首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
To discover the individual roles of the chitinases from Serratia marcescens 2170, chitinases A, B, and C1 (ChiA, ChiB, and ChiC1) were produced by Escherichia coli and their enzymatic properties as well as synergistic effect on chitin degradation were studied. All three chitinases showed a broad pH optimum and maintained significant chitinolytic activity between pH 4 and 10. ChiA was the most active enzyme toward insoluble chitins, but ChiC1 was the most active toward soluble chitin derivatives among the three chitinases. Although all three chitinases released (GlcNAc)2 almost exclusively from colloidal chitin, ChiB and ChiC1 split (GlcNAc)6 to (GlcNAc)3, while ChiA exclusively generated (GlcNAc)2 and (GlcNAc)4. Clear synergism on the hydrolysis of powdered chitin was observed in the combination between ChiA and either ChiB or ChiC, and the sites attacked by ChiA on the substrate are suggested to be different from those by either ChiB or ChiC1.  相似文献   

2.
The modes of action of three family 18 chitinases (ChiA, ChiB, and ChiC) from Serratia marcescens during the degradation of a water-soluble polymeric substrate, chitosan, were investigated using a combination of viscosity measurements, reducing end assays, and characterization of the size-distribution of the oligomeric products. All three enzymes yielded a fast reduction in molecular weight of the chitosan substrate at a very early stage of hydrolysis, which is typical for endo-acting enzymes. For ChiA and ChiB, this is inconsistent with the previously proposed exo-attack mode of action. The main difference between ChiA, ChiB, and ChiC is the degree of processivity. ChiC is an endo enzyme with no apparent processivity. ChiA and ChiB are processive enzymes in which the substrate remains bound to the active cleft after successful hydrolysis and is moved along for the next hydrolysis to occur. ChiA and ChiB perform on average 9.1 and 3.4 cleavages, respectively, for the formation of each enzyme-substrate complex. ChiA and ChiB have deep, tunnel-like substrate-binding grooves. The demonstration of endo activity shows that substrate binding must involve the temporary restructuring of the loops that make up the roofs of the substrate-binding grooves, similar to what has been proposed for cellobiohydrolase Cel6A. The data suggest that the exo-type of activity observed for ChiA and ChiB during the degradation of solid crystalline chitin is due to the better accessibility of chain ends, rather than intrinsic enzyme properties.  相似文献   

3.
Serratia marcescens produces three chitinases, ChiA, ChiB and ChiC which together enable the bacterium to efficiently degrade the insoluble chitin polymer. We present an overview of the structural properties of these enzymes, as well as an analysis of their activities towards artificial chromogenic chito-oligosaccharide-based substrates, chito-oligosaccharides, chitin and chitosan. We also present comparative inhibition data for the pseudotrisaccharide allosamidin (an analogue of the reaction intermediate) and the cyclic pentapeptide argadin. The results show that the enzymes differ in terms of their subsite architecture and their efficiency towards chitinous substrates. The idea that the three chitinases play different roles during chitin degradation was confirmed by the synergistic effects that were observed for certain combinations of the enzymes. Studies of the degradation of the soluble heteropolymer chitosan provided insight into processivity. Taken together, the available data for Serratia chitinases show that the chitinolytic machinery of this bacterium consists of two processive exo-enzymes that degrade the chitin chains in opposite directions (ChiA and ChiB) and a non-processive endo-enzyme, ChiC.  相似文献   

4.
Serratia marcescens produces three chitinases, ChiA, ChiB and ChiC which together enable the bacterium to efficiently degrade the insoluble chitin polymer. We present an overview of the structural properties of these enzymes, as well as an analysis of their activities towards artificial chromogenic chito-oligosaccharide-based substrates, chito-oligosaccharides, chitin and chitosan. We also present comparative inhibition data for the pseudotrisaccharide allosamidin (an analogue of the reaction intermediate) and the cyclic pentapeptide argadin. The results show that the enzymes differ in terms of their subsite architecture and their efficiency towards chitinous substrates. The idea that the three chitinases play different roles during chitin degradation was confirmed by the synergistic effects that were observed for certain combinations of the enzymes. Studies of the degradation of the soluble heteropolymer chitosan provided insight into processivity. Taken together, the available data for Serratia chitinases show that the chitinolytic machinery of this bacterium consists of two processive exo-enzymes that degrade the chitin chains in opposite directions (ChiA and ChiB) and a non-processive endo-enzyme, ChiC.  相似文献   

5.
With the goal of understanding the chitinolytic mechanism of the potential biological control strain Serratia marcescens CFFSUR-B2, genes encoding chitinases ChiA, ChiB and ChiC, chitobiase (Chb) and chitin binding protein (CBP) were cloned, the protein products overexpressed in Escherichia coli as 6His-Sumo fusion proteins and purified by affinity chromatography. Following affinity tag removal, the chitinolytic activity of the recombinant proteins was evaluated individually and in combination using colloidal chitin as substrate. ChiB and ChiC were highly active while ChiA was inactive. Reactions containing both ChiB and ChiC showed significantly increased N-acetylglucosamine trimer and dimer formation, but decreased monomer formation, compared to reactions with either enzyme alone. This suggests that while both ChiB and ChiC have a general affinity for the same substrate, they attack different sites and together degrade chitin more efficiently than either enzyme separately. Chb and CBP in combination with ChiB and ChiC (individually or together) increased their chitinase activity. We report for the first time the potentiating effect of Chb on the activity of the chitinases and the synergistic activity of a mixture of all five proteins (the three chitinases, Chb and CBP). These results contribute to our understanding of the mechanism of action of the chitinases produced by strain CFFSUR-B2 and provide a molecular basis for its high potential as a biocontrol agent against fungal pathogens.  相似文献   

6.
《FEBS letters》2014,588(24):4620-4624
Glycoside hydrolases depolymerize polysaccharides. They can subtract single carbohydrate chains from polymer crystals and cleave glycosidic bonds without dissociating from the substrate after each catalytic event. This processivity is thought to conserve energy during polysaccharide degradation. Herein, we compare the processivity of components of the chitinolytic machinery of Serratia marcescens. The two processive chitinases ChiA and ChiB, the ChiB-W97A mutant, and the endochitinase ChiC were analyzed for the extent of degradation of three different chitin substrates. Moreover, enzyme processivity was assessed on the basis of the [(GlcNAc)2]/[GlcNAc] product ratio. The results show that the apparent processivity (Papp) greatly diminishes with the extent of degradation and confirm the hypothesis that Papp is limited by the length of obstacle free path on the substrate.  相似文献   

7.
8.
9.
In nature, recalcitrant polysaccharides such as chitin and cellulose are degraded by glycoside hydrolases (GH) that act synergistically through different modes of action including attack from reducing-end and nonreducing-end (exo-mode) and random (endo-mode) on single polysaccharide chains. Both modes can be combined with a processive mechanism where the GH remain bound to the polysaccharide to perform multiple catalytic steps before dissociation into the solution. In this work, we have determined association rate constants and their activation paramaters for three co-evolved GHs from Serratia marcescens (SmChiA, SmChiB, and SmChiC) with an oligomeric substrate. Interestingly, we observe a positive correlation between the association rate constants and processive ability for the GHs. Previously, a positive correlation has been observed between substrate binding affinity and processive ability. SmChiA with highest processive ability of the three GHs bind with a kon of 11.5 ± 0.2 μM−1s−1, which is five-fold and 130-fold faster than SmChiB (less processive) and SmChiC (nonprocessive), respectively.  相似文献   

10.
Degradation of recalcitrant polysaccharides in nature is typically accomplished by mixtures of processive and nonprocessive glycoside hydrolases (GHs), which exhibit synergistic activity wherein nonprocessive enzymes provide new sites for productive attachment of processive enzymes. GH processivity is typically attributed to active site geometry, but previous work has demonstrated that processivity can be tuned by point mutations or removal of single loops. To gain additional insights into the differences between processive and nonprocessive enzymes that give rise to their synergistic activities, this study reports the crystal structure of the catalytic domain of the GH family 18 nonprocessive endochitinase, ChiC, from Serratia marcescens. This completes the structural characterization of the co-evolved chitinolytic enzymes from this bacterium and enables structural analysis of their complementary functions. The ChiC catalytic module reveals a shallow substrate-binding cleft that lacks aromatic residues vital for processivity, a calcium-binding site not previously seen in GH18 chitinases, and, importantly, a displaced catalytic acid (Glu-141), suggesting flexibility in the catalytic center. Molecular dynamics simulations of two processive chitinases (ChiA and ChiB), the ChiC catalytic module, and an endochitinase from Lactococcus lactis show that the nonprocessive enzymes have more flexible catalytic machineries and that their bound ligands are more solvated and flexible. These three features, which relate to the more dynamic on-off ligand binding processes associated with nonprocessive action, correlate to experimentally measured differences in processivity of the S. marcescens chitinases. These newly defined hallmarks thus appear to be key dynamic metrics in determining processivity in GH enzymes complementing structural insights.  相似文献   

11.
We have previously reported a non-processive endo-type chitinase, ChiA, from a newly isolated marine psychrophilic bacterium, Pseudoalteromonas sp. DL-6. In this study, a processive exo-type chitinase, ChiC, was cloned from the same bacterium and characterized in detail. ChiC could hydrolyze crystalline chitin into (GlcNAc)2 as the only observed product. It exhibited high catalytic activity even at low temperatures, e.g. close to 0 °C, or in the presence of 5 M NaCl, suggesting that ChiC was a cold-adapted and highly salt-tolerant chitinase. ChiC could also hydrolyze other substrates, including chitosan and Avicel, indicating its broad substrate specificity. Sequence features indicated that ChiC was a multi-domain protein having a deep substrate-binding groove that was regarded as characteristic of processive exo-chitinases. Enzymatic hydrolysis of chitin by ChiC could be remarkably boosted in the presence of ChiA, suggesting the synergy of ChiC and ChiA. This work provided a new evidence to prove that marine psychrophilic bacteria utilized a synergistic enzyme system to degrade recalcitrant chitin.  相似文献   

12.
An alkaliphilic actinomycete, Nocardiopsis prasina OPC-131, secretes chitinases, ChiA, ChiB, and ChiB Delta, in the presence of chitin. The genes encoding ChiA and ChiB were cloned and sequenced. The open reading frame (ORF) of chiA encoded a protein of 336 amino acids with a calculated molecular mass of 35,257 Da. ChiA consisted of only a catalytic domain and showed a significant homology with family 18 chitinases. The chiB ORF encoded a protein of 296 amino acids with a calculated molecular mass of 31,500 Da. ChiB is a modular enzyme consisting of a chitin-binding domain type 3 (ChtBD type 3) and a catalytic domain. The catalytic domain of ChiB showed significant similarity to Streptomyces family 19 chitinases. ChiB Delta was the truncated form of ChiB lacking ChtBD type 3. Expression plasmids coding for ChiA, ChiB, and ChiB Delta were constructed to investigate the biochemical properties of these recombinant proteins. These enzymes showed pHs and temperature optima similar to those of native enzymes. ChiB showed more efficient hydrolysis of chitin and stronger antifungal activity than ChiB Delta, indicating that the ChtBD type 3 of ChiB plays an important role in the efficient hydrolysis of chitin and in antifungal activity. Furthermore, the finding of family 19 chitinase in N. prasina OPC-131 suggests that family 19 chitinases are distributed widely in actinomycetes other than the genus Streptomyces.  相似文献   

13.
Alteromonas sp. strain O-7 secretes chitinase A (ChiA), chitinase B (ChiB), and chitinase C (ChiC) in the presence of chitin. A gene cluster involved in the chitinolytic system of the strain was cloned and sequenced upstream of and including the chiA gene. The gene cluster consisted of three different open reading frames organized in the order chiD, cbp1, and chiA. The chiD, cbp1, and chiA genes were closely linked and transcribed in the same direction. Sequence analysis indicated that Cbp1 (475 amino acids) was a chitin-binding protein composed of two discrete functional regions. ChiD (1,037 amino acids) showed sequence similarity to bacterial chitinases classified into family 18 of glycosyl hydrolases. The cbp1 and chiD genes were expressed in Escherichia coli, and the recombinant proteins were purified to homogeneity. The highest binding activities of Cbp1 and ChiD were observed when alpha-chitin was used as a substrate. Cbp1 and ChiD possessed a chitin-binding domain (ChtBD) belonging to ChtBD type 3. ChiD rapidly hydrolyzed chitin oligosaccharides in sizes from trimers to hexamers, but not chitin. However, after prolonged incubation with large amounts of ChiD, the enzyme produced a small amount of (GlcNAc)(2) from chitin. The optimum temperature and pH of ChiD were 50 degrees C and 7.0, respectively.  相似文献   

14.
Pyrococcus furiosus was found to grow on chitin, adding this polysacharide to the inventory of carbohydrates utilized by this hyperthermophilic archaeon. Accordingly, two open reading frames (chiA [Pf1234] and chiB [Pf1233]) were identified in the genome of P. furiosus, which encodes chitinases with sequence similarity to proteins from the glycosyl hydrolase family 18 in less-thermophilic organisms. Both enzymes contain multiple domains that consist of at least one binding domain and one catalytic domain. ChiA (ca. 39 kDa) contains a putative signal peptide, as well as a binding domain (ChiA(BD)), that is related to binding domains associated with several previously studied bacterial chitinases. chiB, separated by 37 nucleotides from chiA and in the same orientation, encodes a polypeptide with two different proline-threonine-rich linker regions (6 and 3 kDa) flanking a chitin-binding domain (ChiB(BD) [11 kDa]), followed by a catalytic domain (ChiB(cat) [35 kDa]). No apparent signal peptide is encoded within chiB. The two chitinases share little sequence homology to each other, except in the catalytic region, where both have the catalytic glutamic acid residue that is conserved in all family 18 bacterial chitinases. The genes encoding ChiA, without its signal peptide, and ChiB were cloned and expressed in Escherichia coli. ChiA exhibited no detectable activity toward chitooligomers smaller than chitotetraose, indicating that the enzyme is an endochitinase. Kinetic studies showed that ChiB followed Michaelis-Menten kinetics toward chitotriose, although substrate inhibition was observed for larger chitooligomers. Hydrolysis patterns on chitooligosaccharides indicated that ChiB is a chitobiosidase, processively cleaving off chitobiose from the nonreducing end of chitin or other chitooligomers. Synergistic activity was noted for the two chitinases on colloidal chitin, indicating that these two enzymes work together to recruit chitin-based substrates for P. furiosus growth. This was supported by the observed growth on chitin as the sole carbohydrate source in sulfur-free media.  相似文献   

15.
Four extracellular proteins with chitinase activity capable of binding chitin substrates have been revealed in the culture liquid of chitinase superproducing mutant strain M-1 of Serratia marcescens. Proteins were analyzed by SDS-PAGE and MALDI-TOF mass spectrometry. Based on the data obtained, the proteins were identified as typical chitinases of S. marcescens: ChiA, ChiB, ChiC, and CBP21.  相似文献   

16.
The marine bacterium Microbulbifer degradans strain 2-40 produces at least 10 enzyme systems for degrading insoluble complex polysaccharides (ICP). The draft sequence of the 2-40 genome allowed a genome-wide analysis of the chitinolytic system of strain 2-40. The chitinolytic system includes three secreted chitin depolymerases (ChiA, ChiB, and ChiC), a secreted chitin-binding protein (CbpA), periplasmic chitooligosaccharide-modifying enzymes, putative sugar transporters, and a cluster of genes encoding cytoplasmic proteins involved in N-acetyl-D-glucosamine (GlcNAc) metabolism. Each chitin depolymerase was detected in culture supernatants of chitin-grown strain 2-40 and was active against chitin and glycol chitin. The chitin depolymerases also had a specific pattern of activity toward the chitin analogs 4-methylumbelliferyl-beta-D-N,N'-diacetylchitobioside (MUF-diNAG) and 4-methylumbelliferyl-beta-D-N,N',N"-triacetylchitotrioside (MUF-triNAG). The depolymerases were modular in nature and contained glycosyl hydrolase family 18 domains, chitin-binding domains, and polycystic kidney disease domains. ChiA and ChiB each possessed polyserine linkers of up to 32 consecutive serine residues. In addition, ChiB and CbpA contained glutamic acid-rich domains. At 1,271 amino acids, ChiB is the largest bacterial chitinase reported to date. A chitodextrinase (CdxA) with activity against chitooligosaccharides (degree of polymerization of 5 to 7) was identified. The activities of two apparent periplasmic (HexA and HexB) N-acetyl-beta-D-glucosaminidases and one cytoplasmic (HexC) N-acetyl-beta-D-glucosaminidase were demonstrated. Genes involved in GlcNAc metabolism, similar to those of the Escherichia coli K-12 NAG utilization operon, were identified. NagA from strain 2-40, a GlcNAc deacetylase, was shown to complement a nagA mutation in E. coli K-12. Except for the GlcNAc utilization cluster, genes for all other components of the chitinolytic system were dispersed throughout the genome. Further examination of this system may provide additional insight into the mechanisms by which marine bacteria degrade chitin and provide a basis for future research on the ICP-degrading systems of strain 2-40.  相似文献   

17.
An alkaliphilic actinomycete, Nocardiopsis prasina OPC-131, secretes chitinases, ChiA, ChiB, and ChiBΔ, in the presence of chitin. The genes encoding ChiA and ChiB were cloned and sequenced. The open reading frame (ORF) of chiA encoded a protein of 336 amino acids with a calculated molecular mass of 35,257 Da. ChiA consisted of only a catalytic domain and showed a significant homology with family 18 chitinases. The chiB ORF encoded a protein of 296 amino acids with a calculated molecular mass of 31,500 Da. ChiB is a modular enzyme consisting of a chitin-binding domain type 3 (ChtBD type 3) and a catalytic domain. The catalytic domain of ChiB showed significant similarity to Streptomyces family 19 chitinases. ChiBΔ was the truncated form of ChiB lacking ChtBD type 3. Expression plasmids coding for ChiA, ChiB, and ChiBΔ were constructed to investigate the biochemical properties of these recombinant proteins. These enzymes showed pHs and temperature optima similar to those of native enzymes. ChiB showed more efficient hydrolysis of chitin and stronger antifungal activity than ChiBΔ, indicating that the ChtBD type 3 of ChiB plays an important role in the efficient hydrolysis of chitin and in antifungal activity. Furthermore, the finding of family 19 chitinase in N. prasina OPC-131 suggests that family 19 chitinases are distributed widely in actinomycetes other than the genus Streptomyces.  相似文献   

18.
Pyrococcus furiosus was found to grow on chitin, adding this polysacharide to the inventory of carbohydrates utilized by this hyperthermophilic archaeon. Accordingly, two open reading frames (chiA [Pf1234] and chiB [Pf1233]) were identified in the genome of P. furiosus, which encodes chitinases with sequence similarity to proteins from the glycosyl hydrolase family 18 in less-thermophilic organisms. Both enzymes contain multiple domains that consist of at least one binding domain and one catalytic domain. ChiA (ca. 39 kDa) contains a putative signal peptide, as well as a binding domain (ChiABD), that is related to binding domains associated with several previously studied bacterial chitinases. chiB, separated by 37 nucleotides from chiA and in the same orientation, encodes a polypeptide with two different proline-threonine-rich linker regions (6 and 3 kDa) flanking a chitin-binding domain (ChiBBD [11 kDa]), followed by a catalytic domain (ChiBcat [35 kDa]). No apparent signal peptide is encoded within chiB. The two chitinases share little sequence homology to each other, except in the catalytic region, where both have the catalytic glutamic acid residue that is conserved in all family 18 bacterial chitinases. The genes encoding ChiA, without its signal peptide, and ChiB were cloned and expressed in Escherichia coli. ChiA exhibited no detectable activity toward chitooligomers smaller than chitotetraose, indicating that the enzyme is an endochitinase. Kinetic studies showed that ChiB followed Michaelis-Menten kinetics toward chitotriose, although substrate inhibition was observed for larger chitooligomers. Hydrolysis patterns on chitooligosaccharides indicated that ChiB is a chitobiosidase, processively cleaving off chitobiose from the nonreducing end of chitin or other chitooligomers. Synergistic activity was noted for the two chitinases on colloidal chitin, indicating that these two enzymes work together to recruit chitin-based substrates for P. furiosus growth. This was supported by the observed growth on chitin as the sole carbohydrate source in sulfur-free media.  相似文献   

19.
Family 18 chitinases such as chitinase B (ChiB) from Serratia marcescens catalyze glycoside hydrolysis via a mechanism involving the N-acetyl group of the sugar bound to the -1 subsite. We have studied the degradation of the soluble heteropolymer chitosan, to obtain further insight into catalysis in ChiB and to experimentally assess the proposed processive action of this enzyme. Degradation of chitosans with varying degrees of acetylation was monitored by following the size-distribution of oligomers, and oligomers were isolated and partly sequenced using (1)H-NMR spectroscopy. Degradation of a chitosan with 65% acetylated units showed that ChiB is an exo-enzyme which degrades the polymer chains from their nonreducing ends. The degradation showed biphasic kinetics: the faster phase is dominated by cleavage on the reducing side of two acetylated units (occupying subsites -2 and -1), while the slower kinetic phase reflects cleavage on the reducing side of a deacetylated and an acetylated unit (bound to subsites -2 and -1, respectively). The enzyme did not show preferences with respect to acetylation of the sugar bound in the +1 subsite. Thus, the preference for an acetylated unit is absolute in the -1 subsite, whereas substrate specificity is less stringent in the -2 and +1 subsites. Consequently, even chitosans with low degrees of acetylation could be degraded by ChiB, permitting the production of mixtures of oligosaccharides with different size distributions and chemical composition. Initially, the degradation of the 65% acetylated chitosan almost exclusively yielded oligomers with even-numbered chain lengths. This provides experimental evidence for a processive mode of action, moving the sugar chain two residues at a time. The results show that nonproductive binding events are not necessarily followed by substrate release but rather by consecutive relocations of the sugar chain.  相似文献   

20.
Chitinase C from Streptomyces griseus HUT6037 was discovered as the first bacterial chitinase in family 19 other than chitinases found in higher plants. Chitinase C comprises two domains: a chitin-binding domain (ChBD(ChiC)) for attachment to chitin and a chitin-catalytic domain for digesting chitin. The structure of ChBD(ChiC) was determined by means of 13C-, 15N-, and 1H-resonance nuclear magnetic resonance (NMR) spectroscopy. The conformation of its backbone comprised two beta-sheets composed of two and three antiparallel beta-strands, respectively, this being very similar to the backbone conformations of the cellulose-binding domain of endoglucanase Z from Erwinia chrysanthemi (CBD(EGZ)) and the chitin-binding domain of chitinase A1 from Bacillus circulans WL-12 (ChBD(ChiA1)). The interaction between ChBD(ChiC) and hexa-N-acetyl-chitohexaose was monitored through chemical shift perturbations, which showed that ChBD(ChiC) interacted with the substrate through two aromatic rings exposed to the solvent as CBD(EGZ) interacts with cellulose through three characteristic aromatic rings. Comparison of the conformations of ChBD(ChiA1), ChBD(ChiC), and other typical chitin- and cellulose-binding domains, which have three solvent-exposed aromatic residues responsible for binding to polysaccharides, has suggested that they have adopted versatile binding site conformations depending on the substrates, with almost the same backbone conformations being retained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号