首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unfolding of Bombyx mori glycyl-tRNA synthetase was examined by multiple spectroscopic techniques. Tryptophan fluorescence of wild type enzyme and an N-terminally truncated form (N55) increased at low concentrations of urea or guanidine-HCl followed by a reduction in intensity at intermediate denaturant concentrations; a transition at higher denaturant was detected as decreased fluorescence intensity and a red-shifted emission. Solute quenching of fluorescence indicated that tryptophans become progressively solvent-exposed during unfolding. Wild type enzyme had stronger negative CD bands between 220 and 230 nm than the mutant, indicative of greater alpha-helical content. Urea or guanidine-HCl caused a reduction in ellipticity at 222 nm at low denaturant concentration with the wild type enzyme, a transition that is absent in the mutant; both enzymes exhibited a cooperative transition at higher denaturant concentrations. Both enzymes dissociate to monomers in 1.5 m urea. Unfolding of wild type enzyme is described by a multistate unfolding and a parallel two state unfolding; the two-state component is absent in the mutant. Changes in spectral properties associated with unfolding were largely reversible after dilution to low denaturant. Unfolding of glycyl-tRNA synthetase is complex with a native state, a native-like monomer, partially unfolded states, and the unfolded state.  相似文献   

2.
Cation-induced toroidal condensation of DNA studies with Co3+(NH3)6   总被引:30,自引:0,他引:30  
The unfolding and refolding of Staphylococcus aureus penicillinase have been followed by urea-gradient electrophoresis. Unfolding of the native state proceeds by an all-or-none transition to fully unfolded protein, with no detectable accumulation of partially unfolded states. In contrast, refolding is complex and proceeds by very rapid, reversible formation of a partially folded state, H, which had been detected and characterized previously, as it is the most stable conformation at intermediate denaturant concentrations. At very low urea concentrations, a more compact conformational state was observed as a transient intermediate in refolding. There was little kinetic heterogeneity of the unfolded protein, as is normally observed with proteins containing proline residues.  相似文献   

3.
Results of actin folding-unfolding pathways examination and characterization of intermediate and misfolded states are summarized. Properties of microenvironments and peculiarities of location of tryptophan residues in protein are analysed in detail. This allowed to conclude that the main contribution to the bulk fluorescence of native protein is made by internal tryptophan residues Trp 340 and Trp 356, localized in hydrophobic regions, while tryptophan residues Trp 79 and Trp 86 are quenched. It has been shown that inactivated actin, previously regarded as an intermediate state between native and completely unfolded state of protein is in reality a misfolded aggregated state. The properties of actin in this state were characterized in detail. In particular, it is shown that inactivated actin is a monodisperse associate consisting of 15 monomer unit. Two earlier unknown intermediate states, which precede completely unfolding of protein macromolecule and formation of inactivated actin, were visualized. A new scheme of folding-unfolding processes was proposed. It is shown that the reason of anomalous effects, which are recorded for actin in solutions with small concentrations of GdnHCl, is a specific interaction of actin with a denaturant.  相似文献   

4.
Although it has been recently shown that unfolded polypeptide chains undergo a collapse on transfer from denaturing to native conditions, the forces determining the dynamics and the size of the collapsed form have not yet been understood. Here, we use single-molecule fluorescence resonance energy transfer experiments on the small protein barstar to characterize the unfolded chain in guanidinium chloride (GdmCl) and urea. The unfolded protein collapses on decreasing the concentration of denaturants. Below the critical concentration of 3.5 M denaturant, the collapse in GdmCl leads to a more dense state than in urea. Since it is known that GdmCl suppresses electrostatic interactions, we infer that Coulomb forces are the dominant forces acting in the unfolded barstar under native conditions. This hypothesis is clearly buttressed by the finding of a compaction of the unfolded barstar by addition of KCl at low urea concentrations.  相似文献   

5.
Tubulin, the major protein of microtubules, has been shown to be an example of protein undergoing multistep unfolding. Local unfolding and stepwise loss of a number of characteristic functions were demonstrated. In order to understand urea induced effects on tryptophan fluorescence and nucleotide binding on tubulin, both fluorescence and NMR techniques were used. Tubulin was denatured by different urea concentrations. The present experiments were carried out at concentrations of tubulin (to approximately 10 microM) at which most of the protein will be in the dimeric state. Quenching studies in the presence of KI suggest that all the tryptophans are fairly solvent exposed. Similar studies using acrylamide as quencher, suggest unfolding of tubulin at these protein concentrations to be an apparent two state process between the native and the completely unfolded states unlike at low concentrations where a partially folded intermediate was observed. No observable effects of the nucleotide or the metal ion on tryptophan fluorescence were observed. An attempt was made using NMR to monitor the changes in the nucleotide interaction with tubulin as the protein is unfolded by urea denaturation. No significant effects were observed in the binding of the nucleotide to tubulin by urea denaturation.  相似文献   

6.
Sridevi K  Udgaonkar JB 《Biochemistry》2002,41(5):1568-1578
The folding and unfolding rates of the small protein, barstar, have been monitored using stopped-flow measurements of intrinsic tryptophan fluorescence at 25 degrees C, pH 8.5, and have been compared over a wide range of urea and guanidine hydrochloride (GdnHCl) concentrations. When the logarithms of the rates of folding from urea and from GdnHCl unfolded forms are extrapolated linearly with denaturant concentration, the same rate is obtained for folding in zero denaturant. Similar linear extrapolations of rates of unfolding in urea and GdnHCl yield, however, different unfolding rates in zero denaturant, indicating that such linear extrapolations are not valid. It has been difficult, for any protein, to determine unfolding rates under nativelike conditions in direct kinetic experiments. Using a novel strategy of coupling the reactivity of a buried cysteine residue with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) to the unfolding reaction of barstar, the global unfolding and refolding rates have now been determined in low denaturant concentrations. The logarithms of unfolding rates obtained at low urea and GdnHCl concentrations show a markedly nonlinear dependence on denaturant concentration and converge to the same unfolding rate in the absence of denaturant. It is shown that the native protein can sample the fully unfolded conformation even in the absence of denaturant. The observed nonlinear dependences of the logarithms of the refolding and unfolding rates observed for both denaturants are shown to be due to the presence of (un)folding intermediates and not due to movements in the position of the transition state with a change in denaturant concentration.  相似文献   

7.
The folding pathway of the third domain of PDZ from the synaptic protein PSD-95 was characterized using kinetic and equilibrium methods by monitoring the fluorescence signal from a Trp residue that is incorporated at a near-surface position. Kinetic folding of this domain showed multiple exponential phases, whereas unfolding showed a single exponential phase. The slow kinetic phases were attributed to isomerization of proline residues, since there are five proline residues in this domain. We found that the logarithms of the rate constants for the fast phase of folding and unfolding are linearly dependent on the concentrations of denaturant. The unfolding free energy derived from these rate constants at zero denaturant was close to the value measured using the equilibrium method, suggesting the absence of detectable sub-millisecond folding intermediates. However, native-state hydrogen exchange experiments detected a partially unfolded intermediate under native conditions. It was further confirmed by a protein engineering study. These data suggest that a hidden intermediate exists after the rate-limiting step in the folding of the third domain of PDZ.  相似文献   

8.
The use of steady-state fluorescence quenching methods is reported as a probe of the accessibility of the single fluorescent tryptophan residue of bovine growth hormone (bGH, bovine somatotropin, bSt) in four solution-state conformations. Different bGH conformations were prepared by using previous knowledge of the multi-state nature of the equilibrium unfolding pathway for bGH: alterations in denaturant and protein concentration yielded different bGH conformations (native, monomeric intermediate, associated intermediate and unfolded). Because the intramolecular fluorescence quenching which occurs in the native state is reduced when the protein unfolds to any of the other conformations, steady-state fluorescence intensity measurements can be used to monitor bGH unfolding as well as the formation of the associated intermediate. These steady-state intensity changes have been confirmed with fluorescence lifetime measurements for the different conformational states of bGH. Fluorescence quenching results were obtained using the quenchers iodide (ionic), acrylamide (polar) and trichloroethanol (non-polar). Analysis of the results for native-state bGH reveals that the tryptophan environment is slightly non-polar (in agreement with the emission maximum of 335 nm) and the tryptophan is more exposed to acrylamide than most native-state tryptophan residues which have been studied. The tryptophan is most accessible to all quenchers in the unfolded state, because no steric restrictions inhibit quencher interaction with the tryptophan residue. The iodide quenching results indicate that the associated intermediate tryptophan is not accessible to iodide, probably due to negative charges inhibiting iodide penetration. The associated intermediate tryptophan is less accessible to all three quenchers than the monomeric intermediate tryptophan, due to tight packing of molecules in the associated intermediate state.  相似文献   

9.
Proteins encoded by the gene segment 6a of the λ variable light-chain repertoire are strongly associated with amyloid deposition. 6aJL2 is a model protein constructed with the predicted sequences encoded by the 6a and JL2 germ line genes. In this work, we characterized the urea- and temperature-induced unfolding of 6aJL2. In the short time scale, spectroscopic, hydrodynamic and calorimetric experiments were compatible with a two-state transition. Furthermore, ΔG, m and the midpoint urea concentration obtained from equilibrium experiments were compatible with those obtained from kinetic experiments. Since fibril formation is a slow process, samples were also incubated for longer times. After incubation for several hours at 37 °C, spectroscopic, hydrodynamic and calorimetric experiments revealed the presence of a partially unfolded off-pathway intermediate around the midpoint urea concentration (1.5-3.0 M urea). In vitro fibrillogenesis assays show that the maximum growth rate for fibril formation and the minimum lag time were obtained at urea concentrations where the partially unfolded state was populated (2.5 M urea at 37 °C). This indicates that this partially unfolded state is critical for in vitro fibril formation. Concentration-dependent kinetics and hydrodynamic properties of the intermediate were consistent with a soluble oligomeric state. The intermediate is formed around the midpoint urea concentration, where the native and unfolded states are equally populated and their rate of interconversion is the slowest. This situation may promote the slow accumulation of an intermediate state that is prone to aggregate.  相似文献   

10.
Cell division protein FtsZ cooperatively self-assembles into straight filaments when bound to GTP. A set of conformational changes that are linked to FtsZ GTPase activity are involved in the transition from straight to curved filaments that eventually disassemble. In this work, we characterized the fluorescence of single Trp mutants as a reporter of the predicted conformational changes between the GDP- and GTP-states of Escherichia coli FtsZ. Steady-state fluorescence characterization showed the Trp senses different environments and displays low solvent accessibility. Time-resolved fluorescence data indicated that the main conformational changes in FtsZ occur at the interaction surface between the N and C domains, but also minor rearrangements were detected in the bulk of the N domain. Surprisingly, despite its location near the bottom protofilament interface at the C domain, the Trp 275 fluorescence lifetime did not report changes between the GDP and GTP states. The equilibrium unfolding of FtsZ features an intermediate that is stabilized by the nucleotide bound in the N-domain as well as by quaternary protein–protein interactions. In this context, we characterized the unfolding of the Trp mutants using time-resolved fluorescence and phasor plot analysis. A novel picture of the structural transition from the native state in the absence of denaturant, to the solvent-exposed unfolded state is presented. Taken together our results show that conformational changes between the GDP and GTP states of FtsZ, such as those observed in FtsZ unfolding, are restricted to the interaction surface between the N and C domains.  相似文献   

11.
In many age-related and neurological diseases, formerly native proteins aggregate via formation of a partially unfolded intermediate. γS-Crystallin is a highly stable structural protein of the eye lens. In the mouse Opj cataract, a non-conservative F9S mutation in the N-terminal domain core of γS allows the adoption of a native fold but renders the protein susceptible to temperature- and concentration-dependent aggregation, including fibril formation. Hydrogen/deuterium exchange and denaturant unfolding studies of this mutant protein (Opj) have suggested the existence of a partially unfolded intermediate in its aggregation pathway. Here, we used NMR and fluorescence spectroscopy to obtain evidence for this intermediate. In 3.5 M urea, Opj forms a stable and partially unfolded entity that is characterized by an unstructured N-terminal domain and a largely intact C-terminal domain. Under physiologically relevant conditions, Carr-Purcell-Meiboom-Gill T2-relaxation dispersion experiments showed that the N-terminal domain residues were in conformational exchange with a loosely structured intermediate with a population of 1-2%, which increased with temperature. This provides direct evidence for a model in which proteins of native fold can explore an intermediate state with an increased propensity for formation of aggregates, such as fibrils. For the crystallins, this shows how inherited sequence variants or environmentally induced modifications can destabilize a well-folded protein, allowing the formation of intermediates able to act as nucleation sites for aggregation and the accumulation of light-scattering centers in the cataractous lens.  相似文献   

12.
The KIX domain of CREB binding protein (CBP) forms a small three-helix bundle which folds autonomously. Previous equilibrium unfolding experiments led to the suggestion that folding may not be strictly two-state. To investigate the folding mechanism in more detail, the folding kinetics of KIX have been studied by urea jump fluorescence-detected stopped-flow experiments. Clear evidence for an intermediate is obtained from the plot of the natural log of the observed rate constant versus denaturant concentration, the chevron plot, and from analysis of the initial fluorescence amplitudes of the stopped-flow experiments. The chevron plot exhibits a change in shape, rollover, at low denaturant concentrations, characteristic of the formation of an intermediate. The kinetic data can be fit to a three-state model involving a compact intermediate. An on-pathway model predicts that the position of the intermediate lies close to the native state. The folding rate in the absence of denaturant is 260 s(-)(1) at pH 7.5 and 25 degrees C. This is significantly slower than the rates of other helical proteins similar in size. The slow folding may be due to the necessity of forming a buried polar interaction in the native state. The potential functional significance of the folding intermediate is discussed.  相似文献   

13.
The activity and conformational change of human placental cystatin (HPC), a low molecular weight thiol proteinase inhibitor (12,500) has been investigated in presence of guanidine hydrochloride (GdnHCl) and urea. The denaturation of HPC was followed by activity measurements, fluorescence spectroscopy and Circular Dichroism (CD) studies. Increasing the denaturant concentration significantly enhanced the inactivation and unfolding of HPC. The enzyme was 50% inactivated at 1.5 M GdnHCl or 3 M urea. Up to 1.5 M GdnHCl concentration there was quenching of fluorescence intensity compared to native form however at 2 M concentration intensity increased and emission maxima had 5 nm red shift with complete unfolding in 4–6 M range. The mid point of transition was in the region of 1.5–2 M. In case of urea denaturation, the fluorescence intensity increased gradually with increase in the concentration of denaturant. The protein unfolded completely in 6–8 M concentration of urea with a mid-point of transition at 3 M. CD spectroscopy shows that the ellipticity of HPC has increased compared to that of native up to 1.5 M GdnHCl and then there is gradual decrease in ellipticity from 2 to 5 M concentration. At 6 M GdnHCl the protein had random coil conformation. For urea the ellipticity decreases with increase in concentration showing a sigmoidal shaped transition curve with little change up to 1 M urea. The protein greatly loses its structure at 6 M urea and at 8 M it is a random coil. The urea induced denaturation follows two-state rule in which Native→Denatured state transition occurs in a single step whereas in case of GdnHCl, intermediates or non-native states are observed at lower concentrations of denaturant. These intermediate states are possibly due to stabilizing properties of guanidine cation (Gdn+) at lower concentrations, whereas at higher concentrations it acts as a classical denaturant.  相似文献   

14.
Unlike steady-state spectrofluorimetry, time-resolved emission spectroscopy (TRES) can resolve emissions from fluorophores with similar quantum yields and overlapping steady-state emission spectra. Time-resolved emission studies of the protein-intrinsic fluorophore, tryptophan (Trp), can thus potentially be used to examine protein conformational heterogeneity in solution, as well as to investigate the existence of populated intermediate structural states in equilibrium unfolding reactions of single-tryptophan proteins. Here, the single-Trp copper protein, azurin, is examined in various concentrations of guanidine hydrochloride (GdnCl) with its disulphide bond in an intact state. Interestingly, multiple envelopes of Trp emission are observed in all TRES spectra acquired, instead of just two emission envelopes (corresponding to the native and unfolded states) expected from two-state unfolding. These envelopes appear to be centred around the same set of emission wavelengths in different TRES spectra, and only intensities and decay rates vary with the concentration of denaturant used. This suggests that structural states representing different levels of exposure of Trp to the aqueous solvent might, in fact, be populated at equilibrium during the unfolding of azurin by GdnCl.  相似文献   

15.
Spudich G  Marqusee S 《Biochemistry》2000,39(38):11677-11683
Experimental studies of protein stability often rely on the determination of an "m value", which describes the denaturant dependence of the free energy change between two states (DeltaG = DeltaG(H2O) - m[denaturant]). Changes in the m value accompanying site specific mutations are usually attributed to structural alterations in the native or unfolded ensemble. Here, we provide an example of significant reduction in the m value resulting from a subtle deviation in two-state behavior not detected by traditional methods. The protein that is studied is a variant of Escherchia coli RNase H in which three residues predicted to be involved in a partially buried salt bridge network were mutated to alanine (R46A, D102A, and D148A). Equilibrium denaturant profiles monitored by both fluorescence and circular dichroism appeared to be cooperative, and a two-state analysis yielded a DeltaG(UN) of approximately -3 kcal/mol with an m value of 1.4 kcal mol(-1) M(-1) (vs 2.3 for RNase H). Analysis of kinetic refolding experiments suggests that the system is actually three-state at equilibrium with an appreciable concentration of an intermediate state under low denaturant concentrations. The stability of the native state determined from a fit of these kinetic data is -6.7 kcal/mol, suggesting that the stability determined by traditional two-state equilibrium analysis is a gross underestimate. The only hint to this loss of two-state behavior was a decrease in the apparent m value, and the presence of the equilibrium intermediate was only identified by a kinetic analysis. Our work serves as a cautionary note; the possibility of a three-state system should be closely addressed before interpreting a change in the m value as a change in the native or unfolded state.  相似文献   

16.
After decades of using urea as denaturant, the kinetic role of this molecule in the unfolding process is still undefined: does urea actively induce protein unfolding or passively stabilize the unfolded state? By analyzing a set of 30 proteins (representative of all native folds) through extensive molecular dynamics simulations in denaturant (using a range of force-fields), we derived robust rules for urea unfolding that are valid at the proteome level. Irrespective of the protein fold, presence or absence of disulphide bridges, and secondary structure composition, urea concentrates in the first solvation shell of quasi-native proteins, but with a density lower than that of the fully unfolded state. The presence of urea does not alter the spontaneous vibration pattern of proteins. In fact, it reduces the magnitude of such vibrations, leading to a counterintuitive slow down of the atomic-motions that opposes unfolding. Urea stickiness and slow diffusion is, however, crucial for unfolding. Long residence urea molecules placed around the hydrophobic core are crucial to stabilize partially open structures generated by thermal fluctuations. Our simulations indicate that although urea does not favor the formation of partially open microstates, it is not a mere spectator of unfolding that simply displaces to the right of the folded←→unfolded equilibrium. On the contrary, urea actively favors unfolding: it selects and stabilizes partially unfolded microstates, slowly driving the protein conformational ensemble far from the native one and also from the conformations sampled during thermal unfolding.  相似文献   

17.
如何解释绿脓杆菌apoazurin变性过程的复杂机制是一个有争议的问题.最近的研究表明apoazurin的复杂变性机制可以归结为其天然态存在着至少两种构象.利用内源荧光发射谱和圆二色谱进一步研究了apoazurin的脲变性机制,发现其稳态脲变性符合表观的二态过程,但其动力学为双相过程.在高浓度脲中快反应在几秒钟内完成,而慢反应要经过几个小时.快反应和慢反应的mu值分别为2.24和2.45kJ·mol-1·M-1,去折叠活化能的差值为22kJ·mol-1.时间分辨的荧光发射谱和圆二色谱可以用天然态和完全变性态的谱图通过一个固定的比例参数进行重建.结果表明,过去被广泛接受的存在着变性中间体的机制是不正确的,而apoazurin在天然态存在至少两种构象的假设是合理的.  相似文献   

18.
The H2A/H2B heterodimer is a component of the nucleosome core particle, the fundamental repeating unit of chromatin in all eukaryotic cells. The kinetic folding mechanism for the H2A/H2B dimer has been determined from unfolding and refolding kinetics as a function of urea using stopped-flow, circular dichroism and fluorescence methods. The kinetic data are consistent with a three-state mechanism: two unfolded monomers associate to form a dimeric intermediate in the dead-time of the SF instrument (approximately 5 ms); this intermediate is then converted to the native dimer by a slower, first-order reaction. Analysis of the burst-phase amplitudes as a function of denaturant indicates that the dimeric kinetic intermediate possesses approximately 50% of the secondary structure and approximately 60% of the surface area burial of the native dimer. The stability of the dimeric intermediate is approximately 30% of that of the native dimer at the monomer concentrations employed in the SF experiments. Folding-to-unfolding double-jump experiments were performed to monitor the formation of the native dimer as a function of folding delay times. The double-jump data demonstrate that the dimeric intermediate is on-pathway and obligatory. Formation of a transient dimeric burst-phase intermediate has been observed in the kinetic mechanism of other intertwined, segment-swapped, alpha-helical, DNA-binding dimers, such as the H3-H4 histone dimer, Escherichia coli factor for inversion stimulation and E.coli Trp repressor. The common feature of a dimeric intermediate in these folding mechanisms suggests that this intermediate may accelerate protein folding, when compared to the folding of archael histones, which do not populate a transient dimeric species and fold more slowly.  相似文献   

19.
The problems of protein aggregation and protein misfolding in the cell are connected with the appearance of many genetic diseases. Both processes can be a consequence of substitutions of certain amino acid residues in proteins. The substitutions can influence the protein stability and protein folding rates in both the intermediate and the native states. We have studied equilibrium urea unfolding of mutant forms of apomyoglobin with substitutions of conserved nonfunctional residues by Ala to estimate their influence on protein stability. These residues include Val10, Trp14, Ilel11, Leu115, Met131 and Leu135. Conformational transitions were monitored by intrinsic Trp fluorescence and by circular dichroism spectra in the far UV region. Free energy changes upon the transition from the native to intermediate state and from the intermediate to unfolded state were determined. It was shown that all substitutions used lead to an appreciable decrease of the apomyoglobin native state stability, whereas the stability of the intermediate state is affected substantially smaller.  相似文献   

20.
Human β2-microglobulin (β2m) aggregation is implicated in dialysis-related amyloidosis. Previously, it has been shown that β2m adopts an ensemble of partially unfolded states at low pH. Here we provide detailed structural and dynamical insights into the acid unfolded and yet compact state of β2m at pH 2.5 using a host of fluorescence spectroscopic tools. These tools allowed us to investigate protein conformational dynamics at low micromolar protein concentrations in an amyloid-forming condition. Our equilibrium fluorescence data in combination with circular dichroism data provide support in favor of progressive structural dissolution of β2m with lowering pH. The acid unfolded intermediate at pH 2.5 has high 8-anilinonaphthalene, 1-sulfonic acid (ANS)-binding affinity and is devoid of significant secondary structural elements. Using fluorescence lifetime measurements, we have been able to monitor the conformational transition during the pH transition from the native to the compact disordered state. Additionally, using time-resolved fluorescence anisotropy measurements, we have been able to distinguish this compact disordered state from the canonical denatured state of the protein by identifying unique dynamic signatures pertaining to the segmental chain mobility. Taken together, our results demonstrate that β2m at pH 2.5 adopts a compact noncanonical unfolded state resembling a collapsed premolten globule state. Additionally, our stopped-flow fluorescence kinetics results provide mechanistic insights into the formation of a compact disordered state from the native form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号