首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorothioate deoxyribonucleotides (PS-DNA) are among the most widely used antisense inhibitors. PS-DNA exhibits desirable properties such as enhanced nuclease resistance, improved bioavailability, and the ability to induce RNase H mediated degradation of target RNA. Unfortunately, PS-DNA possesses a relatively low binding affinity for target RNA that impacts on its potency in antisense applications. We recently showed that phosphodiester-linked oligonucleotides comprised of 2'-deoxy-2'-fluoro-D-arabinonucleic acid (FANA) exhibit both high binding affinity for target RNA and the ability to elicit RNase H degradation of target RNA [Damha et al. (1998) J. Am. Chem. Soc. 120, 12976]. In the present study, we evaluated the antisense activity of phosphorothioate-linked FANA oligonucleotides (PS-FANA). Oligonucleotides comprised entirely of PS-FANA were somewhat less efficient in directing RNase H cleavage of target RNA as compared to their phosphorothioate-linked DNA counterparts, and showed only weak antisense inhibition of cellular target expression. However, mixed-backbone oligomers comprised of PS-FANA flanking a central core of PS-DNA were found to possess potent antisense activity, inhibiting specific cellular gene expression with EC(50) values of less than 5 nM. This inhibition was a true antisense effect, as indicated by the dose-dependent decrease in both target protein and target mRNA. Furthermore, the appearance of mRNA fragments was consistent with RNase H mediated cleavage of the mRNA target. We also compared a series of PS-[FANA-DNA-FANA] mixed-backbone oligomers of varying PS-DNA core sizes with the corresponding 2'-O-methyl oligonucleotide chimeras, i.e., PS-[2'meRNA-DNA-2'meRNA]. Both types of oligomers showed very similar binding affinities toward target RNA. However, the antisense potency of the 2'-O-methyl chimeric compounds was dramatically attenuated with decreasing DNA core size, whereas that of the 2'-fluoroarabino compounds was essentially unaffected. Indeed, a PS-FANA oligomer containing a single deoxyribonucleotide residue core retained significant antisense activity. These findings correlated exactly with the ability of the various chimeric antisense molecules to elicit RNase H degradation of the target RNA in vitro, and suggest that this mode of inhibition is likely the most important determinant for potent antisense activity.  相似文献   

2.
Mutations in the presenilin-1 (PS-1) and presenilin-2 (PS-2) genes account for the majority of cases of early-onset familial Alzheimer's disease (AD). Alternative splicing forms of the PS-1 and PS-2 gene products have previously been reported in fibroblast and brain tissue from both familial and sporadic AD patients, as well as from normal tissues and cell lines. We demonstrate here unusual alternative splicing of the PS-2 gene that leads to the generation of mRNA lacking exon 5 in human brain tissue. This product was more frequently detected in brain tissue from sporadic AD patients (70.0%; 21 of 30) than from normal age-matched controls (17.6%; three of 17). In cultured neuroblastoma cells, this splice variant was generated in hypoxia but not under other forms of cellular stress. Hypoxia-mediated induction of this splice variant was blocked by pretreatment of neuroblastoma cells with the protein synthesis inhibitor cycloheximide or antioxidants such as N-acetylcysteine and diphenyl iodonium, suggesting that hypoxia-mediated oxidant stress might, at least in part, underlie the alternative splicing of PS-2 mRNA through de novo protein synthesis. Furthermore, the stable transfectants of this splice variant produced the N-terminal part of PS-2 protein (15 kDa) and were more susceptible to cellular stresses than control transfectants. These results suggest the possibility that altered presenilin gene products in stress conditions may also participate in the pathogenesis of AD.  相似文献   

3.
The HER-2 gene is overexpressed in a subset of breast, ovarian, lung, and pancreatic cancers. Antisense oligonucleotides suppress gene expression depending on the stability of the DNA.RNA hybrids formed at the target site. Polyamines, the cellular cations that interact with DNA and RNA, may influence hybrid stability in the cell. Therefore, we studied the ability of natural polyamines (putrescine, spermidine, and spermine) and a series of their structural analogues to stabilize DNA.RNA and RNA.RNA duplexes using melting temperature (T(m)) measurements and circular dichroism (CD) spectroscopy. Phosphodiester (PO) and phosphorothioate (PS) oligonucleotides (ODNs) (15 nucleotides, 5'-CTCCATGGTGCTCAC-3') targeted to the initiation codon region of the HER-2 mRNA, and complementary RNA and DNA ODNs, were used in this study. The relative order of thermal stability was as follows: RNA.RNA > PO-DNA.RNA > PO-DNA.PO-DNA > PS-DNA.RNA > PS-DNA.PO-DNA > PS-DNA.PS-DNA. The ability of polyamines to stabilize the duplexes improved with the cationicity of the polyamine, with hexamines being more effective than pentamines, which in turn were more effective than tetramines and triamines. However, chemical structural effects were clearly evident with isovalent homologues of spermidine and spermine. CD spectra showed B and A conformations, respectively, for the DNA and RNA helices. DNA.RNA hybrids adopted an intermediate structure between the B and A forms. These data help us to understand the role of endogenous polyamines in DNA.RNA hybrid stabilization, and provide information for designing novel polyamines to facilitate the use of antisense ODNs for controlling HER-2 gene expression.  相似文献   

4.
5.
6.
7.
The synthesis and properties of oligonucleotides (ONs) containing 9-(2,3,4-trihydroxybutyl)adenine, A(C2) and A(C3), are described. The ON containing A(C2) involves the 3'-->4' and 3-->5' phosphodiester linkages in the strand, whereas that containing A(C3) possesses the 3'-->4' and 2'-->5' phosphodiester linkages. It was found that incorporation of the analogs, A(C2) or A(C3), into ONs significantly reduces the thermal and thermodynamic stabilities of the ON/DNA duplexes, but does not largely decrease the thermal and thermodynamic stabilities of the ON/RNA duplexes as compared with the case of the ON/DNA duplexes. It was revealed that the base recognition ability of A(C2) is greater than that of A(C3) in the ON/RNA duplexes.  相似文献   

8.
Incorporation of nucleosides with novel base-constraining oxetane (OXE) modifications [oxetane, 1-(1',3'-O-anhydro-beta-d-psicofuranosyl nucleosides)] into antisense (AS) oligodeoxyribonucleotides (ODNs) should greatly improve the gene silencing efficiency of these molecules. This is because OXE modified bases provide nuclease protection to the natural backbone ODNs, can impart T(m) values similar to those predicted for RNA-RNA hybrids, and not only permit but also accelerate RNase H mediated catalytic activity. We tested this assumption in living cells by directly comparing the ability of OXE and phosphorothioate (PS) ODNs to target c-myb gene expression. The ODNs were targeted to two different sites within the c-myb mRNA. One site was chosen arbitrarily. The other was a 'rational' choice based on predicted hybridization accessibility after physical mapping with self-quenching reporter molecules (SQRM). The Myb mRNA and protein levels were equally diminished by OXE and PS ODNs, but the latter were delivered to cells with approximately six times greater efficiency, suggesting that OXE modified ODNs were more potent on a molar basis. The rationally targeted molecules demonstrated greater silencing efficiency than those directed to an arbitrarily chosen mRNA sequence. We conclude that rationally targeted, OXE modified ODNs, can function efficiently as gene silencing agents, and hypothesize that they will prove useful for therapeutic purposes.  相似文献   

9.
10.
11.
The design of new antisense oligomers with improved binding affinity for targeted RNA, while still activating RNase H, is a major research area in medicinal chemistry. RNase H recognizes the RNA-DNA duplex and cleaves the complementary mRNA strand, providing the main mechanism by which antisense oligomers elicit their activities. It has been shown that configuration inversion at the C2' position of the DNA sugar moiety (arabinonucleic acid, ANA), combined with the substitution of the 2'OH group by a fluorine atom (2'F-ANA) increases the oligomer's binding affinity for targeted RNA. In the present study, we evaluated the antisense activity of mixed-backbone phosphorothioate oligomers composed of 2'-deoxy-2'-fluoro-beta-D-arabinose and 2'-deoxyribose sugars (S-2'F-ANA-DNA chimeras). We determined their abilities to inhibit the protein expression and phosphorylation of Flk-1, a vascular endothelial growth factor receptor (VEGF), and VEGF biological effects on endothelial cell proliferation, migration, and platelet-activating factor synthesis. Treatment of endothelial cells with chimeric oligonucleotides reduced Flk-1 protein expression and phosphorylation more efficiently than with phosphorothioate antisenses (S-DNA). Nonetheless, these two classes of antisenses inhibited VEGF activities equally. Herein, we also demonstrated the capacity of the chimeric oligomers to elicit RNase H activity and their improved binding affinity for complementary RNA as compared with S-DNA.  相似文献   

12.
Prostaglandin-endoperoxide synthase 2 (PTGS2), also known as cyclooxygenase 2 (COX-2), plays a critical role in many normal physiological functions and modulates a variety of pathological conditions. The ability to turn endogenous COX-2 on and off in a reversible fashion, at specific times and in specific cell types, would be a powerful tool in determining its role in many contexts. To achieve this goal, we took advantage of a recently developed RNA interference system in mice. An shRNA targeting the Cox2 mRNA 3′untranslated region was inserted into a microRNA expression cassette, under the control of a tetracycline response element (TRE) promoter. Transgenic mice containing the COX-2-shRNA were crossed with mice encoding a CAG promoter-driven reverse tetracycline transactivator, which activates the TRE promoter in the presence of tetracycline/doxycycline. To facilitate testing the system, we generated a knockin reporter mouse in which the firefly luciferase gene replaces the Cox2 coding region. Cox2 promoter activation in cultured cells from triple transgenic mice containing the luciferase allele, the shRNA and the transactivator transgene resulted in robust luciferase and COX-2 expression that was reversibly down-regulated by doxycycline administration. In vivo, using a skin inflammation-model, both luciferase and COX-2 expression were inhibited over 80% in mice that received doxycycline in their diet, leading to a significant reduction of infiltrating leukocytes. In summary, using inducible RNA interference to target COX-2 expression, we demonstrate potent, reversible Cox2 gene silencing in vivo. This system should provide a valuable tool to analyze cell type-specific roles for COX-2.  相似文献   

13.
14.
15.
We demonstrate that the levels of native as well as transfected prion protein (PrP) are lowered in various cell lines exposed to phosphorothioate oligodeoxynucleotides (PS-DNA) and can be rapidly reverted to their normal amounts by removal of PS-DNA. This transient modulation was independent of the glycosylation state of PrP, and in addition, all three PrP glycoforms were susceptible to PS-DNA treatment. Deletion of the N-terminal domain (amino acids 23-99), but not of the other domains of PrP, abrogated its PS-DNA-mediated down-regulation. PrP versions localized in the mitochondria, cytoplasm, or nucleus were not modulated by PS-DNA, indicating that PrP surface exposure is required for executing this effect. Proteins that in their native forms were not responsive to PS-DNA, such as thymocyte antigen 1 (Thy1), Doppel protein (Dpl), green fluorescent protein (GFP), and cyan fluorescent protein (CFP), became susceptible to PS-DNA-mediated down-regulation following introduction of the N terminus of PrP into their sequence. These observations demonstrate the essential role of the N-terminal domain for promoting oligonucleotide-mediated reduction of the PrP level and suggest that transient treatment of cultured cells with PS-DNA may provide a general method for targeted modulation of the levels of desired surface proteins in a conditional and reversible manner.  相似文献   

16.
17.
18.
PS-341 (bortezomib) is a potent and reversible proteosome inhibitor that functions to degrade intracellular polyubiquitinated proteins. PS-341 induces apoptosis and has shown broad antitumor activity with selectivity for transformed cells. We studied the effect of PS-341 on lysosomal and mitochondrial permeabilization, including the role of caspase-2 activation in apoptosis induction in the BxPC-3 human pancreatic carcinoma cell line. PS-341 induced a dose-dependent apoptosis in association with reactive oxygen species generation and cleavage of caspase-2 to its 33- and 14-kDa fragments. PS-341 disrupted lysosomes with redistribution of cathepsin B to the cytosol, as shown using fluorescence confocal microscopy, that was blocked by the free radical scavenger tiron but not by a caspase-2 inhibitor (benzyloxycarbonyl (Z)-VDVAD-fluoromethyl ketone (FMK)). PS-341-induced caspase-2 activation was attenuated by a selective pharmacological inhibitor of cathepsin B (R-3032), suggesting that cathepsin B release occurs upstream of caspase-2. PS-341-induced mitochondrial depolarization was attenuated by Z-VDVAD-FMK, tiron, and an inhibitor of the mitochondrial permeability transition pore (bongkrekic acid). Regulation of mitochondrial permeability by caspase-2 was confirmed using caspase-2 small interfering RNA. PS-341-induced cytochrome c release and phosphatidylserine externalization were attenuated by Z-VDVAD-FMK and partially by R-3032. PS-341 activated the BH3-only proteins Bik and Bim and down-regulated Bcl-2 and Bcl-xL mRNA and protein expression. Taken together, PS-341 induces lysosomal cathepsin B redistribution upstream of caspase-2. Caspase-2 activation regulates PS-341-induced mitochondrial depolarization and apoptosis, suggesting that caspase-2 can serve as a link between lysosomal and mitochondrial permeabilization.  相似文献   

19.
Marker rescue, the restoration of gene function by replacement of a defective gene with a normal one by recombination, has been utilized to produce novel adeno-associated virus (AAV) vectors. AAV serotype 2 (AAV2) clones containing wild-type terminal repeats, an intact rep gene, and a mutated cap gene, served as the template for marker rescue. When transfected alone in 293 cells, these AAV2 mutant plasmids produced noninfectious AAV virions that could not bind heparin sulfate after infection with adenovirus dl309 helper virus. However, the mutation in the cap gene was corrected after cotransfection with AAV serotype 3 (AAV3) capsid DNA fragments, resulting in the production of AAV2/AAV3 chimeric viruses. The cap genes from several independent marker rescue experiments were PCR amplified, cloned, and then sequenced. Sequencing results confirmed not only that homologous recombination occurred but, more importantly, that a mixed population of AAV chimeras carrying 16 to 2,200 bp throughout different regions of the type 3 cap gene were generated in a single marker rescue experiment. A 100% correlation was observed between infectivity and the ability of the chimeric virus to bind heparin sulfate. In addition, many of the AAV2/AAV3 chimeras examined exhibited differences at both the nucleotide and amino acid levels, suggesting that these chimeras may also exhibit unique infectious properties. Furthermore, AAV helper plasmids containing these chimeric cap genes were able to function in the triple transfection method to generate recombinant AAV. Together, the results suggest that DNA from other AAV serotypes can rescue AAV capsid mutants and that marker rescue may be a powerful, yet simple, technique to map, as well as develop, chimeric AAV capsids that display different serotype-specific properties.  相似文献   

20.
Soybean partial-female-sterile mutant 1 (PS-1) was recovered from a gene-tagging study. The objectives were to study the inheritance, linkage, allelism, and certain aspects of the reproductive biology of the PS-1 mutant. For inheritance and linkage tests, PS-1 was crossed to flower color mutant Harosoy-w4 and to chlorophyll-deficient mutant CD-1, also recovered from the gene-tagging study. For allelism tests, reciprocal crosses were made with PS-1 and three other partial-sterile mutants (PS-2, PS-3, and PS-4) recovered from the same gene-tagging study. The PS-1 mutant is inherited in a 3:1 ratio and is a single recessive gene. Linkage results indicated that the gene for partial sterility in PS-1 is not linked either to the w4 locus or to the CD-1 locus. Allelism tests showed that the gene in PS-1 is nonallelic to the gene in PS-2, PS-3, and PS-4. Investigations of developing and mature pollen indicated no differences in morphology, stainability, or fluorescence between normal and partial-sterile genotypes. The PS-1 mutant is completely male fertile. Confocal scanning laser microscopy was used to determine that early embryo abortion in PS-1 is due indirectly to abnormal migration of the fused polar nucleus, which prevented it from being fertilized. Subsequent absence of endosperm development leads directly to abortion of the proembryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号