首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
11F8 is a pathogenic monoclonal anti-ssDNA autoantibody isolated from a lupus prone mouse. Previous studies established that 11F8 is sequence-specific and identified the thermodynamic and kinetic basis for the specific recognition of ssDNA, and binding site mutations of a single-chain construct reveal that (Y32)LCDR1, (R31)HCDR1, (W33)HCDR1, (R98)HCDR3, (L97)HCDR3, and (Y100)HCDR3 are responsible for approximately 80% of the binding free energy. Here we evaluate the role of these residues along with a group of basic residues (K62, K64, R24, K52) within the context of the binding mechanism. Binding of 11F8 takes place in two steps. In the first step, the overall positive charge of the antigen binding site attracts the negatively charged DNA to form an encounter complex that is stabilized by two salt bridges and a hydrogen bond. The second step is a slow process in which minor conformational changes occur. During this step, aromatic side chains become desolvated, presumably through stacking interactions involving two thymine bases within the DNA recognition epitope. Although the stability of the complex arises primarily from interactions formed in the second step, sequence specificity results from interactions with residues involved in both steps. These studies also show that the way in which 11F8 achieves high affinity sequence-specific binding is more closely related to RNA binding proteins than those that bind DNA and point to strategies for disrupting DNA binding that could prove to be therapeutically useful.  相似文献   

2.
Ackroyd PC  Cleary J  Glick GD 《Biochemistry》2001,40(9):2911-2922
11F8 is a sequence-specific DNA binding monoclonal autoantibody previously isolated from an autoimmune lupus-prone mouse [Stevens, S. Y., and Glick, G. D. (1999) Biochemistry 38, 560-568]. This antibody, like many other lupus anti-DNAs, localizes to kidney tissue and eventually leads to renal damage through a process that first involves the binding of DNA antigens. A series of experiments were conducted to investigate the thermodynamic and structural basis by which this antibody discriminates between specific, noncognate, and nonspecific sequences. Sequence-specific binding occurs with a minimal dependence on the polyelectrolyte effect along with a favorable binding enthalpy reflecting the presence of base stacking and contacts to DNA bases. This favorable binding enthalpy apparently is derived from desolvation at the binding interface and is consistent with recent models of the nonclassical hydrophobic effect. Noncognate recognition is also driven by the nonclassical hydrophobic effect, but is accompanied by highly unfavorable entropies that are responsible for reduced affinity relative to the high-affinity consensus sequence. Nonspecific recognition is driven completely by the polyelectrolyte effect involving extensive electrostatic interactions with the phosphate backbone. Collectively, the data demonstrate the ability of 11F8 to adapt its mode of binding to the available DNA surface and provide a thermodynamic model for sequence-specific recognition of single-stranded DNA. The salient features of this model employ the paradigms invoked to explain protein.dsDNA, protein.RNA, and antibody.antigen binding.  相似文献   

3.
Cleary J  Glick GD 《Biochemistry》2003,42(1):30-41
11F8 is a murine anti-ssDNA monoclonal autoantibody isolated from a lupus prone autoimmune mouse. This mAb binds sequence specifically, and prior studies have defined the thermodynamic and kinetic basis for sequence-specific recognition of ssDNA (Ackroyd, P. C., et al. (2001) Biochemistry 40, 2911-2922; Beckingham, J. A. and Glick, G. D. (2001) Bioorg. Med. Chem. 9, 2243-2252). Here we present experiments designed to identify the residues on 11F8 that mediate sequence-specific, noncognate, and nonspecific recognition of ssDNA and their contribution to the overall binding thermodynamics. Site-directed mutagenesis of an 11F8 single-chain construct reveals that six residues within the complementarity determining regions of 11F8 account for ca. 80% of the binding free energy and that there is little cooperativity between these residues. Germline-encoded aromatic and hydrophobic side chains provides the basis for nonspecific recognition of single-stranded thymine nucleobases. Sequence-specific recognition is controlled by a tyrosine in the heavy chain along with a somatically mutated arginine residue. Our data show that the manner in which 11F8 achieves sequence-specific recognition more closely resembles RNA-binding proteins such as U1A than other types of nucleic acid binding proteins. In addition, comparing the primary sequence of 11F8 with clonally related antibodies that differ by less than five amino acids suggests that somatic mutations which confer sequence specificity may be a feature that distinguishes glomerulotrophic pathogenic anti-DNA from those that are benign.  相似文献   

4.
Oligonucleotide derivatives bearing hemin and deuterohemin groups were synthesized. The derivatives efficiently react with the complementary nucleotide sequence in ssDNA forming covalent adducts and piperidine-labile sites. In the case of the deuterohemin derivative, some direct cleavage of the target DNA occurs.  相似文献   

5.
The ends of eukaryotic linear chromosomes are unique structures that require special management by the cell. If left unattended, the ends are inappropriately processed, leading to genomic instability and problems with proliferation. Telomeres are specialized nucleoprotein structures that restore chromosome stability by protecting and maintaining chromosome ends. Proper telomere function is facilitated, in part, by the telomere-end protection (TEP) family of proteins, which targets the 3' single-stranded (ss) overhang region of the telomere via a specialized ssDNA-binding domain (DBD). With the recent availability of the structures of these DBDs, the ssDNA-binding characteristics of TEP proteins can be compared and the common underlying mechanisms of ssDNA recognition identified, thus providing insights into telomere function.  相似文献   

6.
The kinetics of human polymerase beta (pol beta) binding to the single-stranded DNA, in the (pol beta)(16) and (pol beta)(5) binding modes, that differ in the number of occluded nucleotide residues in the protein-DNA complexes, have been examined, using the fluorescence stopped-flow technique. This is the first determination of the mechanism of ssDNA recognition by human pol beta. Binding of the enzyme to the ssDNA containing fluorescein in the place of one of the nucleotides is characterized by a strong DNA fluorescence increase, providing the required signal to quantitatively examine the complex mechanism of ssDNA recognition. The experiments were performed with the ssDNA 20-mer, which engages the polymerase in the (pol beta)(16) binding mode and encompasses the total DNA-binding site of the enzyme, and with the 10-mer, which exclusively forms the (pol beta)(5) binding mode engaging only the 8-kDa domain of the enzyme. The obtained data and analyses indicate that the (pol beta)(16) formation occurs by a minimum four-step, sequential mechanism: (reaction: see text). Formation of the (pol beta)(5) binding mode proceeds with the same mechanism; however, both binding modes differ in the energetics of the partial reactions and the structure of the intermediates. Quantitative amplitude analysis, using the matrix projection operator approach, allowed us to determine molar fluorescence intensities of all intermediates relative to the fluorescence of the free DNA. The results indicate that (pol beta)(16) binding mode formation, which is initiated by the association of the 8-kDa domain with the DNA, is followed by subsequent intermediates stabilized by DNA binding to the 31-kDa domain. Comparison with the (pol beta)(5) binding mode formation indicates that transitions of the enzyme-DNA complex in both modes are induced at the interface of the 8-kDa domain and the DNA. The sequential nature of the mechanism indicates the lack of a conformational preequilibrium of the enzyme prior to ssDNA binding.  相似文献   

7.
The bifunctional major autolysin Atl plays a key role in staphylococcal cell separation. Processing of Atl yields catalytically active amidase (AM) and glucosaminidase (GL) domains that are each fused to repeating units. The two repeats of AM (R1 and R2) target the enzyme to the septum, where it cleaves murein between dividing cells. We have determined the crystal structure of R2, which reveals that each repeat folds into two half-open β-barrel subunits. We further demonstrate that lipoteichoic acid serves as a receptor for the repeats and that this interaction depends on conserved surfaces in each subunit. Small-angle X-ray scattering of the mature amidase reveals the presence of flexible linkers separating the AM, R1, and R2 units. Different levels of flexibility for each linker provide mechanistic insights into the conformational dynamics of the full-length protein and the roles of its components in cell wall association and catalysis. Our analysis supports a model in which the repeats direct the catalytic AM domain to the septum, where it can optimally perform the final step of cell division.  相似文献   

8.
The XmaI endonuclease recognizes and cleaves the sequence C decreases CCGGG. Magnesium is required for catalysis, however, the enzyme forms stable, specific complexes with DNA in the absence of magnesium. An association constant of 1.2 x 10(9)/M was estimated for the affinity of the enzyme for a specific 195 bp fragment. Competition assays revealed that the site-specific association constant represented an approximately 10(4)-fold increase in affinity over that for non-cognate sites. Missing nucleoside analyses suggested an interaction of the enzyme with each of the cytosines and guanines within the recognition site. Recognition of each of the guanines was also indicated by dimethylsulfate interference footprinting assays. The phosphates 5' to the guanines within the recognition site appeared to be the major sites of interaction of XmaI with the sugar-phosphate backbone. No significant interaction of the protein was observed with phosphates flanking the recognition sequence. Comparison of the footprinting patterns of XmaI with those of the neoschizomer SmaI (CCC decreases GGG) revealed that the two enzymes utilize the same DNA determinants in their specific interaction with the CCCGGG recognition site.  相似文献   

9.
Enzymatic catalysis has conflicting structural requirements of the enzyme. In order for the enzyme to form a Michaelis complex, the enzyme must be in an open conformation so that the substrate can get into its active center. On the other hand, in order to maximize the stabilization of the transition state of the enzymatic reaction, the enzyme must be in a closed conformation to maximize its interactions with the transition state. The conflicting structural requirements can be resolved by a flexible active center that can sample both open and closed conformational states. For a bisubstrate enzyme, the Michaelis complex consists of two substrates in addition to the enzyme. The enzyme must remain flexible upon the binding of the first substrate so that the second substrate can get into the active center. The active center is fully assembled and stabilized only when both substrates bind to the enzyme. However, the side-chain positions of the catalytic residues in the Michaelis complex are still not optimally aligned for the stabilization of the transition state, which lasts only approximately 10(-13) s. The instantaneous and optimal alignment of catalytic groups for the transition state stabilization requires a dynamic enzyme, not an enzyme which undergoes a large scale of movements but an enzyme which permits at least a small scale of adjustment of catalytic group positions. This review will summarize the structure, catalytic mechanism, and dynamic properties of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase and examine the role of protein conformational dynamics in the catalysis of a bisubstrate enzymatic reaction.  相似文献   

10.
O'Connor C  Kovrigin EL 《Biochemistry》2008,47(39):10244-10246
Ras and its homologues are central to regulation of a multitude of cellular processes. Ras in complex with GTP binds and activates its downstream signaling partners. (31)P NMR studies indicated that the Ras-GTP conformation is heterogeneous on a millisecond time scale, but details of its conformational dynamics remain unknown. Here we present evidence that the conformational exchange process in human H-Ras complexed with GTP mimic GppNHp is global, encompassing most of the GTPase catalytic domain. The correlated character of conformational dynamics in Ras opens opportunities for understanding allosteric effects in Ras function.  相似文献   

11.
12.
Neurotrophins (NTs) represent a family of proteins that play an important role in the survival, development, and function of neurons. Extensive efforts are currently being made to develop small molecules endowed with agonist or antagonist NT activity. The structurally versatile N-termini of these proteins are considered regions of interest for the design of new molecules. By combining experimental and computational approaches, we analyzed the intrinsic conformational preferences of the N-termini of two of the most important NTs: NGF (NGF-Nter) and NT4 (NT4-Nter). Circular dichroism spectra clearly indicate that both peptides show a preference for random coil states. Because this finding does not preclude the possibility that structured forms may occur in solution as minor conformational states, we performed molecular-dynamics simulations to gain insights into the structural features of populated species. In line with the circular dichroism analysis, the simulations show a preference for unstructured states for both peptides. However, the simulations also show that for NT4-Nter, and to a lesser extent for NGF-Nter, helical conformations, which are required for binding to the Trk receptor, are present in the repertoire of structures that are intrinsically accessible to these peptides. Accordingly, molecular recognition of NTs by the Trk receptor is accomplished by the general mechanism known as population shift. These findings provide a structural rationale for the observed activity of synthetic peptides based on these NT regions. They also suggest strategies for the development of biologically active peptide-based compounds.  相似文献   

13.
Using a binding site selection procedure, we have found that sequence-specific DNA-binding by the mouse c-myb protein involves recognition of nucleotides outside of the previously identified hexanucleotide motif. Oligonucleotides containing a random nucleotide core were immunoprecipitated in association with c-Myb, amplified by the Polymerase Chain Reaction and cloned in plasmids prior to sequencing. By alignment of sequences it was apparent that additional preferences existed at each of three bases immediately 5' of the hexanucleotide consensus, allowing an extension of the preferred binding site to YGRCVGTTR. The contributions of these 5' nucleotides to binding affinity was established in bandshift analyses with oligonucleotides containing single base substitutions; in particular, it was found that replacement of the preferred guanine at position -2 with any other base greatly reduced c-Myb binding. We found that the protein encoded by the related B-myb gene bound the preferred c-Myb site with similar affinity; however, B-Myb and c-Myb showed distinct preferences for the identity of the nucleotide at position -1 relative to the hexanucleotide consensus. This study demonstrates that the c-Myb DNA-binding site is more extensive than recognised hitherto and points to similar but distinct nucleotide preferences in recognition of DNA by related Myb proteins.  相似文献   

14.
Partitioning of energy in the interaction of non-intercalating antibiotics (netropsin, netropsin without its cationic ends and two analogs of distamycin A) with different base sequences of B-DNA is studied here by the atom-atom potential technique and geometry optimization procedures. The results show that electrostatic forces contribute substantially to the stabilization energy as well as to the sequence specificity. The hydrogen-bonding term is also sequence specific and is significant in properly orienting the drug molecule. Relative roles of the hydrogen bonding and electrostatic interactions depend on the dielectric property of the medium.  相似文献   

15.
The structure of the 28 kDa complex of the first two RNA binding domains (RBDs) of nucleolin (RBD12) with an RNA stem-loop that includes the nucleolin recognition element UCCCGA in the loop was determined by NMR spectroscopy. The structure of nucleolin RBD12 with the nucleolin recognition element (NRE) reveals that the two RBDs bind on opposite sides of the RNA loop, forming a molecular clamp that brings the 5' and 3' ends of the recognition sequence close together and stabilizing the stem-loop. The specific interactions observed in the structure explain the sequence specificity for the NRE sequence. Binding studies of mutant proteins and analysis of conserved residues support the proposed interactions. The mode of interaction of the protein with the RNA and the location of the putative NRE sites suggest that nucleolin may function as an RNA chaperone to prevent improper folding of the nascent pre-rRNA.  相似文献   

16.
In the course of a program aimed at discovering novel DNA-targeted antiparasitic drugs, the phenylfuran-benzimidazole unfused aromatic dication DB293 was identified as the first diamidine capable of forming stacked dimers in the DNA minor groove of GC-containing sequences. Its preferred binding sequence encompasses the tetranucleotide 5'-ATGA.5'-TCAT to which DB293 binds tightly with a strong positive cooperativity. Here we have investigated the influence of the DNA sequence on drug binding using two complementary technical approaches: surface plasmon resonance and DNase I footprinting. The central dinucleotide of the primary ATGA motif was systematically varied to represent all of the eight possible combinations (AXGA and ATYA, where X or Y = A, T, G, or C). Binding affinities for each site were precisely measured by SPR, and the extent of cooperative drug binding was also determined. The sequence recognition process was found to be extremely dependent on the nature of the central dinucleotide pair. Modification of the central TG step decreases binding affinity by a factor varying from 2 to over 500 depending on the base substitution. However, the diminished binding affinity does not affect the unique binding mode. In nearly all cases, the SPR titrations revealed a positive cooperativity in complex formation which reflects the ease of the dication to form stacked dimeric motifs in the DNA minor groove. DNase I footprinting served to identify additional binding sites for DB293 in the context of long DNA sequences offering a large variety of randomly distributed or specifically designed sites. The ATGA motif provided the best receptor for the drug, but lower affinity sequences were also identified. The design of two DNA fragments composed of various targeted tetranucleotide binding sites separated by an "insulator" (nonbinding) sequence allowed us to delineate further the influence of DNA sequence on drug binding and to identify a novel high-affinity site: 5'-ACAA.5'-TTGT. Collectively, the SPR and footprinting results show that the consensus sequence 5'-(A/T)-TG-(A/T) represents the optimal site for cooperative dimerization of the heterocyclic diamidine DB293.  相似文献   

17.
The Saccharomyces cerevisiae protein Cdc13 tightly and specifically binds the conserved G-rich single-stranded overhang at telomeres and plays an essential role in telomere end-protection and length regulation. The 200 residue DNA-binding domain of Cdc13 (Cdc13-DBD) binds an 11mer single-stranded representative of the yeast telomeric sequence [Tel11, d(GTGTGGGTGTG)] with a 3 pM affinity and specificity for three bases (underlined) at the 5' end. The structure of the Cdc13-DBD bound to Tel11 revealed a large, predominantly aromatic protein interface with several unusual features. The DNA adopts an irregular, extended structure, and the binding interface includes a long ( approximately 30 amino acids) structured loop between strands beta2-beta3 (L(2-3)) of an OB-fold. To investigate the mechanism of ssDNA binding, we studied the free and bound states of Cdc13-DBD using NMR spectroscopy. Chemical shift changes indicate that the basic topology of the domain, including L(2-3), is essentially intact in the free state. Changes in slow and intermediate time scale dynamics, however, occur in L(2-3), while conformational changes distant from the DNA interface suggest an induced fit mechanism for binding in the 'hot spot' for binding affinity and specificity. These data point to an overall binding mechanism well adapted to the heterogeneous nature of yeast telomeres.  相似文献   

18.
Thymidylate kinase (TMK) is a key enzyme for the synthesis of DNA, making it an important target for the development of anticancer, antibacterial, and antiparasitic drugs. TMK homologs exhibit significant variations in sequence, residue conformation, substrate specificity, and oligomerization mode. However, the influence of sequence evolution and conformational dynamics on its quaternary structure and function has not been studied before. Based on extensive sequence and structure analyses, our study detected several non-conserved residues which are linked by co-evolution and are implicated in the observed variations in flexibility, oligomeric assembly, and substrate specificity among the homologs. These lead to differences in the pattern of interactions at the active site in TMKs of different specificity. The method was further tested on TMK from Sulfolobus tokodaii (StTMK) which has substantial differences in sequence and structure compared to other TMKs. Our analyses pointed to a more flexible dTMP-binding site in StTMK compared to the other homologs. Binding assays proved that the protein can accommodate both purine and pyrimidine nucleotides at the dTMP binding site with comparable affinity. Additionally, the residues responsible for the narrow specificity of Brugia malayi TMK, whose three-dimensional structure is unavailable, were detected. Our study provides a residue-level understanding of the differences observed among TMK homologs in previous experiments. It also illustrates the correlation among sequence evolution, conformational dynamics, oligomerization mode, and substrate recognition in TMKs and detects co-evolving residues that affect binding, which should be taken into account while designing novel inhibitors.  相似文献   

19.
The ribosome is a dynamic machine that undergoes many conformational rearrangements during the initiation of protein synthesis. Significant differences exist between the process of protein synthesis initiation in eubacteria and eukaryotes. In particular, the initiation of eukaryotic protein synthesis requires roughly an order of magnitude more initiation factors to promote efficient mRNA recruitment and ribosomal recognition of the start codon than are needed for eubacterial initiation. The mechanisms by which these initiation factors promote ribosome conformational changes during stages of initiation have been studied using cross-linking, footprinting, site-directed probing, cryo-electron microscopy, X-ray crystallography, fluorescence spectroscopy and single-molecule techniques. Here, we review how the results of these different approaches have begun to converge to yield a detailed molecular understanding of the dynamic motions that the eukaryotic ribosome cycles through during the initiation of protein synthesis.  相似文献   

20.
The DNase I footprinting analysis shows binding sites of approximately two or three base pairs, in particular 5'-XGC sequences, for the green-colored Co(III) and fully oxidized Fe(III) complexes of bleomycin (BLM). In contrast to covalent attachment of guanine N-7 with aflatoxin B1 or dimethyl sulfate, the modification of guanine 2-amino group with anthramycin remarkably inhibits the DNA cleavages at 5'-GC and 5'-GT sites by the iron and cobalt complex systems of BLM. The present results strongly indicate that metallobleomycin binds in minor groove of B-DNA and that the 2-amino group of guanine adjacent to 5'-side of the cleaved pyrimidine base is one key element of specific 5'-GC or 5'-GT recognition by metallobleomycin. On the basis of these experimental data, possible binding mode of metallobleomycin in B-DNA helix has been proposed by computer-constructed model building.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号