首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The budding yeast Srs2 is the archetype of helicases that regulate several aspects of homologous recombination (HR) to maintain genomic stability. Srs2 inhibits HR at replication forks and prevents high frequencies of crossing-over. Additionally, sensitivity to DNA damage and synthetic lethality with replication and recombination mutants are phenotypes that can only be attributed to another role of Srs2: the elimination of lethal intermediates formed by recombination proteins. To shed light on these intermediates, we searched for mutations that bypass the requirement of Srs2 in DNA repair without affecting HR. Remarkably, we isolated rad52-L264P, a novel allele of RAD52, a gene that encodes one of the most central recombination proteins in yeast. This mutation suppresses a broad spectrum of srs2Δ phenotypes in haploid cells, such as UV and γ-ray sensitivities as well as synthetic lethality with replication and recombination mutants, while it does not significantly affect Rad52 functions in HR and DNA repair. Extensive analysis of the genetic interactions between rad52-L264P and srs2Δ shows that rad52-L264P bypasses the requirement for Srs2 specifically for the prevention of toxic Rad51 filaments. Conversely, this Rad52 mutant cannot restore viability of srs2Δ cells that accumulate intertwined recombination intermediates which are normally processed by Srs2 post-synaptic functions. The avoidance of toxic Rad51 filaments by Rad52-L264P can be explained by a modification of its Rad51 filament mediator activity, as indicated by Chromatin immunoprecipitation and biochemical analysis. Remarkably, sensitivity to DNA damage of srs2Δ cells can also be overcome by stimulating Rad52 sumoylation through overexpression of the sumo-ligase SIZ2, or by replacing Rad52 by a Rad52-SUMO fusion protein. We propose that, like the rad52-L264P mutation, sumoylation modifies Rad52 activity thereby changing the properties of Rad51 filaments. This conclusion is strengthened by the finding that Rad52 is often associated with complete Rad51 filaments in vitro.  相似文献   

2.
The SRS2 (Suppressor of RAD Six screen mutant 2) gene encodes an ATP-dependent DNA helicase that regulates homologous recombination in Saccharomyces cerevisiae. Mutations in SRS2 result in a hyper-recombination phenotype, sensitivity to DNA damaging agents and synthetic lethality with mutations that affect DNA metabolism. Several of these phenotypes can be suppressed by inactivating genes of the RAD52 epistasis group that promote homologous recombination, implicating inappropriate recombination as the underlying cause of the mutant phenotype. Consistent with the genetic data, purified Srs2 strongly inhibits Rad51-mediated recombination reactions by disrupting the Rad51-ssDNA presynaptic filament. Srs2 interacts with Rad51 in the yeast two-hybrid assay and also in vitro. To investigate the functional relevance of the Srs2-Rad51 complex, we have generated srs2 truncation mutants that retain full ATPase and helicase activities, but differ in their ability to interact with Rad51. Importantly, the srs2 mutant proteins attenuated for Rad51 interaction are much less capable of Rad51 presynaptic filament disruption. An internal deletion in Srs2 likewise diminishes Rad51 interaction and anti-recombinase activity. We also present evidence that deleting the Srs2 C-terminus engenders a hyper-recombination phenotype. These results highlight the importance of Rad51 interaction in the anti-recombinase function of Srs2, and provide evidence that this Srs2 function can be uncoupled from its helicase activity.  相似文献   

3.
DNA double-strand breaks (DSBs) in yeast are repaired by homologous recombination (HR) and non-homologous end-joining (NHEJ). Rad51 forms nucleoprotein filaments at processed broken ends that effect strand exchange, forming heteroduplex DNA (hDNA) that gives rise to a gene conversion tract. We hypothesized that excess Rad51 would increase gene conversion tract lengths. We found that excess Rad51 reduced DSB-induced HR but did not alter tract lengths or other outcomes including rates of crossovers, break-induced replication, or chromosome loss. Thus, excess Rad51 appears to influence DSB-induced HR at an early stage. MAT heterozygosity largely mitigated the inhibitory effect of excess Rad51 on allelic HR, but not direct repeat HR. Excess Rad52 had no effect on DSB-induced HR efficiency or outcome, nor did it mitigate the dominant negative effects of excess Rad51. Excess Rad51 had little effect on DSB-induced lethality in wild-type cells, but it did enhance lethality in yku70Delta mutants. Interestingly, dnl4Delta showed marked DSB-induced lethality but this was not further enhanced by excess Rad51. The differential effects of yku70Delta and dnl4Delta indicate that the enhanced killing with excess Rad51 in yku70Delta is not due to its NHEJ defect, but may reflect its defect in end-protection and/or its inability to escape from checkpoint arrest. Srs2 displaces Rad51 from nucleoprotein filaments in vitro, suggesting that excess Rad51 might antagonize Srs2. We show that excess Rad51 does not reduce survival of wild-type cells treated with methylmethane sulfonate (MMS), or cells suffering a single DSB. In contrast, excess Rad51 sensitized srs2Delta cells to both MMS and a single DSB. These results support the idea that excess Rad51 antagonizes Srs2, and underscores the importance of displacing Rad51 from nucleoprotein filaments to achieve optimum repair efficiency.  相似文献   

4.
Mutants of the Saccharomyces cerevisiae SRS2 gene are hyperrecombinogenic and sensitive to genotoxic agents, and they exhibit a synthetic lethality with mutations that compromise DNA repair or other chromosomal processes. In addition, srs2 mutants fail to adapt or recover from DNA damage checkpoint-imposed G2/M arrest. These phenotypic consequences of ablating SRS2 function are effectively overcome by deleting genes of the RAD52 epistasis group that promote homologous recombination, implicating an untimely recombination as the underlying cause of the srs2 mutant phenotypes. TheSRS2-encodedproteinhasasingle-stranded (ss) DNA-dependent ATPase activity, a DNA helicase activity, and an ability to disassemble the Rad51-ssDNA nucleoprotein filament, which is the key catalytic intermediate in Rad51-mediated recombination reactions. To address the role of ATP hydrolysis in Srs2 protein function, we have constructed two mutant variants that are altered in the Walker type A sequence involved in the binding and hydrolysis of ATP. The srs2 K41A and srs2 K41R mutant proteins are both devoid of ATPase and helicase activities and the ability to displace Rad51 from ssDNA. Accordingly, yeast strains harboring these srs2 mutations are hyperrecombinogenic and sensitive to methylmethane sulfonate, and they become inviable upon introducing either the sgs1Delta or rad54Delta mutation. These results highlight the importance of the ATP hydrolysisfueled DNA motor activity in SRS2 functions.  相似文献   

5.
The Rad51 protein in eukaryotic cells is a structural and functional homolog of Escherichia coli RecA with a role in DNA repair and genetic recombination. Several proteins showing sequence similarity to Rad51 have previously been identified in both yeast and human cells. In Saccharomyces cerevisiae, two of these proteins, Rad55p and Rad57p, form a heterodimer that can stimulate Rad51-mediated DNA strand exchange. Here, we report the purification of one of the representatives of the RAD51 family in human cells. We demonstrate that the purified RAD51L3 protein possesses single-stranded DNA binding activity and DNA-stimulated ATPase activity, consistent with the presence of "Walker box" motifs in the deduced RAD51L3 sequence. We have identified a protein complex in human cells containing RAD51L3 and a second RAD51 family member, XRCC2. By using purified proteins, we demonstrate that the interaction between RAD51L3 and XRCC2 is direct. Given the requirements for XRCC2 in genetic recombination and protection against DNA-damaging agents, we suggest that the complex of RAD51L3 and XRCC2 is likely to be important for these functions in human cells.  相似文献   

6.
The eukaryotic RecA homologue Rad51 is a key factor in homologous recombination and recombinational repair. Rad51-like proteins have been identified in yeast (Rad55, Rad57 and Dmc1), plants and vertebrates (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3 and DMC1). RAD51 and DMC1 are the strand-exchange proteins forming a nucleofilament for strand invasion, however, the function of the paralogues in the process of homologous recombination is less clear. In yeast the two Rad51 paralogues, Rad55 and Rad57, have been shown to be involved in somatic and meiotic HR and they are essential to the formation of the Rad51/DNA nucleofilament counterbalancing the anti-recombinase activity of the SRS2 helicase. Here, we examined the role of RAD51B in the model bryophyte Physcomitrella patens. Mutant analysis shows that RAD51B is essential for the maintenance of genome integrity, for resistance to DNA damaging agents and for gene targeting. Furthermore, we set up methods to investigate meiosis in Physcomitrella and we demonstrate that the RAD51B protein is essential for meiotic homologous recombination. Finally, we show that all these functions are independent of the SRS2 anti-recombinase protein, which is in striking contrast to what is found in budding yeast where the RAD51 paralogues are fully dependent on the SRS2 anti-recombinase function.  相似文献   

7.

Background  

The homologous recombination (HR) pathway is vital for maintaining genomic integrity through the restoration of double-stranded breaks and interstrand crosslinks. The RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3) are essential for this process in vertebrates, and the RAD51D paralog is unique in that it participates in both HR repair and telomere maintenance. RAD51D is also known to directly interact with the RAD51C and XRCC2 proteins. Rad51d splice variants have been reported in mouse and human tissues, supportive of a role for alternative splicing in HR regulation. The present study evaluated the interaction of the Rad51d splice isoform products with RAD51C and XRCC2 and their expression patterns.  相似文献   

8.
In Saccharomyces strains in which homologous recombination is delayed sufficiently to activate the DNA damage checkpoint, Rad53p checkpoint kinase activity appears 1 hr after DSB induction and disappears soon after completion of repair. Cells lacking Srs2p helicase fail to recover even though they apparently complete DNA repair; Rad53p kinase remains activated. srs2Delta cells also fail to adapt when DSB repair is prevented. The recovery defect of srs2Delta is suppressed in mec1Delta strains lacking the checkpoint or when DSB repair occurs before checkpoint activation. Permanent preanaphase arrest of srs2Delta cells is reversed by the addition of caffeine after cells have arrested. Thus, in addition to its roles in recombination, Srs2p appears to be needed to turn off the DNA damage checkpoint.  相似文献   

9.
Homologous recombination (HR) is an important conserved process for DNA repair and ensures maintenance of genome integrity. Inappropriate HR causes gross chromosomal rearrangements and tumorigenesis in mammals. In yeast, the Srs2 helicase eliminates inappropriate recombination events, but the functional equivalent of Srs2 in higher eukaryotes has been elusive. Here, we identify C. elegans RTEL-1 as a functional analog of Srs2 and describe its vertebrate counterpart, RTEL1, which is required for genome stability and tumor avoidance. We find that rtel-1 mutant worms and RTEL1-depleted human cells share characteristic phenotypes with yeast srs2 mutants: lethality upon deletion of the sgs1/BLM homolog, hyperrecombination, and DNA damage sensitivity. In vitro, purified human RTEL1 antagonizes HR by promoting the disassembly of D loop recombination intermediates in a reaction dependent upon ATP hydrolysis. We propose that loss of HR control after deregulation of RTEL1 may be a critical event that drives genome instability and cancer.  相似文献   

10.
Ira G  Malkova A  Liberi G  Foiani M  Haber JE 《Cell》2003,115(4):401-411
Very few gene conversions in mitotic cells are associated with crossovers, suggesting that these events are regulated. This may be important for the maintenance of genetic stability. We have analyzed the relationship between homologous recombination and crossing-over in haploid budding yeast and identified factors involved in the regulation of crossover outcomes. Gene conversions unaccompanied by a crossover appear 30 min before conversions accompanied by exchange, indicating that there are two different repair mechanisms in mitotic cells. Crossovers are rare (5%), but deleting the BLM/WRN homolog, SGS1, or the SRS2 helicase increases crossovers 2- to 3-fold. Overexpressing SRS2 nearly eliminates crossovers, whereas overexpression of RAD51 in srs2Delta cells almost completely eliminates the noncrossover recombination pathway. We suggest Sgs1 and its associated topoisomerase Top3 remove double Holliday junction intermediates from a crossover-producing repair pathway, thereby reducing crossovers. Srs2 promotes the noncrossover synthesis-dependent strand-annealing (SDSA) pathway, apparently by regulating Rad51 binding during strand exchange.  相似文献   

11.
Homologous recombination is important for the repair of double-strand breaks and daughter strand gaps, and also helps restart stalled and collapsed replication forks. However, sometimes recombination is inappropriate and can have deleterious consequences. To temper recombination, cells have employed DNA helicases that unwind joint DNA molecules and/or dissociate recombinases from DNA. Budding yeast Srs2 is one such helicase. It can act by dissociating Rad51 nucleoprotein filaments, and is required for channelling DNA lesions to the post-replication repair (PRR) pathway. Here we have investigated the role of Srs2 in controlling recombination in fission yeast. Similar to budding yeast, deletion of fission yeast srs2 results in hypersensitivity to a range of DNA damaging agents, rhp51-dependent hyper-recombination and synthetic sickness when combined with rqh1 that is suppressed by deleting rhp51, rhp55 or rhp57. Epistasis analysis indicates that Srs2 and the structure-specific endonuclease Mus81–Eme1 function in a sub-pathway of PRR for the tolerance/repair of UV-induced damage. However, unlike in Saccharomyces cerevisiae, Srs2 is not required for channelling lesions to the PRR pathway in Schizosaccharomyces pombe. In addition to acting as an antirecombinase, we also show that Srs2 can aid the recombinational repair of camptothecin-induced collapsed replication forks, independently of PRR.  相似文献   

12.
Eleven suppressors of the radiation sensitivity of Saccharomyces cerevisiae diploids lacking the Srs2 helicase were analyzed and found to contain codominant mutations in the RAD51 gene known to be involved in recombinational repair and in genetic recombination. These mutant alleles confer an almost complete block in recombinational repair, as does deletion of RAD51, but heterozygous mutant alleles suppress the defects of srs2::LEU2 cells and are semidominant in Srs2+ cells. The results of this study are interpreted to mean that wild-type Rad51 protein binds to single-stranded DNA and that the semidominant mutations do not prevent this binding. The cloning and sequencing of RAD51 indicated that the gene encodes a predicted 400-amino-acid protein with a molecular mass of 43 kDa. Sequence comparisons revealed homologies to domains of Escherichia coli RecA protein predicted to be involved in DNA binding, ATP binding, and ATP hydrolysis. The expression of RAD51, measured with a RAD51-lacZ gene fusion, was found to be UV- and gamma-ray-inducible, with dose-dependent responses.  相似文献   

13.
Spell RM  Jinks-Robertson S 《Genetics》2004,168(4):1855-1865
Mutation in SGS1, which encodes the yeast homolog of the human Bloom helicase, or in mismatch repair (MMR) genes confers defects in the suppression of mitotic recombination between similar but nonidentical (homeologous) sequences. Mutational analysis of SGS1 suggests that the helicase activity is required for the suppression of both homologous and homeologous recombination and that the C-terminal 200 amino acids may be required specifically for the suppression of homeologous recombination. To clarify the mechanism by which the Sgs1 helicase enforces the fidelity of recombination, we examined the phenotypes associated with SGS1 deletion in MMR-defective and recombination-defective backgrounds. Deletion of SGS1 caused no additional loss of recombination fidelity above that associated with MMR defects, indicating that the suppression of homeologous recombination by Sgs1 may be dependent on MMR. However, the phenotype of the sgs1 rad51 mutant suggests a MMR-independent role of Sgs1 in the suppression of RAD51-independent recombination. While homologous recombination levels increase in sgs1Delta and in srs2Delta strains, the suppression of homeologous recombination was not relaxed in the srs2 mutant. Thus, although both Sgs1 and Srs2 limit the overall level of mitotic recombination, there are distinct differences in the roles of these helicases with respect to enforcement of recombination fidelity.  相似文献   

14.
Saccharomyces cells with a single unrepaired double-strand break adapt after checkpoint-mediated G(2)/M arrest. We have found that both Rad51 and Rad52 recombination proteins play key roles in adaptation. Cells lacking Rad51p fail to adapt, but deleting RAD52 suppresses rad51Delta. rad52Delta also suppresses adaptation defects of srs2Delta mutants but not those of yku70Delta or tid1Delta mutants. Neither rad54Delta nor rad55Delta affects adaptation. A Rad51 mutant that fails to interact with Rad52p is adaptation defective; conversely, a C-terminal truncation mutant of Rad52p, impaired in interaction with Rad51p, is also adaptation defective. In contrast, rad51-K191A, a mutation that abolishes recombination and results in a protein that does not bind to single-stranded DNA (ssDNA), supports adaptation, as do Rad51 mutants impaired in interaction with Rad54p or Rad55p. An rfa1-t11 mutation in the ssDNA binding complex RPA partially restores adaptation in rad51Delta mutants and fully restores adaptation in yku70Delta and tid1Delta mutants. Surprisingly, although neither rfa1-t11 nor rad52Delta mutants are adaptation defective, the rad52Delta rfa1-t11 double mutant fails to adapt and exhibits the persistent hyperphosphorylation of the DNA damage checkpoint protein Rad53 after HO induction. We suggest that monitoring of the extent of DNA damage depends on independent binding of RPA and Rad52p to ssDNA, with Rad52p's activity modulated by Rad51p whereas RPA's action depends on Tid1p.  相似文献   

15.
DNA-damage tolerance (DDT) is defined as a mechanism by which eukaryotic cells resume DNA synthesis to fill the single-stranded DNA gaps left by replication-blocking lesions. Eukaryotic cells employ two different means of DDT, namely translesion DNA synthesis (TLS) and template switching, both of which are coordinately regulated through sequential ubiquitination of PCNA at the K164 residue. In the budding yeast Saccharomyces cerevisiae, the same PCNA-K164 residue can also be sumoylated, which recruits the Srs2 helicase to prevent undesired homologous recombination (HR). While the mediation of TLS by PCNA monoubiquitination has been extensively characterized, the method by which K63-linked PCNA polyubiquitination leads to template switching remains unclear. We recently identified a yeast heterotetrameric Shu complex that couples error-free DDT to HR as a critical step of template switching. Here we report that the Csm2 subunit of Shu physically interacts with Rad55, an accessory protein involved in HR. Rad55 and Rad57 are Rad51 paralogues and form a heterodimer to promote Rad51-ssDNA filament formation by antagonizing Srs2 activity. Although Rad55-Rad57 and Shu function in the same pathway and both act to inhibit Srs2 activity, Shu appears to be dedicated to error-free DDT while the Rad55-Rad57 complex is also involved in double-strand break repair. This study reveals the detailed steps of error-free lesion bypass and also brings to light an intrinsic interplay between error-free DDT and Srs2-mediated inhibition of HR.  相似文献   

16.
Homologous recombination represents an important means for the error-free elimination of DNA double-strand breaks and other deleterious DNA lesions from chromosomes. The Rad51 recombinase, a member of the RAD52 group of recombination proteins, catalyzes the homologous recombination reaction in the context of a helical protein polymer assembled on single-stranded DNA (ssDNA) that is derived from the nucleolytic processing of a primary lesion. The assembly of the Rad51-ssDNA nucleoprotein filament, often referred to as the presynaptic filament, is prone to interference by the single-strand DNA-binding factor replication protein A (RPA). The Saccharomyces cerevisiae Rad52 protein facilitates presynaptic filament assembly by helping to mediate the displacement of RPA from ssDNA. On the other hand, disruption of the presynaptic filament by the Srs2 helicase leads to a net exchange of Rad51 for RPA. To understand the significance of protein-protein interactions in the control of Rad52- or Srs2-mediated presynaptic filament assembly or disassembly, we have examined two rad51 mutants, rad51 Y388H and rad51 G393D, that are simultaneously ablated for Rad52 and Srs2 interactions and one, rad51 A320V, that is differentially inactivated for Rad52 binding for their biochemical properties and also for functional interactions with Rad52 or Srs2. We show that these mutant rad51 proteins are impervious to the mediator activity of Rad52 or the disruptive function of Srs2 in concordance with their protein interaction defects. Our results thus provide insights into the functional significance of the Rad51-Rad52 and Rad51-Srs2 complexes in the control of presynaptic filament assembly and disassembly. Moreover, our biochemical studies have helped identify A320V as a separation-of-function mutation in Rad51 with regards to a differential ablation of Rad52 interaction.Homologous recombination (HR)3 helps maintain genomic stability by eliminating DNA double-strand breaks induced by ionizing radiation and chemical reagents, by restarting damaged or collapsed DNA replication forks, and by elongating shortened telomeres especially when telomerase is dysfunctional (13). Accordingly, defects in HR invariably lead to enhanced sensitivity to genotoxic agents, chromosome aberrations, and tumor development (4, 5). In meiosis also, HR helps mediate the linkage of homologous chromosome pairs via arm cross-overs, thus ensuring the proper segregation of chromosomes at the first meiotic division (6). Accordingly, HR mutants exhibit a plethora of meiotic defects, including early meiotic cell cycle arrest, aneuploidy, and inviability.Much of the knowledge regarding the mechanistic basis of HR has been derived from studies of model organisms, such as the budding yeast Saccharomyces cerevisiae. Genetic analyses in S. cerevisiae have led to the identification of the RAD52 group of genes, namely, RAD50, RAD51, RAD52, RAD54, RAD55, RAD57, RAD59, RDH54, MRE11, and XRS2 (1), that are needed for the successful execution of HR. Each member of the RAD52 group of genes has an orthologue in higher eukaryotes, including humans, and mutations in any of these genes cause defects in HR and repair of double-strand breaks.The DNA pairing and strand invasion step of the HR reaction is mediated by RAD51-encoded protein, which is orthologous to the Escherichia coli recombinase RecA (2). Like RecA, Rad51 polymerizes on ssDNA, derived from the nucleolytic processing of a primary lesion such as a double-strand break, to form a right-handed nucleoprotein filament, often referred to as the presynaptic filament (3, 7). The presynaptic filament engages dsDNA, conducts a search for homology in the latter, and catalyzes DNA joint formation between the recombining ssDNA and dsDNA partners upon the location of homology (1, 3). As such, the timely and efficient assembly of the presynaptic filament is indispensable for the successful execution of HR.Because the nucleation of Rad51 onto ssDNA is a rate-limiting process, presynaptic filament assembly is prone to interference by the single-strand DNA-binding protein replication protein A (RPA) (1, 3, 7). In reconstituted biochemical systems, the addition of Rad52 counteracts the inhibitory action of RPA (8, 9). Consistent with the biochemical results, in both mitotic and meiotic cells, the recruitment of Rad51 to double-strand breaks is strongly dependent on Rad52 (1012). This effect of Rad52 on Rad51 presynaptic filament assembly has been termed a “recombination mediator” function (13).Interestingly, genetic studies have shown that the Srs2 helicase fulfills the role of an anti-recombinase. Specifically, mutations in Srs2 often engender a hyper-recombinational phenotype and can also help suppress the DNA damage sensitivity of rad6 and rad18 mutants, because of the heightened HR proficiency being able to substitute for the post-replicative DNA repair defects of these mutant cells (2, 14). Importantly, in reconstituted systems, Srs2 exerts a strong inhibitory effect on Rad51-mediated reactions in a manner that is potentiated by RPA. Biochemical and electron microscopic analyses have provided compelling evidence that Srs2 acts by disassembling the presynaptic filament, to effect the replacement of Rad51 by RPA (15, 16). The ability of Srs2 to dissociate the presynaptic filament relies on its ATPase activity, revealed using mutant variants, K41A and K41R, that harbor changes in the Walker type A motif involved in ATP engagement. Accordingly, the srs2 K41A and srs2 K41R mutants are biologically inactive (17).In both yeast two-hybrid and biochemical analyses, a complex of Rad51 with either Rad52 or Srs2 can be captured (1, 16). Using yeast two-hybrid-based mutagenesis, several rad51 mutant alleles, A320V, Y388H, and G393D, that engender a defect in the yeast two-hybrid association with Rad52 have been found (18). Here we document our biochemical studies demonstrating the inability of these rad51 mutant proteins to physically and functionally interact with Rad52. Interestingly, we find that two of these rad51 mutants, namely, Y388H and G393D, are also defective in Srs2 interaction. Accordingly, these mutant rad51 proteins form presynaptic filaments that are resistant to the disruptive action of Srs2. Our results thus emphasize the role of Rad51-Rad52 and Rad51-Srs2 interactions in the regulation of Rad51 presynaptic filament assembly and maintenance, and they also reveal the presence of overlapping Rad52 and Srs2 interaction motifs in Rad51. In these regards, our biochemical studies have identified the A320V change as a separation-of-function mutation in Rad51.  相似文献   

17.
In yeast, the Rad51-related proteins include Rad55 and Rad57, which form a heterodimer that interacts with Rad51. Five human Rad51 paralogs have been identified (XRCC2, XRCC3, Rad51B/Rad51L1, Rad51C/Rad51L2, and Rad51D/Rad51L3), and each interacts with one or more of the others. Previously we reported that HsRad51 interacts with XRCC3, and Rad51C interacts with XRCC3, Rad51B, and HsRad51. Here we report that in the yeast two-hybrid system, Rad51D interacts with XRCC2 and Rad51C. No other interactions, including self-interactions, were found, indicating that the observed interactions are specific. The yeast Rad51 interacts with human Rad51 and XRCC3, suggesting Rad51 conservation since the human yeast divergence. Data from yeast three-hybrid experiments indicate that a number of the pairs of interactions between human Rad51 paralogs can occur simultaneously. For example, Rad51B expression enhances the binding of Rad51C to XRCC3 and to HsRad51D, and Rad51C expression allows the indirect interaction of Rad51B with Rad51D. Experiments using 6xHis-tagged proteins in the baculovirus system confirm several of our yeast results, including Rad51B interaction with Rad51D only when Rad51C is simultaneously expressed and Rad51C interaction with XRCC2 only when Rad51D is present. These results suggest that these proteins may participate in one complex or multiple smaller ones.  相似文献   

18.
Previously we identified Rrp1 and Rrp2 as two proteins required for the Sfr1/Swi5-dependent branch of homologous recombination (HR) in Schizosaccharomyces pombe. Here we use a yeast two-hybrid approach to demonstrate that Rrp1 and Rrp2 can interact with each other and with Swi5, an HR mediator protein. Rrp1 and Rrp2 form co-localizing methyl methanesulphonate–induced foci in nuclei, further suggesting they function as a complex. To place the Rrp1/2 proteins more accurately within HR sub-pathways, we carried out extensive epistasis analysis between mutants defining Rrp1/2, Rad51 (recombinase), Swi5 and Rad57 (HR-mediators) plus the anti-recombinogenic helicases Srs2 and Rqh1. We confirm that Rrp1 and Rrp2 act together with Srs2 and Swi5 and independently of Rad57 and show that Rqh1 also acts independently of Rrp1/2. Mutants devoid of Srs2 are characterized by elevated recombination frequency with a concomitant increase in the percentage of conversion-type recombinants. Strains devoid of Rrp1 or Rrp2 did not show a change in HR frequency, but the number of conversion-type recombinants was increased, suggesting a possible function for Rrp1/2 with Srs2 in counteracting Rad51 activity. Our data allow us to propose a model placing Rrp1 and Rrp2 functioning together with Swi5 and Srs2 in a synthesis-dependent strand annealing HR repair pathway.  相似文献   

19.
In humans, the interactions between the breast cancer susceptibility protein, BRCA2, and the RAD51 recombinase are essential for DNA repair by homologous recombination (HR), failure of which can predispose to cancer. The interactions occur through conserved BRC repeat motifs, encoded in BRCA2, binding directly to RAD51. Here, we describe full and partial BRCA2 homologues from a wide range of eukaryotes, including Drosophila melanogaster and two Plasmodium species. The crystal structure of the human BRC4-RAD51 complex allows identification of residues that are important for protein-protein interaction, and defines interaction sequence fingerprints for the BRC repeat and for RAD51. These allow us to predict that most eukaryotic RAD51 and BRC repeat orthologues should be capable of mutual interactions. We find no evidence for the presence of BRC repeats in yeast, Archaea and bacteria, and their RAD51 orthologues do not fulfil the criteria for binding the BRC repeat. Similarly, human RAD51 paralogues, including RAD51B, RAD51C, RAD51D, XRCC2, XRCC3 and DMC1, are not predicted to bind the BRC repeat. Conservation of the BRC repeat and RAD51 sequence fingerprints across a wide range of eukaryotic species substantiates the functional significance of the BRCA2-RAD51 interactions. The idea of multiple BRC repeats with binding specificity towards RAD51 leads us to suggest a possible model for the participation of BRCA2 in RAD51 nucleoprotein filament formation.  相似文献   

20.
In the budding yeast Saccharomyces cerevisiae the Srs2/RadH DNA helicase promotes survival after ultraviolet (UV) irradiation, and has been implicated in DNA repair, recombination and checkpoint signalling following DNA damage. A second helicase, Sgs1, is the S.cerevisiae homologue of the human BLM and WRN proteins, which are defective in cancer predisposition and/or premature ageing syndromes. Saccharomyces cerevisiae cells lacking both Srs2 and Sgs1 exhibit a severe growth defect. We have identified an Srs2 orthologue in the fission yeast Schizosaccharomyces pombe, and have investigated its role in responses to UV irradiation and inhibition of DNA replication. Deletion of fission yeast srs2 caused spontaneous hyper-recombination and UV sensitivity, and simultaneous deletion of the SGS1 homologue rqh1 caused a severe growth defect reminiscent of that seen in the equivalent S.cerevisiae mutant. However, unlike in budding yeast, inactivation of the homologous recombination pathway did not suppress this growth defect. Indeed, the homologous recombination pathway was required for maintenance of normal fission yeast viability in the absence of Srs2, and loss of homologous recombination and loss of Srs2 contributed additively to UV sensitivity. We conclude that Srs2 plays related, but not identical, roles in the two yeast species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号