首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The primary component of amyloid plaque in the brains of Alzheimer's patients is the 42 residue amyloid-beta-peptide (Abeta42). Although the amino acid residue sequence of Abeta42 is known, the molecular determinants of Abeta amyloidogenesis have not been elucidated. To facilitate an unbiased search for the sequence determinants of Abeta aggregation, we developed a genetic screen that couples a readily observable phenotype in E. coli to the ability of a mutation in Abeta42 to reduce aggregation. The screen is based on our finding that fusions of the wild-type Abeta42 sequence to green fluorescent protein (GFP) form insoluble aggregates in which GFP is inactive. Cells expressing such fusions do not fluoresce. To isolate variants of Abeta42 with reduced tendencies to aggregate, we constructed and screened libraries of Abeta42-GFP fusions in which the sequence of Abeta42 was mutated randomly. Cells expressing GFP fusions to soluble (non-aggregating) variants of Abeta42 exhibit green fluorescence. Implementation of this screen enabled the isolation of 36 variants of Abeta42 with reduced tendencies to aggregate. The sequences of most of these variants are consistent with previous models implicating hydrophobic regions as determinants of Abeta42 aggregation. Some of the variants, however, contain amino acid substitutions not implicated in pre-existing models of Abeta amyloidogenesis.  相似文献   

2.
Amyloid Abeta1-42 peptide (Abeta1-42) and its isomers with an isoaspartyl residue at position 7 or 23 [Abeta1-42(isoAsp7) and Abeta1-42(isoAsp23)] were synthesized in high purity by the Fmoc-solid phase technique, followed by HPLC on a silica-based reversed-phase column under the basic conditions. Importantly, Abeta1-42(isoAsp23) aggregated more strongly than native Abeta1-42 and showed significant neurotoxicity, while the aggregation ability and neurotoxicity of Abeta1-42(isoAsp7) was weak. This suggests that the isomerization of the aspartyl residues plays an important role in fibril formation in Alzheimer's disease.  相似文献   

3.
Insoluble Aβ1–42 is the main component of the amyloid plaque. We have previously demonstrated that exposure to low pH can confer the molten globule state on soluble Aβ1–42 in vitro [Biochem. J. 361 (2000) 547] and unfolding experiments with guadinine hydrochloride (GdnHCl) have now confirmed this observation. The molten globule state of the protein has many biological properties and understanding the mechanisms of its formation is an important step in devising a therapeutic strategy for Alzheimer's disease (AD). We therefore investigated the ability of a series of synthetic eight-residue peptides derived from Aβ1–42 to inhibit the acid-induced aggregation of Aβ1–42 and identified the potent peptides to be Aβ15–22, Aβ16–23 and Aβ17–24. A1-antichymotrypsin, a member of the serine proteinase inhibitor (serpin) family is another major component of the amyloid plaque. In the present study, we investigated the proteolytic activity of Aβ1–42 against casein at different pHs. Chemical modification of amino acid residues in Aβ1–42 indicated that serine and histidine residues, but not aspartic acid, are necessary for enzymatic activity, suggesting that it is a serine proteinase. Amino acid substitution studies indicate that glutamic acids at positions 11 and 22 participate indirectly in proteolysis and we surmise that amino acid residues 29–42 are required to stabilize the conformer. A study of metal ions suggested that Cu2+ affected the enzymatic activity, but Zn2+ and Fe2+ did not. Interestingly, Aβ14–21 and Aβ15–22 were the only peptides that inhibited the proteolytic activity of Aβ42. Therefore, Aβ15–22 may control both aggregation of Aβ1–42 at acidic pH and its proteolytic activity at neutral pH. Consequently, we suggest that it may be of use in the therapy of Alzheimer's disease.  相似文献   

4.
The amyloid beta peptide (Abeta), composed of 40 or 42 amino acids, is a critical component in the etiology of the neurodegenerative Alzheimer disease. Abeta is prone to aggregate and forms amyloid fibrils progressively both in vitro and in vivo. To understand the process of amyloidogenesis, it is pivotal to examine the initial stages of the folding process. We examined the equilibrium folding properties, assembly states, and stabilities of the early folding stages of Abeta40 and Abeta42 prior to fibril formation. We found that Abeta40 and Abeta42 have different conformations and assembly states upon refolding from their unfolded ensembles. Abeta40 is predominantly an unstable and collapsed monomeric species, whereas Abeta42 populates a stable structured trimeric or tetrameric species at concentrations above approximately 12.5 microm. Thermodynamic analysis showed that the free energies of Abeta40 monomer and Abeta42 trimer/tetramer are approximately 1.1 and approximately 15/ approximately 22 kcal/mol, respectively. The early aggregation stages of Abeta40 and Abeta42 contain different solvent-exposed hydrophobic surfaces that are located at the sequences flanking its protease-resistant segment. The amyloidogenic folded structure of Abeta is important for the formation of spherical beta oligomeric species. However, beta oligomers are not an obligatory intermediate in the process of fibril formation because oligomerization is inhibited at concentrations of urea that have no effect on fibril formation. The distinct initial folding properties of Abeta40 and Abeta42 may play an important role in the higher aggregation potential and pathological significance of Abeta42.  相似文献   

5.
Aggregation of the amyloid-beta-42 (Abeta42) peptide in the brain parenchyma is a pathological hallmark of Alzheimer's disease (AD), and the prevention of Abeta aggregation has been proposed as a therapeutic intervention in AD. However, recent reports indicate that Abeta can form several different prefibrillar and fibrillar aggregates and that each aggregate may confer different pathogenic effects, suggesting that manipulation of Abeta42 aggregation may not only quantitatively but also qualitatively modify brain pathology. Here, we compare the pathogenicity of human Abeta42 mutants with differing tendencies to aggregate. We examined the aggregation-prone, EOFAD-related Arctic mutation (Abeta42Arc) and an artificial mutation (Abeta42art) that is known to suppress aggregation and toxicity of Abeta42 in vitro. In the Drosophila brain, Abeta42Arc formed more oligomers and deposits than did wild type Abeta42, while Abeta42art formed fewer oligomers and deposits. The severity of locomotor dysfunction and premature death positively correlated with the aggregation tendencies of Abeta peptides. Surprisingly, however, Abeta42art caused earlier onset of memory defects than Abeta42. More remarkably, each Abeta induced qualitatively different pathologies. Abeta42Arc caused greater neuron loss than did Abeta42, while Abeta42art flies showed the strongest neurite degeneration. This pattern of degeneration coincides with the distribution of Thioflavin S-stained Abeta aggregates: Abeta42Arc formed large deposits in the cell body, Abeta42art accumulated preferentially in the neurites, while Abeta42 accumulated in both locations. Our results demonstrate that manipulation of the aggregation propensity of Abeta42 does not simply change the level of toxicity, but can also result in qualitative shifts in the pathology induced in vivo.  相似文献   

6.
Clearance of Alzheimer's Abeta peptide: the many roads to perdition   总被引:17,自引:0,他引:17  
Tanzi RE  Moir RD  Wagner SL 《Neuron》2004,43(5):605-608
The amyloid hypothesis of Alzheimer's disease (AD) maintains that the accumulation of the amyloid beta protein (Abeta) is a critical event in disease pathogenesis. A great deal of both academic and commercial research has focused on the mechanisms by which Abeta is generated. However, investigations into the mechanisms underlying Abeta clearance have blossomed over the last several years. This minireview will summarize pathways involved in the removal of cerebral Abeta, including enzymatic degradation and receptor-mediated efflux out of the brain.  相似文献   

7.
Zameer A  Schulz P  Wang MS  Sierks MR 《Biochemistry》2006,45(38):11532-11539
Alzheimer's disease (AD) is characterized by the deposition of amyloid-beta (Abeta) protein in the brain. Immunization studies have demonstrated that anti-Abeta antibodies reduce Abeta deposition and improve clinical symptoms seen in AD. However, conventional antibody-based therapies risk an inflammatory response that can result in meningoencephalitis and cerebral hemorrhage. Here we report on the development of human-based single chain variable domain antibody fragments (scFvs) directed against the Abeta 25-35 region as potential therapeutics for AD that do not risk an inflammatory response. The 25-35 region of Abeta represents a promising therapeutic target since it promotes aggregation and is highly toxic. Two scFvs with differing affinities for Abeta were studied, and both inhibited aggregation of Abeta42 as determined by thioflavin T binding assay and atomic force microscopy analysis and blocked Abeta-induced toxicity toward human neuroblastoma SH-SY5Y cells as determined by MTT and LDH release assays. These results provide additional evidence that scFvs against Abeta provide an attractive alternative to more conventional antibody-based therapeutics for controlling aggregation and toxicity of Abeta.  相似文献   

8.
The amyloid A4 or beta peptide is a major component of extracellular amyloid deposits that are a characteristic feature of Alzheimer's disease. We synthesized a series of peptide analogs of the A4/beta peptide which are progressively longer at their carboxyl termini, including 42- and 39-residue peptides which represent the major forms of the A4/beta peptide in senile plaque and the hereditary cerebral hemorrhage with amyloidosis form, respectively. All peptides tested, beta 1-28 through beta 1-42, formed amyloid-like fibrils and previously unreported thin sheet-like structures which stained with thioflavin T and Congo Red. The solubility of beta 1-42 and shorter peptides was pH and concentration dependent, with a broad insolubility profile in the pH range of 3.5-6.5 and at concentrations above 0.75 mg/ml. Only peptides of 42 residues or longer were significantly insoluble at pH 7.4. beta 1-47 and beta 1-52 peptides are highly insoluble in aqueous media but are soluble at 40 mg/ml in the alpha helix-promoting solvent, 1,1,1,3,3,3-hexafluoro-2-propanol. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the beta 1-42 peptide migrates as a series of higher molecular mass aggregates whereas shorter peptides migrate as monomers. Aggregation is also dependent on pH, peptide concentration, and time of incubation in aqueous medium. These results indicate that the length of the hydrophobic carboxyl terminus of the A4/beta peptide is important in determining the solubility and aggregation properties of the A4/beta peptide and that acid pH environment, high peptide concentration, and long incubation time would be predicted to be important factors in promoting amyloid deposition.  相似文献   

9.
To study the folding/unfolding properties of a beta-amyloid peptide Abeta(12-36) of Alzheimer's disease, five molecular dynamics simulations of Abeta(12-36) in explicit water were done at 450 K starting from a structure that is stable in trifluoroethanol/water at room temperature with two alpha-helices. Due to high temperature, the initial helical structure unfolded during the simulation. The observed aspects of the unfolding were as follows. 1) One helix (helix 1) had a longer life than the other (helix 2), which correlates well with the theoretically computed Phi values. 2) Temporal prolongation of helix 1 was found before unfolding. 3) Hydrophobic cores formed frequently with rearrangement of amino-acid residues in the hydrophobic cores. The formation and rearrangement of the hydrophobic cores may be a general aspect of this peptide in the unfolded state, and the structural changes accompanied by the hydrophobic-core rearrangement may lead the peptide to the most stable structure. 4) Concerted motions (collective modes) appeared to unfold helix 1. The collective modes were similar with those observed in another simulation at 300 K. The analysis implies that the conformation moves according to the collective modes when the peptide is in the initial stage of protein unfolding and in the final stage of protein folding.  相似文献   

10.
The fluorescent amino terminal fragments of emerimicin, dansyl-Phe-Aib-Aib-OMe, dansyl-Phe-Aib-Aib-Aib-Val-OMe and dansyl-Phe-Aib-Aib-Aib-Val-Gly-Leu-Aib-Aib-OMe and the corresponding peptide acids have been synthesised. The nonapeptide ester aggregates at concentrations greater than 8 μM whereas the tri and pentapeptide esters do not. The peptide acids also do not aggregate. The esters bind to lipid dispersions with the largest changes in fluorescence observed for the nonapeptide, whereas the acids interact very weakly. The acids show changes in fluorescence in the presence of bovine serum albumin, in contrast to the esters with the shorter peptides showing larger effects.  相似文献   

11.
We report a novel observation that the neurotoxic Alzheimer peptide Abeta1-42, when pre-incubated, causes a dramatic and lasting membrane depolarization in differentiated human hNT neuronal cells and in rodent PC12 cells in a concentration-dependent manner. This phenomenon involves activation of the metabotropic glutamate receptor, mGluR(1). Abeta-induced membrane depolarization in PC12 cells is sensitive to mGluR(1) antagonists and to pertussis and cholera toxins, indicating the involvement of particular G-proteins. The effect is different from the known ability of aggregated Abeta1-42 to cause a calcium influx. Since mGluR(1) agonists mimic the Abeta effect, we deduce that in this cell system glutamate can control the membrane potential and thereby the excitability of its target neurons. We propose that Abeta-induced membrane depolarization described here leads in Alzheimer's disease to hyperexcitability of affected neurons and is a crucially important molecular mechanism for beta-amyloid toxicity and cognitive dysfunction in the disease.  相似文献   

12.
We studied the plasma beta carotene concentrations in 40 Alzheimer's disease patients and the association with cerebrospinal fluid beta-amyloid 1-40, (Abeta40), cerebrospinal fluid beta-amyloid 1-42 (Abeta42) and cerebrospinal fluid total Tau. We found that patients with plasma beta carotene levels below the 25th percentile had 55% reduced ratios of Abeta40/Tau and 51% reduced ratios of Abeta 40/Abeta 42 compared with patients in the highest quartile. Mean Tau concentrations in the lowest quartile of plasma beta-carotene levels were 74% higher compared with the highest quartile of plasma beta-carotene levels. Thus, we could demonstrate an statistically significant association between beta carotene levels in plasma and neurochemical markers in the cerebrospinal fluid of Alzheimer's disease patients.  相似文献   

13.
Amyloid peptides (Abeta) play a central role in the pathogenesis of Alzheimer's disease (AD). The aggregation of Abeta molecules leads to fibril and plaque formation. Fibrillogenesis is at the same time a marker and an indirect cause of AD. Inhibition of the aggregation of Abeta could be a realistic therapy for the illness. Beta sheet breakers (BSBs) are one type of fibrillogenesis inhibitors. The first BSB peptides were designed by Tjernberg et al. (1996) and Soto et al. (1998). These pentapeptides have proved their efficiency in vitro and in vivo. In the present study, the effects of two pentapeptide amides are reported. These compounds were designed by using the C-terminal sequence of the amyloid peptide as a template. Biological assays were applied to demonstrate efficiency. Modes of action were studied by FT-IR spectroscopy and molecular modeling methods.  相似文献   

14.
A previously unrecognized large pool of Abeta was discovered in freshly drawn plasma of patients diagnosed with Alzheimer's disease (AD) and non-demented control subjects. This Abeta pool was revealed after acid denaturation and chromatographic separation of plasma proteins followed by Abeta quantitation in the 4.5 kDa fractions by europium immunoassay. The mean values of Abeta42 in the AD and control individuals amounted to 236 ng/ml and 38 ng/ml, respectively. These Abeta values are on the average far higher than previously measured. Surprisingly, the circulating Abeta42 is about 16 times more abundant than Abeta40 in the AD population. Addition of Abeta to freshly drawn plasma demonstrated the rapid disappearance of Abeta epitopes, as detected by immunochemical techniques, suggesting either proteolytic degradation or Abeta sequestration. Incubation of Abeta with purified plasma proteins and lipoproteins rapidly decreases detectable levels of free Abeta suggesting epitope masking as the likely mechanism. The free and protein-bound Abetab in the circulation may represent a potential source for deposition in the cerebrovasculature and brain parenchyma of AD.  相似文献   

15.
Aggregation of the amyloid β (Aβ) peptide plays a key role in the molecular etiology of Alzheimer’s disease. Despite the importance of this process, the relationship between the sequence of Aβ and the propensity of the peptide to aggregate has not been fully elucidated. The sequence determinants of aggregation can be revealed by probing the ability of amino acid substitutions (mutations) to increase or decrease aggregation. Numerous mutations that decrease aggregation have been isolated by laboratory-based studies. In contrast, very few mutations that increase aggregation have been reported, and most of these were isolated from rare individuals with early-onset familial Alzheimer’s disease. To augment the limited data set of clinically derived mutations, we developed an artificial genetic screen to isolate novel mutations that increase aggregation propensity. The screen relies on the expression of Aβ-green fluorescent protein fusion in Escherichia coli. In this fusion, the ability of the green fluorescent protein reporter to fold and fluoresce is inversely correlated with the aggregation propensity of the Aβ sequence. Implementation of this screen enabled the isolation of 20 mutant versions of Aβ with amino acid substitutions at 17 positions in the 42-residue sequence of Aβ. Biophysical studies of synthetic peptides corresponding to sequences isolated by the screen confirm the increased aggregation propensity and amyloidogenic behavior of the mutants. The mutations were isolated using an unbiased screen that makes no assumptions about the sequence determinants of aggregation. Nonetheless, all 16 of the most aggregating mutants contain substitutions that reduce charge and/or increase hydrophobicity. These findings provide compelling evidence supporting the hypothesis that sequence hydrophobicity is a major determinant of Aβ aggregation.  相似文献   

16.
An efficient 'O-acyl isopeptide method' for the synthesis of difficult sequence-containing peptides was applied successfully to the synthesis of amyloid beta peptide (Abeta) 1-42 via a water-soluble O-acyl isopeptide of Abeta1-42, i.e. '26-O-acyl isoAbeta1-42' (6). This paper describes the detailed synthesis of Abeta1-42 focusing on the importance of resin selection and the analysis of side reactions in the O-acyl isopeptide method. Protected '26-O-acyl isoAbeta1-42' peptide resin was synthesized using 2-chlorotrityl chloride resin with minimum side reactions in comparison with other resins and deprotected crude 26-O-acyl isoAbeta1-42 was easily purified by HPLC due to its relatively good purity and narrow elution with reasonable water solubility. This suggests that only one insertion of the isopeptide structure into the sequence of the 42-residue peptide can suppress the unfavourable nature of its difficult sequence. The migration of O-acyl isopeptide to intact Abeta1-42 under physiological conditions (pH 7.4) via O--N intramolecular acyl migration reaction was very rapid and no other by-product formation was observed while 6 was stable under storage conditions. These results concluded that our strategy not only overcomes the solubility problem in the synthesis of Abeta1-42 and can provide intact Abeta1-42 efficiently, but is also applicable in the synthesis of large difficult sequence-containing peptides at least up to 50 amino acids. This synthesis method would provide a biological evaluation system in Alzheimer's disease research, in which 26-O-acyl isoAbeta1-42 can be stored in a solubilized form before use and then rapidly produces intact Abeta1-42 in situ during biological experiments.  相似文献   

17.
The deposition of beta-amyloid peptide (Abeta) fibrils around neurons is an invariable feature of Alzheimer's disease and there is increasing evidence that fibrillar deposits and/or prefibrillar intermediates play a central role in the observed neurodegeneration. One site of Abeta generation is the endosomes, and we have investigated the kinetics of Abeta association at endosomal pH over physiologically relevant time frames. We have identified three distinct Abeta association phases that occur at rates comparable to endosomal transit times. Rapid formation of burst phase aggregates, larger than 200nm, was observed within 15 seconds. Two slower association phases were detected by fluorescence resonance energy transfer and termed phase 1 and phase 2 aggregation reactions. At 20 microM Abeta, pH 6, the half lives of the phase 1 and phase 2 aggregation phases were 3.15 minutes and 17.66 minutes, respectively. Atomic force microscopy and dynamic light scattering studies indicate that the burst phase aggregate is large and amorphous, while phase 1 and 2 aggregates are spherical with hydrodynamic radii around 30 nm. There is an apparent equilibrium, potentially mediated through a soluble Abeta intermediate, between the large burst phase aggregates and phase 1 and 2 spherical particles. The large burst phase aggregates form quickly, however, they disappear as the equilibrium shifts toward the spherical aggregates. These aggregated species do not contain alpha-helical or beta-structure as determined by circular dichroism spectroscopy. However, after two weeks beta-structure is observed and is attributable to the insoluble portion of the sample. After two months, mature amyloid fibrils appear and the spherical aggregates are significantly diminished.  相似文献   

18.
It has long been assumed that the C-terminal motif, NPXY, is the internalization signal for beta-amyloid precursor protein (APP) and that the NPXY tyrosine (Tyr743 by APP751 numbering, Tyr682 in APP695) is required for APP endocytosis. To evaluate this tenet and to identify the specific amino acids subserving APP endocytosis, we mutated all tyrosines in the APP cytoplasmic domain and amino acids within the sequence GYENPTY (amino acids 737-743). Stable cell lines expressing these mutations were assessed for APP endocytosis, secretion, and turnover. Normal APP endocytosis was observed for cells expressing Y709A, G737A, and Y743A mutations. However, Y738A, N740A, and P741A or the double mutation of Y738A/P741A significantly impaired APP internalization to a level similar to that observed for cells lacking nearly the entire APP cytoplasmic domain (DeltaC), arguing that the dominant signal for APP endocytosis is the tetrapeptide YENP. Although not an APP internalization signal, Tyr743 regulates rapid APP turnover because half-life increased by 50% with the Y743A mutation alone. Secretion of the APP-derived proteolytic fragment, Abeta, was tightly correlated with APP internalization, such that Abeta secretion was unchanged for cells having normal APP endocytosis but significantly decreased for endocytosis-deficient cell lines. Remarkably, secretion of the Abeta42 isoform was also reduced in parallel with endocytosis from internalization-deficient cell lines, suggesting an important role for APP endocytosis in the secretion of this highly pathogenic Abeta species.  相似文献   

19.
By altering key amino acid residues of the Alzheimer's disease-associated amyloid-beta peptide, we investigated the mechanism through which amyloid-beta inhibits cytochrome c oxidase (EC 1.9.3.1). Native amyloid-beta inhibited cytochrome oxidase by up to 65%, and the level of inhibition was determined by the period of amyloid-beta ageing before the cytochrome oxidase assay. Substituting tyrosine-10 with alanine did not affect maximal enzyme inhibition, but the altered peptide required a longer period of ageing. By contrast, oxidizing the sulfur of methionine-35 to a sulfoxide, or substituting methionine-35 with valine, completely abrogated the peptide's inhibitory potential towards cytochrome oxidase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that the loss of inhibitory potential towards cytochrome oxidase with the methionine-35-altered peptides did not correlate with a substantially different distribution of amyloid-beta oligomeric species. Although the amyloid-beta-mediated inhibition of cytochrome oxidase was completely dependent on the presence of divalent Cu2+, it was not supported by monovalent Cu+, and experiments with catalase and H2O2 indicated that the mechanism of cytochrome oxidase inhibition does not involve amyloid-beta-mediated H2O2 production. We propose that amyloid-beta-mediated inhibition of cytochrome oxidase is dependent on the peptide's capacity to bind, then reduce Cu2+, and that it may involve the formation of a redox active amyloid-beta-methionine radical.  相似文献   

20.
Abeta is the core protein of extracellular plaque of Alzheimer's disease, and its neurotoxicity is relative to its conformation. In the current work, the effects of various factors, such as pH, ionic strength and lipid membranes, on the secondary structure of Abeta were studied by circular dichroism. In addition, we detected the exposure of hydrophobic sites of Abeta under different conditions using ANS fluorescence. The results showed that the hydrophobic exposure of the protein was correlated with the content of 3betasheet conformation in the phospholipid-containing environment. The beta-sheet content and hydrophobic exposure of Abeta both increased when reacted with pure PC vesicles, while no beta-sheet content and very low hydrophobic exposure were detected after reaction with 30% cholesterol containing PC vesicles. Since beta-sheet conformation is considered as the toxic conformation of Afbeta such correlation may be important for the pathology of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号