首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B cell antigen receptor (BCR) signaling causes tyrosine phosphorylation of the Gab1 docking protein. This allows phosphatidylinositol 3-kinase (PI3K) and the SHP2 tyrosine phosphatase to bind to Gab1. In this report, we tested the hypothesis that Gab1 acts as an amplifier of PI3K- and SHP2-dependent signaling in B lymphocytes. By overexpressing Gab1 in the WEHI-231 B cell line, we found that Gab1 can potentiate BCR-induced phosphorylation of Akt, a PI3K-dependent response. Gab1 expression also increased BCR-induced tyrosine phosphorylation of SHP2 as well as the binding of Grb2 to SHP2. We show that the pleckstrin homology (PH) domain of Gab1 is required for BCR-induced phosphorylation of Gab1 and for Gab1 participation in BCR signaling. Moreover, using confocal microscopy, we show that BCR ligation can induce the translocation of Gab1 from the cytosol to the plasma membrane and that this requires the Gab1 PH domain as well as PI3K activity. These findings are consistent with a model in which the binding of the Gab1 PH domain to PI3K-derived lipids brings Gab1 to the plasma membrane, where it can be tyrosine-phosphorylated and then act as an amplifier of BCR signaling.  相似文献   

2.
Upon insulin stimulation, the adaptor protein APS is recruited to the insulin receptor and tyrosine phosphorylated. APS initiates the insulin-induced TC10 cascade which participates to GLUT4 translocation to the plasma membrane. Nevertheless, the molecular mechanism that governs APS and its SH2 and PH domains action on the insulin transduction cascade is not yet fully understood. Here, we show that APS co-immunoprecipitates with the class I PI 3-kinase regulatory subunit p85, through its SH2 domain but that APS does not modulate neither PtdIns(3,4,5)P3 levels nor Akt phosphorylation provoked by insulin. We have confirmed a previously described positive effect of APS overexpression on insulin-induced MAPK phosphorylation upregulation. Consequently, we analyzed the role of SH2 and PH domains of APS in the APS increased MAPK phosphorylation observed upon insulin stimulation and correlated this with the membrane localization of the protein. The effect observed on MAPK phosphorylation requires the intact PH binding domain of APS as well as its SH2 domain.  相似文献   

3.
Osmotic shock treatment of 3T3-L1 adipocytes causes an increase in glucose transport activity and translocation of GLUT4 protein similar to that elicited by insulin treatment. Insulin stimulation of GLUT4 translocation and glucose transport activity was completely inhibited by wortmannin, however, activation by osmotic shock was only partially blocked. Additionally, we have found that the newly identified insulin receptor substrate Gab-1 (Grb2-associated binder-1) is tyrosine-phosphorylated following sorbitol stimulation. Treatment of cells with the tyrosine kinase inhibitor genistein inhibited osmotic shock-stimulated Gab-1 phosphorylation as well as shock-induced glucose transport. Furthermore, pretreatment with the selective Src family kinase inhibitor PP2 completely inhibited the ability of sorbitol treatment to cause tyrosine phosphorylation of Gab-1. We have also shown that microinjection of anti-Gab-1 antibody inhibits osmotic shock-induced GLUT4 translocation. Furthermore, phosphorylated Gab-1 binds and activates phosphatidylinositol 3-kinase (PI3K) in response to osmotic shock. The PI3K activity associated with Gab-1 was 82% of that associated with anti-phosphotyrosine antibodies, indicating that Gab-1 is the major site for PI3K recruitment following osmotic shock stimulation. Although wortmannin only causes a partial block of osmotic shock-stimulated glucose uptake, wortmannin completely abolishes Gab-1 associated PI3K activity. This suggests that other tyrosine kinase-dependent pathways, in addition to the Gab-1-PI3K pathway, contribute to osmotic shock-mediated glucose transport. To date, Gab-1 is the first protein identified as a member of the osmotic shock signal transduction pathway.  相似文献   

4.
We recently demonstrated that depletion of plasma membrane cholesterol with methyl-beta-cyclodextrin (MbetaCD) caused activation of MAPK (Chen, X., and Resh, M. D. (2001) J. Biol. Chem. 276, 34617-34623). MAPK activation was phosphatidylinositol 3-kinase (PI3K)-dependent and involved increased tyrosine phosphorylation of the p85 subunit of PI3K. We next determined whether MbetaCD treatment induced tyrosine phosphorylation of other cellular proteins. Here we report that cholesterol depletion of serum-starved COS-1 cells with MbetaCD or filipin caused an increase in Tyr(P) levels of a 180-kDa protein that was identified as the epidermal growth factor receptor (EGFR). Cross-linking experiments showed that MbetaCD induced dimerization of EGFR, indicative of receptor activation. Reagents that block release of membrane-bound EGFR ligands did not affect MbetaCD-induced tyrosine phosphorylation of EGFR, indicating that MbetaCD activation of EGFR is ligand-independent. Moreover, MbetaCD treatment resulted in increased tyrosine phosphorylation of EGFR downstream targets and Ras activation. Incubation of cells with the specific EGFR inhibitor AG4178 blocked MbetaCD-induced phosphorylation of EGFR, SHC, phospholipase C-gamma, and Gab-1 as well as MAPK activation. We conclude that cholesterol depletion from the plasma membrane by MbetaCD causes ligand-independent activation of EGFR, resulting in MAPK activation by PI3K and Ras-dependent mechanisms. Moreover, these studies reveal a novel mode of action of MbetaCD, in addition to its ability to disrupt membrane rafts.  相似文献   

5.
Signaling via growth factor receptors frequently results in the concomitant activation of phospholipase C gamma (PLC gamma) and phosphatidylinositol (PI) 3-kinase. While it is well established that tyrosine phosphorylation of PLC gamma is necessary for its activation, we show here that PLC gamma is regulated additionally by the lipid products of PI 3-kinase. We demonstrate that the pleckstrin homology (PH) domain of PLC gamma binds to phosphatidylinositol 3,4,5-trisphosphate [PdtIns(3,4,5)P3], and is targeted to the membrane in response to growth factor stimulation, while a mutated version of this PH domain that does not bind PdtIns(3,4,5)P3 is not membrane targeted. Consistent with these observations, activation of PI 3-kinase causes PLC gamma PH domain-mediated membrane targeting and PLC gamma activation. By contrast, either the inhibition of PI 3-kinase by overexpression of a dominant-negative mutant or the prevention of PLC gamma membrane targeting by overexpression of the PLC gamma PH domain prevents growth factor-induced PLC gamma activation. These experiments reveal a novel mechanism for cross-talk and mutual regulation of activity between two enzymes that participate in the control of phosphoinositide metabolism.  相似文献   

6.
DAPP-1 (dual-adaptor for phosphotyrosine and 3-phosphoinositides-1) is a broadly distributed pleckstrin homology (PH) and Src homology 2 domain containing protein that can bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) and can be phosphorylated on tyrosine 139 and internalised in response to activation of type I phosphoinositide 3-kinases (PI3K). Tyrosine phosphorylation of DAPP-1 appears important for appropriate intracellular targeting and creates a potential binding site for Src homology 2 domain-containing proteins. In endothelial cells overexpressing wild-type platelet-derived growth factor beta (PDGFbeta) receptors, which express Bmx and Src as their major Btk (Bruton's tyrosine kinase) family and Src family tyrosine kinases, respectively, PDGF can stimulate PI3K-dependent tyrosine phosphorylation of DAPP-1. Transient overexpression of Src most effectively, compared with Bmx and Syk, augments basal and PDGF-stimulated tyrosine phosphorylation of DAPP-1, whereas overexpression of dominant-negative Src, but not dominant-negative Bmx, inhibits PDGF-stimulated phosphorylation of DAPP-1. Cells expressing mutant PDGFbeta (Y579F/Y581F) receptors (which fail to bind and activate Src-type kinases) fail to tyrosine phosphorylate DAPP-1 in response to PDGF. We show that in DT40 chicken B cell lines, antibody stimulation leads to PI3K-dependent tyrosine phosphorylation of DAPP-1 that is lost in Lyn- or Syk-deficient cell lines but not Btk-deficient cell lines. PI3K-dependent activation of PKB is only lost in Syk-deficient lines. Finally, in vitro we find lipid-modified Src to be the most effective DAPP-1 tyrosine kinase (versus Syk, Lyn, Btk, and Bmx); phosphorylation of DAPP-1 but not Src autophosphorylation is stimulated approximately 10-fold by PtdIns(3,4,5)P(3) (IC(50) = 150 nm) and phosphatidylinositol 3,4-bisphosphate but not by their nonbiological diastereoisomers and depends on PH domain mediated binding of DAPP-1 to PtdIns(3,4,5)P(3)-containing membranes. We conclude that Src family kinases are responsible for tyrosine phosphorylation of DAPP-1 in vivo and that PI3K regulation is at the level of PH domain-mediated translocation of DAPP-1 to PI3K products in the membrane.  相似文献   

7.
Insulin evokes diverse biological effects through receptor-mediated tyrosine phosphorylation of the insulin receptor substrate (IRS) proteins. Here, we show that, in vitro, the IRS-1, -2 and -3 pleckstrin homology (PH) domains bind with different specificities to the 3-phosphorylated phosphoinositides. In fact, the IRS-1 PH domain binds preferentially to phosphatidylinositol 3,4,5-trisphosphate (PtdIns-3,4,5-P3), the IRS-2 PH domain to phosphatidylinositol 3,4-bisphosphate (PtdIns-3,4-P2), and the IRS-3 PH domain to phosphatidylinositol 3-phosphate. When expressed in NIH-IR fibroblasts and L6 myocytes, the IRS-1 and -2 PH domains tagged with green fluorescent protein (GFP) are localized exclusively in the cytoplasm. Stimulation with insulin causes a translocation of the GFP-IRS-1 and -2 PH domains to the plasma membrane within 3-5 min. This translocation is blocked by the phosphatidylinositol 3-kinase (PI 3-K) inhibitors, wortmannin and LY294002, suggesting that this event is PI 3-K dependent. Interestingly, platelet-derived growth factor (PDGF) did not induce translocation of the IRS-1 and -2 PH domains to the plasma membrane, indicating the existence of specificity for insulin. In contrast, the GFP-IRS-3 PH domain is constitutively localized to the plasma membrane. These results reveal a differential regulation of the IRS PH domains and a novel positive feedback loop in which PI 3-K functions as both an upstream regulator and a downstream effector of IRS-1 and -2 signaling.  相似文献   

8.
Pleckstrin homology (PH) domain binding to D3-phosphorylated phosphatidylinositides (PI) provides a reversible means of recruiting proteins to the plasma membrane, with the resultant change in subcellular localization playing a key role in the activation of multiple intracellular signaling pathways. Previously we found that the T-cell-specific PH domain-containing kinase Itk is constitutively membrane associated in Jurkat T cells. This distribution was unexpected given that the closely related B-cell kinase, Btk, is almost exclusively cytosolic. In addition to constitutive membrane association of Itk, unstimulated JTAg T cells also exhibited constitutive phosphorylation of Akt on Ser-473, an indication of elevated basal levels of the phosphatidylinositol 3-kinase (PI3K) products PI-3,4-P(2) and PI-3,4,5-P(3) in the plasma membrane. Here we describe a defect in expression of the D3 phosphoinositide phosphatase, PTEN, in Jurkat and JTAg T cells that leads to unregulated PH domain interactions with the plasma membrane. Inhibition of D3 phosphorylation by PI3K inhibitors, or by expression of PTEN, blocked constitutive phosphorylation of Akt on Ser-473 and caused Itk to redistribute to the cytosol. The PTEN-deficient cells were also hyperresponsive to T-cell receptor (TCR) stimulation, as measured by Itk kinase activity, tyrosine phosphorylation of phospholipase C-gamma1, and activation of Erk compared to those in PTEN-replete cells. These data support the idea that PH domain-mediated association with the plasma membrane is required for Itk activation, provide evidence for a negative regulatory role of PTEN in TCR stimulation, and suggest that signaling models based on results from Jurkat T-cell lines may underestimate the role of PI3K in TCR signaling.  相似文献   

9.
Bruton's tyrosine kinase (Btk) binds to phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P(3)) through the Btk pleckstrin homology (PH) domain, an interaction thought to be required for Btk membrane translocation during B cell receptor signaling. Here, we report that interaction of PtdIns-3,4,5-P(3) with the PH domain of Btk directly induces Btk enzymatic activation in an in vitro kinase assay. A point mutation that reduces interaction of PtdIns-3,4,5-P(3) with the Btk PH domain blocks in vitro PtdIns-3,4,5-P(3)-dependent Btk activation, whereas the PH domain deletion enhances Btk basal activity but eliminates the PtdIns-3,4,5-P(3)-dependent stimulation. Btk kinase activity and the Btk activation loop phosphorylation site are both required for the PtdIns-3,4,5-P(3)-mediated stimulation of Btk kinase activity. Together, these results suggest that the Btk PH domain is positioned such that it normally suppresses both Btk kinase activity and access to substrates; when interacting with PtdIns-3,4,5-P(3), this suppression is relieved, producing apparent Btk activation. In addition, using Src family kinase inhibitors and Btk catalytically inactive mutants, we demonstrate that in vivo, the activation of Btk is due to both Lyn phosphorylation and PtdIns-3,4,5-P(3)-mediated direct activation. Thus, the Btk-PtdIns-3,4,5-P(3) interaction serves to translocate Btk to the membrane and directly regulate its signaling function.  相似文献   

10.
In primary rat hepatocyte cultures, activation of phosphatidylinositol 3-kinase is both necessary and sufficient to account for epidermal growth factor (EGF)-induced DNA synthesis. In these cells, three major p85-containing complexes were formed after EGF treatment: ErbB3-p85, Shc-p85, and a multimeric Gab2-Grb2-SHP2-p85, which accounted for more than 80% of total EGF-induced PI3K activity (Kong, M., C. Mounier, J. Wu, and B. I. Posner, J Biol Chem, 2000, 275:36035-36042). More recently, we found that EGF-dependent tyrosine phosphorylation of endogenous Gab2 is essential for EGF-induced DNA synthesis in rat hepatocytes. Here we show that, after EGF treatment, ErbB3-p85 and Shc-p85 complexes were localized to plasma membrane and endosomes, whereas the multimeric Gab2-Grb2-SHP2-p85 complex was formed rapidly (peak at 30 sec) and exclusively in cytosol. Western blotting of subcellular fractions from intact liver and immunofluorescence analyses in cultured hepatocytes demonstrated that EGF did not promote the association of cytosolic Gab2 with cell membranes. These observations prompted us to evaluate the role of the PH domain of Gab2 in regulating its function. Overexpression of the PH domain of Gab2 did not affect EGF-induced Gab2 phosphorylation, PI3K activation, and DNA synthesis. Overexpressed Gab2 lacking the PH domain (DeltaPHGab2) was comparable to wild-type Gab2 in respect to EGF-induced tyrosine phosphorylation, recruitment of p85, and DNA synthesis. In summary, after EGF stimulation, ErbB3, Shc, and Gab2 are differentially compartmentalized in rat liver, where they associate with and activate PI3K. Our data demonstrate that Gab2 mediates EGF-induced PI3K activation and DNA synthesis in a PH domain-independent manner.  相似文献   

11.
Scaffolding adapter Grb2-associated binder 2 (Gab2) is a key component of FcepsilonRI signaling in mast cells, required for the activation of PI3K. To understand how Gab2 is activated in FcepsilonRI signaling, we asked which protein tyrosine kinase is required for Gab2 phosphorylation. We found that Gab2 tyrosyl phosphorylation requires Lyn and Syk. In agreement with published results, we found that Fyn also contributes to Gab2 tyrosyl phosphorylation. However, Syk activation is defective in Fyn(-/-) mast cells, suggesting that Syk is the proximal kinase responsible for Gab2 tyrosyl phosphorylation. Then, we asked which domains in Gab2 are required for Gab2 tyrosyl phosphorylation. We found that the Grb2-Src homology 3 (SH3) binding sites are required for, whereas the pleckstrin homology (PH) domain contributes to, Gab2 tyrosyl phosphorylation. Using a protein/lipid overlay assay, we determined that the Gab2 PH domain preferentially binds the PI3K lipid products, PI3, 4,5P3 and PI3, 4P2. Furthermore, the Grb2-SH3 binding sites and PH domain binding to PI3K lipid products are required for Gab2 function in FcepsilonRI-evoked degranulation and Akt activation. Our data strongly suggest a model for Gab2 action in FcepsilonRI signaling. The Grb2 SH3 binding sites play a critical role in bringing Gab2 to FcepsilonRI, whereupon Gab2 becomes tyrosyl-phosphorylated in a Syk-dependent fashion. Phosphorylated Gab2 results in recruitment and activation of PI3K, whose lipid products bind the PH domain of Gab2 and acts in positive feedback loop for sustained PI3K recruitment and phosphatidylinositol-3,4,5-trisphosphate production, required for FcepsilonRI-evoked degranulation of mast cells.  相似文献   

12.
In this study we have examined CD44 (a hyaluronan (HA) receptor) interaction with a RhoA-specific guanine nucleotide exchange factor (p115RhoGEF) in human metastatic breast tumor cells (MDA-MB-231 cell line). Immunoprecipitation and immunoblot analyses indicate that both CD44 and p115RhoGEF are expressed in MDA-MB-231 cells and that these two proteins are physically associated as a complex in vivo. The binding of HA to MDA-MB-231 cells stimulates p115RhoGEF-mediated RhoA signaling and Rho kinase (ROK) activity, which, in turn, increases serine/threonine phosphorylation of the adaptor protein, Gab-1 (Grb2-associated binder-1). Phosphorylated Gab-1 promotes PI 3-kinase recruitment to CD44v3. Subsequently, PI 3-kinase is activated (in particular, alpha, beta, gamma forms but not the delta form of the p110 catalytic subunit), AKT signaling occurs, the cytokine (macrophage-colony stimulating factor (M-CSF)) is produced, and tumor cell-specific phenotypes (e.g. tumor cell growth, survival and invasion) are up-regulated. Our results also demonstrate that HA/CD44-mediated oncogenic events (e.g. AKT activation, M-CSF production and breast tumor cell-specific phenotypes) can be effectively blocked by a PI 3-kinase inhibitor (LY294002). Finally, we have found that overexpression of a dominant-negative form of ROK (by transfection of MBA-MD-231 cells with the Rho-binding domain cDNA of ROK) not only inhibits HA/CD44-mediated RhoA-ROK activation and Gab-1 phosphorylation but also down-regulates oncogenic signaling events (e.g. Gab-1.PI 3-kinase-CD44v3 association, PI 3-kinase-mediated AKT activation, and M-CSF production) and tumor cell behaviors (e.g. cell growth, survival, and invasion). Taken together, these findings strongly suggest that CD44 interaction with p115RhoGEF and ROK plays a pivotal role in promoting Gab-1 phosphorylation leading to Gab-1.PI 3-kinase membrane localization, AKT signaling, and cytokine (M-CSF) production during HA-mediated breast cancer progression.  相似文献   

13.
14.
Protein kinase B (PKB or Akt) is a mitogen-regulated protein kinase involved in the protection of cells from apoptosis, the promotion of cell proliferation and diverse metabolic responses [1]. Its activation is initiated by the binding of 3' phosphorylated phosphoinositide lipids to its pleckstrin homology (PH) domain, resulting in the induction of activating phosphorylation at residues Thr308 and Ser473 by upstream kinases such as phosphoinositide-dependent protein kinase-1 (PDK1) [2]. Adhesion of epithelial cells to extracellular matrix leads to protection from apoptosis via the activation of phosphoinositide (PI) 3-kinase and Akt/PKB through an unknown mechanism [3] [4]. Here, we use the localisation of Akt/PKB within the cell to probe the sites of induction of PI 3-kinase activity. In fibroblasts, immunofluorescence microscopy showed that endogenous Akt/PKB localised to membrane ruffles at the outer edge of the cell following mitogen treatment as did green fluorescent protein (GFP) fusions with full-length Akt/PKB or its PH domain alone. In epithelial cells, the PH domain of Akt/PKB localised to sites of cell-cell and cell-matrix contact, distinct from focal contacts, even in the absence of serum. As this localisation was disrupted by PI 3-kinase inhibitory drugs and by mutations that inhibit interaction with phosphoinositides, it is likely to represent the sites of constitutive 3' phosphoinositide generation that provide a cellular survival signal. We propose that the attachment-induced, PI-3-kinase-mediated survival signal in epithelial cells is generated not only by cell-matrix interaction but also by cell-cell interaction.  相似文献   

15.
Tec, the prototypical member of the Tec family of tyrosine kinases, is abundantly expressed in T cells and other hemopoietic cell types. Although the functions of Itk and Txk have recently been investigated, little is known about the role of Tec in T cells. Using antisense oligonucleotide treatment to deplete Tec protein from primary T cells, we demonstrate that Tec plays a role in TCR signaling leading to IL-2 gene induction. Interestingly, Tec kinases are the only known family of tyrosine kinases containing a pleckstrin homology (PH) domain. Using several PH domain mutants overexpressed in Jurkat T cells, we show that the Tec PH domain is required for Tec-mediated IL-2 gene induction and TCR-mediated Tec tyrosine phosphorylation. Furthermore, we show that Tec colocalizes with the TCR after TCR cross-linking, and that both the Tec PH and Src homology (SH) 2 domains play a role in this association. Wortmannin, a phosphatidylinositol 3-kinase inhibitor, abolishes Tec-mediated IL-2 gene induction and Tec tyrosine phosphorylation, and partially suppresses Tec colocalization with the activated TCR. Thus, our data implicate the Tec kinase PH domain and phosphatidylinositol 3-kinase in Tec signaling downstream of the TCR.  相似文献   

16.
One mechanism used by receptor tyrosine kinases to relay a signal to different downstream effector molecules is to use adaptor proteins that provide docking sites for a variety of proteins. The daughter of sevenless (dos) gene was isolated in a genetic screen for components acting downstream of the Sevenless (Sev) receptor tyrosine kinase. Dos contains a N-terminally located PH domain and several tyrosine residues within consensus binding sites for a number of SH2 domain containing proteins. The structural features of Dos and experiments demonstrating tyrosine phosphorylation of Dos upon Sev activation suggested that Dos belongs to the family of multisite adaptor proteins that include the Insulin Receptor Substrate (IRS) proteins, Gab1, and Gab2. Here, we studied the structural requirements for Dos function in receptor tyrosine kinase mediated signaling processes by expressing mutated dos transgenes in the fly. We show that mutant Dos proteins lacking the putative binding sites for the SH2 domains of Shc, PhospholipaseC-γ (PLC-γ) and the regulatory subunit of Phosphoinositide 3-kinase (PI3-K) can substitute the loss of endogenous Dos function during development. In contrast, tyrosine 801, corresponding to a predicted Corkscrew (Csw) tyrosine phosphatase SH2 domain binding site, is essential for Dos function. Furthermore, we assayed whether the Pleckstrin homology (PH) domain is required for Dos function and localization. Evidence is provided that deletion or mutation of the PH domain interferes with the function but not with localization of the Dos protein. The Dos PH domain can be replaced by the Gab1 PH domain but not by a heterologous membrane anchor, suggesting a specific function of the PH domain in regulating signal transduction.  相似文献   

17.
Gab-1 (Grb2-associated binder-1), which appears to play a central role in cellular growth response, transformation, and apoptosis, is a member of the insulin receptor substrate (IRS) family. IRS proteins act downstream in the signaling pathways of different receptor tyrosine kinases, including the insulin receptor (IR). In this paper, we characterize the phosphorylation of recombinant human Gab-1 (hGab-1) by IR in vitro. Kinetic phosphorylation data revealed that hGab-1 is a high affinity substrate for the IR (K(M): 12.0 microM for native IR vs 23.3 microM for recombinant IR). To elucidate the IR-specific phosphorylation pattern of hGab-1, we used phosphopeptide mapping by two-dimensional HPLC analysis. Phosphorylated tyrosine residues were subsequently identified by sequencing the separated phosphopeptides by matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) and Edman degradation. Our results demonstrate that hGab-1 was phosphorylated by IR at eight tyrosine residues (Y242, Y285, Y373, Y447, Y472, Y619, Y657, and Y689). Seventy-five percent of the identified radioactivity was incorporated into tyrosine residues Y447, Y472, and Y619 exhibiting features (NYVPM motif) of potential binding sites for the regulatory subunit (p85) of phosphatidylinositol (PI)-3 kinase. Accordingly, pull down assays with human HepG2 cell lysates showed that IR-specific phosphorylation of wild-type hGab-1 strongly enhanced PI-3 kinase binding. This is still the case when a single tyrosine residue in the NYVPM motif was mutated to phenylalanine. In contrast, phosphorylation-dependent binding of PI-3 kinase was completely abolished by changing a second tyrosine residue in a NYVPM motif independent from its location. Recently, we identified a similar cohort of tyrosine phosphorylation sites for the epidermal growth factor receptor (EGFR) with a predominant phosphorylation of tyrosine residue Y657 and binding of Syp [Lehr, S. et al. (1999) Biochemistry 38, 151-159]. These differences in the phosphorylation pattern of hGab-1 may contribute to signaling specificity by different tyrosine kinase receptors engaging distinct SH2 signaling molecules.  相似文献   

18.
Expressed in mast and T-cells/inducible T cell tyrosine kinase (Emt/Itk) is a protein tyrosine kinase required for T cell Ag receptor (TCR)-induced activation and development. A physical interaction between Emt/Itk and TCR has not been described previously. Here, we have utilized laser scanning confocal microscopy to demonstrate that Ab-mediated engagement of the CD3epsilon chain induces the membrane colocalization of Emt/Itk with TCR/CD3. Removal of the Emt/Itk pleckstrin homology domain (DeltaPH-Emt/Itk) abrogates the association of the kinase with the cell membrane, as well as its activation-induced colocalization with the TCR complex and subsequent tyrosine phosphorylation. The addition of a membrane localization sequence to DeltaPH-Emt/Itk from Lck restores all of these deficiencies except the activation-induced tyrosine phosphorylation. Our data suggest that the PH domain of Emt/Itk can be replaced with another membrane localization signal without affecting the membrane targeting and activation-induced colocalization of the kinase with the TCR. However, the PH domain is indispensable for the activation-induced tyrosine phosphorylation of the kinase.  相似文献   

19.
Gab-1 is a multiple docking protein that is tyrosine phosphorylated by receptor tyrosine kinases such as c-Met, hepatocyte growth factor/scatter factor receptor, and epidermal growth factor receptor. We have now demonstrated that cell-cell adhesion also induces marked tyrosine phosphorylation of Gab-1 and that disruption of cell-cell adhesion results in its dephosphorylation. An anti-E-cadherin antibody decreased cell-cell adhesion-dependent tyrosine phosphorylation of Gab-1, whereas the expression of E-cadherin specifically induced tyrosine phosphorylation of Gab-1. A relatively selective inhibitor of Src family kinases reduced cell-cell adhesion-dependent tyrosine phosphorylation of Gab-1, whereas expression of a dominant-negative mutant of Csk increased it. Disruption of cell-cell adhesion, which reduced tyrosine phosphorylation of Gab-1, also reduced the activation of mitogen-activated protein kinase and Akt in response to cell-cell adhesion. These results indicate that E-cadherin-mediated cell-cell adhesion induces tyrosine phosphorylation by a Src family kinase of Gab-1, thereby regulating the activation of Ras/MAP kinase and phosphatidylinositol 3-kinase/Akt cascades.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号