbreviations used UV ultraviolet light - PBS phosphate buffered saline - cpm counts per minute  相似文献   

12.
P Hentosh 《Radiation research》1988,115(3):436-447
The effects of oxygen and misonidazole on the induction of DNA lesions were examined in human TK6 lymphoblasts irradiated with 60Co gamma rays. We have investigated both the formation and subsequent repair of two classes of DNA damage, single-strand breaks and lesions recognized by the gamma endonuclease activity in a cell-free extract of Micrococcus luteus. Relative to irradiation under hypoxia, single-strand break yields were increased by the presence of either oxygen or misonidazole at the time of irradiation. In contrast, M. luteus enzyme-sensitive site yields were unaffected by the presence of either oxygen or misonidazole. No significant differences in single-strand break or enzyme-sensitive site repair kinetics were observed for lesions induced under any of the irradiation conditions employed. These results confirm the sensitizing effects of oxygen and oxygen-mimetic drugs on the induction of single-strand breaks but provide no support for their ability to enhance the induction of enzyme-sensitive sites.  相似文献   

13.
In vitro experiments were performed to determine whether 2450 MHz microwave radiation induces alkali-labile DNA damage and/or DNA-protein or DNA-DNA crosslinks in C3H 10T(1/2) cells. After a 2-h exposure to either 2450 MHz continuous-wave (CW) microwaves at an SAR of 1.9 W/kg or 1 mM cisplatinum (CDDP, a positive control for DNA crosslinks), C3H 10T(1/2) cells were irradiated with 4 Gy of gamma rays ((137)Cs). Immediately after gamma irradiation, the single-cell gel electrophoresis assay was performed to detect DNA damage. For each exposure condition, one set of samples was treated with proteinase K (1 mg/ml) to remove any possible DNA-protein crosslinks. To measure DNA-protein crosslinks independent of DNA-DNA crosslinks, we quantified the proteins that were recovered with DNA after microwave exposure, using CDDP and gamma irradiation, positive controls for DNA-protein crosslinks. Ionizing radiation (4 Gy) induced significant DNA damage. However, no DNA damage could be detected after exposure to 2450 MHz CW microwaves alone. The crosslinking agent CDDP significantly reduced both the comet length and the normalized comet moment in C3H 10T(1/2) cells irradiated with 4 Gy gamma rays. In contrast, 2450 MHz microwaves did not impede the DNA migration induced by gamma rays. When control cells were treated with proteinase K, both parameters increased in the absence of any DNA damage. However, no additional effect of proteinase K was seen in samples exposed to 2450 MHz microwaves or in samples treated with the combination of microwaves and radiation. On the other hand, proteinase K treatment was ineffective in restoring any migration of the DNA in cells pretreated with CDDP and irradiated with gamma rays. When DNA-protein crosslinks were specifically measured, we found no evidence for the induction of DNA-protein crosslinks or changes in amount of the protein associated with DNA by 2450 MHz CW microwave exposure. Thus 2-h exposures to 1.9 W/ kg of 2450 MHz CW microwaves did not induce measurable alkali-labile DNA damage or DNA-DNA or DNA-protein crosslinks.  相似文献   

14.
It has been suggested that DNA strand breaks are the molecular lesions responsible for radiation-induced lethality and that their repair is the basis for the recovery of irradiated cells from sublethal and potentially lethal damage. EM9 is a Chinese hamster ovary cell line that is hypersensitive to killing by X rays and has been reported to have a defect in the rate of rejoining of DNA single-strand breaks. To establish the importance of DNA strand-break repair in cellular recovery from sublethal and potentially lethal X-ray damage, those two parameters, recovery from sublethal and potentially lethal damage, were studied in EM9 cells as well as in EM9's parental repair-proficient strain, AA8. As previously reported, EM9 is the more radiosensitive cell line, having a D0 of 0.98 Gy compared to a D0 of 1.56 Gy for AA8 cells. DNA alkaline elution studies suggest that EM9 cells repair DNA single-strand breaks at a slower rate than AA8 cells. Neutral elution analysis suggests that EM9 cells also repair DNA double-strand breaks more slowly than AA8 cells. All of these data are consistent with the hypothesis that DNA strand-break ligation is defective in EM9 cells and that this defect accounts for increased radiosensitivity. The kinetics and magnitude of recovery from sublethal and potentially lethal damage, however, were similar for both EM9 and AA8 cells. Six-hour recovery ratios for sublethal damage repair were found to be 2.47 for AA8 cells and 1.31 for EM9 cells. Twenty-four-hour recovery ratios for potentially lethal damage repair were 3.2 for AA8 and 3.3 for EM9 cells. Both measurements were made at approximately equitoxic doses. Thus, the defect in EM9 cells that confers radiosensitivity and affects DNA strand-break rejoining does not affect sublethal damage repair or potentially lethal damage repair.  相似文献   

15.
Golden hamster embryo cells were exposed to 137Cs gamma rays in the presence or absence of dimethyl sulfoxide at both 310 and 77 K. Dimethyl sulfoxide gave significant protection against cell killing at both 310 and 77 K. The extent of radioprotection with 1.28 M dimethyl sulfoxide at 77 K was 85-89% of the lethal effects observed in the absence of dimethyl sulfoxide at 310 K; the dose-modifying factor was 5.7. Dimethyl sulfoxide also exerted protected against gamma-ray-induced DNA single-strand breaks and chromosomal aberrations with a maximum protection of 80-100% at a dimethyl sulfoxide concentration of 1.28 M at 77 K. At 77 K, H atoms, ion holes, and electrons can migrate through frozen cells but OH radicals cannot diffuse. Thus the protective effects of dimethyl sulfoxide against cell killing, chromosomal aberrations, and DNA single-strand breaks at 77 K may be due to the scavenging of H atoms or other ions, rather than OH radicals.  相似文献   

16.
An adaptive response induced by long-term low-dose-rate irradiation in mice was evaluated in terms of the amount of DNA damage in the spleen analyzed by a comet assay. C57BL/ 6N female mice were irradiated with 0.5 Gy of (137)Cs gamma rays at 1.2 mGy/h; thereafter, a challenge dose (0.4, 0.8 or 1.6 Gy) at a high dose rate was given. Less DNA damage was observed in the spleen cells of preirradiated mice than in those of mice that received the challenge dose only; an adaptive response in terms of DNA damage was induced by long-term low-dose-rate irradiation in mice. The gene expression of catalase and Mn-SOD was significantly increased in the spleen after 23 days of the low-dose-rate radiation (0.5 Gy). In addition, the enzymatic activity of catalase corresponded to the gene expression level; the increase in the activity was observed at day 23 (0.5 Gy). These results suggested that an enhancement of the antioxidative capacities played an important role in the reduction of initial DNA damage by low-dose-rate radiation.  相似文献   

17.
DNA damage (putatively strand breaks) from ionizing radiation inhibits the ability of intercalating dyes to induce right-handed supercoils in the DNA loops of HeLa nucleoids [Cook and Brazelle, J. Cell Sci. 22, 287-302 (1976); Roti Roti and Wright, Cytometry 8, 461-467 (1987)] while heat-induced changes in the nuclear matrix enhance this ability [Roti Roti and Painter, Radiat. Res. 89, 166-175 (1982)]. Since heat and radiation interact synergistically or additively on most cellular functions which they affect, the rewinding of DNA supercoils is unusual in that these agents alone affect it in an antagonistic manner. When HeLa cells were exposed to 45 degrees C for 30 min and immediately irradiated with 10 Gy of 137Cs gamma rays, the rewinding response was intermediate between that for cells which had been exposed to 10 Gy only and control. When repair of this damage was assayed in control cells, 97% of the initial damage had been repaired at 30 min postirradiation; at the same time only 10% of the initial damage had been repaired in the heat-shocked cells. This apparent dose reduction effect and the inhibition of repair were interpreted to indicate that heat-induced changes in nuclear structure were masking DNA damage from the assay and the repair system. These effects correlated with the amount of heat-induced excess protein associated with the nucleus and the nucleoid.  相似文献   

18.
Baulch JE  Li MW  Raabe OG 《Mutation research》2007,616(1-2):34-45
The ataxia telangiectasia mutated (ATM) gene product maintains genome integrity and initiates cellular DNA repair pathways following exposures to genotoxic agents. ATM also plays a significant role in meiotic recombination during spermatogenesis. Fertilization with sperm carrying damaged DNA could lead to adverse effects in offspring including developmental defects or increased cancer susceptibility. Currently, there is little information regarding the effect of ATM heterozygosity on germline DNA repair and heritable effects of paternal germline-ionizing irradiation. We used neutral pH comet assays to evaluate spermatozoa 45 days after acute whole-body irradiation of male mice (0.1Gy, attenuated (137)Cs gamma rays) to determine the effect of ATM heterozygosity on delayed DNA damage effects of Type A/B spermatogonial irradiation. Using the neutral pH sperm comet assay, significant irradiation-related differences were found in comet tail length, percent tail DNA and tail extent moment, but there were no observed differences in effect between wild-type and ATM +/- mice. However, evaluation of spermatozoa from third generation descendants of irradiated male mice for heritable chromatin effects revealed significant differences in DNA electrophoretic mobility in the F(3) descendants that were based upon the irradiated F(0) sire's genotype. In this study, radiation-induced chromatin alterations to Type A/B spermatogonia, detected in mature sperm 45 days post-irradiation, led to chromatin effects in mature sperm three generations later. The early cellular response to and repair of DNA damage is critical and appears to be affected by ATM zygosity. Our results indicate that there is potential for heritable genetic or epigenetic changes following Type A/B spermatogonial irradiation and that ATM heterozygosity increases this effect.  相似文献   

19.
Trzeciak, A. R., Barnes, J. and Evans, M. K. A Modified Alkaline Comet Assay for Measuring DNA Repair Capacity in Human Populations. Radiat. Res. 169, 110-121 (2008). Use of the alkaline comet assay to assess DNA repair capacity in human populations has been limited by several factors, including lack of methodology for use of unstimulated cryopreserved peripheral blood mononuclear cells (PBMCs), insufficient control of interexperimental variability, and limited analysis of DNA repair kinetics. We show that unstimulated cryopreserved PBMCs can be used in DNA repair studies performed using the comet assay. We have applied data standardization for the analysis of DNA repair capacity using negative and positive internal standards as controls for interexperimental variability. Our standardization procedure also uses negative controls, which provides a way to minimize the interference of interindividual variation in baseline DNA damage levels on DNA repair capacity measurements in populations. DNA repair capacity was assessed in a small human cohort using the parameters described in the literature including initial DNA damage, half-time of DNA repair, and residual DNA damage after 30 and 60 min. We have also introduced new DNA repair capacity parameter, initial rate of DNA repair. There was no difference in DNA repair capacity between fresh and cryopreserved PBMCs when measured by the Olive tail moment and tail DNA. The use of DNA repair capacity parameters in assessment of fast and slow single-strand break repair components is discussed.  相似文献   

20.
The repair kinetics for rejoining of DNA single- and double-strand breaks after exposure to UVC or gamma radiation was measured in cells with deficiencies in DNA ligase activities and in their normal counterparts. Human 46BR cells were deficient in DNA ligase I. Hamster EM9 and EM-C11 cells were deficient in DNA ligase III activity as a consequence of mutations in the XRCC1 gene. Hamster XR-1 cells had mutation in the XRCC4 gene, whose product stimulates DNA ligase IV activity. DNA single- and double-strand breaks were assessed by the comet assay in alkaline conditions and by the technique of graded-field gel electrophoresis in neutral conditions, respectively. 46BR cells, which are known to re-ligate at a reduced rate the DNA single-strand breaks incurred during processing of damage induced by UVC but not gamma radiation, were shown to have a normal repair of radiation-induced DNA double-strand breaks. EM9 cells exhibited a reduced rate of rejoining of DNA single-strand breaks after exposure to ionizing radiation, as reported previously, as well as UVC radiation. EM-C11 cells were deficient in the repair of radiation-induced-DNA single-strand breaks but, in contrast to EM9 cells, demonstrated the same kinetics as the parental cell line in the resealing of DNA breaks resulting from exposure to UVC radiation. Both EM9 and EM-C11 cells displayed a significant defect in rejoining of radiation-induced-DNA double-strand breaks. XR-1 cells were confirmed to be highly deficient in the repair of radiation-induced DNA double-strand breaks but appeared to rejoin DNA single-strand breaks after UVC and gamma irradiation at rates close to normal. Taken together these results indicate that: (1) DNA ligase I is involved only in nucleotide excision repair; (2) DNA ligase IV plays an important role only in repair of DNA double-strand breaks; and (3) DNA ligase III is implicated in base excision repair and in repair of DNA double-strand breaks, but probably not in nucleotide excision repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号