首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The main aim of this work is to study the aerobiological behaviour of Poaceae pollen in three areas of central Spain (Aranjuez, Madrid and Toledo), all of which are similar from a geographical, climatic and biogeographical point of view, and they are located nearby one another. The samplings were carried out over a period of 4 years (2005–2008) using Hirst-type spore traps. Grass pollen is responsible for most spring allergic reactions in the pollen-sensitive population in central Spain, and they are very abundant in the atmosphere of this part of Iberian Peninsula. The average amount of this pollen type, as a percentage of the annual total pollen amount, is 7.4% in Aranjuez, 9.2% in Madrid and 11.3% in Toledo. Poaceae pollen is present in the atmosphere over a long period of time (February–October), and its maximum concentrations are detected during May and June (weeks 16–25). The city of Toledo has the highest annual concentrations of grass pollen (average 5,797 grains) with a great number of days exceeding the allergy thresholds proposed by the Spanish Aerobiology Network (REA). Madrid and Aranjuez present similar annual concentrations of grass pollen with values of 2,961 grains and 2,751 grains, respectively. The correlation analysis between the daily levels of grass pollen and meteorological variables of temperature and rainfall show a significant correlation, positive with temperature (maximum, mean and minimum) and negative with rainfall.  相似文献   

2.
Poaceae pollen is one of the most prevalent aeroallergens causing allergenic reactions. The aim of this study was to characterise the grass pollen season in Tetouan during the years 2008–2010, to analyse the effect of some meteorological parameters on the incidence of the airborne Poaceae pollen, and to establish forecasting variables for daily pollen concentrations. Aerobiological sampling was undertaken over three seasons using the volumetric method. The pollen season started in April and showed the highest pollen index in May and June, when the maximum temperature ranged from 23 to 27 °C, respectively. The annual pollen score recorded varied from year to year between 2,588 and 5,404. The main pollen season lasted 114–173 days, with peak days occurring mainly in May; the highest concentration reached 308 pollen grains/m3. Air temperature was the most important meteorological parameter and correlated positively to daily pollen concentration increase. An increase in relative humidity and precipitation was usually related to a decrease in airborne pollen content. External validation of the models performed using data from 2011 showed that Poaceae pollen concentration can be highly predicted (64.2–78.6 %) from the maximum temperature, its mean concentration for the same day in other years, and its concentration recorded on the previous day. Sensitive patients suffering allergy to Poaceae pollen are at moderate to highest risk of manifesting allergic symptoms to grass pollen over 33–42 days. The results obtained provide new information on the quantitative contribution of the Poaceae pollen to the airborne pollen of Tetouan and on its temporal distribution. Airborne pollen can be surveyed and forecast in order to warn the atopic population.  相似文献   

3.
The Poaceae pollen season has been characterized in Tetouan during a 7-year period, and the effect of weather conditions on daily concentrations was examined. The forecast models were produced using a stepwise multiple regression analyses. Firstly, three models were constructed to predict daily Poaceae pollen concentrations during the main pollen season, as well as the pre-peak and post-peak periods with data from 2008 to 2012 and tested on data from 2013 and 2014. Secondly, the regression models using leave-one-out cross-validation were produced with data obtained during 2008–2014 taking into account meteorological parameters and mean pollen concentrations of the same day in other years. The duration of the season ranged from 70 days in 2009 to 158 days in 2012. The highest amount of Poaceae pollen was detected in spring and the first fortnight of July. The annual sum of airborne Poaceae pollen concentrations varied between 2100 and 6251. The peak of anthesis was recorded in May in six of the other years studied. The regression models accounted for 36.3–85.7% of variance in daily Poaceae pollen concentrations. The models fitted best when the mean pollen concentration of the same day in other years was added to meteorological variables, and explained 78.4–85.7% of variance of the daily pollen changes. When the year 2014 was used for validating the models, the lowest root-mean-square errors values were found between the observed and estimated data (around 13). The reasonable predictor variables were the mean pollen concentration of the same day in other years, mean temperature, precipitations, and maximum relative humidity.  相似文献   

4.
In spite of the low atmospheric pollen levels, Artemisia sensitisation and allergy has been reported widely. The aim of the study was to determine the length of pollen season, intradiurnal, daily and monthly pollen variation, and the effect of some meteorological parameters on atmospheric pollen concentrations in Central Croatia. Seven-day Hirst volumetric pollen and spore traps were used for pollen sampling. The Artemisia pollen season lasted from the end of July until the end of September with the highest concentrations in August. The percentage of the total pollen count ranged from 0.52% to 0.92%. The intradiurnal peak occurred between 10 a.m. and 12 a.m. Statistical analysis showed a significant correlations between higher air temperature and high pollen concentration as well as high precipitation and low pollen concentration. Results of this study are expected to help in preventing the symptoms of allergic reaction in individuals with Artemisia pollen hypersensitivity.  相似文献   

5.
Jane Norris-Hill 《Grana》2013,52(5):301-305
Records of Poaceae pollen concentration from three years of sampling in a rural area of West Wales have revealed distinctive circadian patterns of variation. Maximum pollen concentrations are typically recorded between 14.00 and 16.00 hours, on days both above and below an average daily Poaceae pollen count of 50 grains m-3, although later peaks in concentration may be recorded during periods with no precipitation. Variations in the periodicity of Poaceae pollen are analysed in relation to meteorological conditions, phenological patterns of pollen release, pollen source area, and the magnitude of the average daily pollen count. The time of peak pollen concentration in West Wales is generally earlier than in other studies and this is explained by this study being conducted closer to Poaceae pollen source areas than most urban-based studies.  相似文献   

6.
This work analyses the behaviour of Poaceae pollen during a 3-year sampling period (1993–1995) in the city of Santiago de Compostela (Spain). This taxon is shown to be one of the most abundant in the atmosphere, with representation percentages greater than or equal to 20% of total pollen registered during the said period. Its main pollination period is centred on the months of June and July, with slight modifications in the beginning and finalization dates of the years 1993 and 1994 and a significantly earlier beginning in the year 1995. Overall results show that its presence may be considered significant from the end of May to the first days of August. The differences in Poaceae pollen representation are related to variations in temperature, precipitation and hours of sunshine.  相似文献   

7.
This work aims to investigate the presence of airborne grass pollen and to identify antigenic and allergenic profiles from eight different grass species collected in the Porto region (Portugal). Poaceae airborne pollen, sampled using a Hirst-type volumetric trap during 2003–2007, was the second most abundant type, and high concentrations were found from April to August. Pollen proteins extracted from the eight grass species collected were separated by SDS-PAGE, being the allergenic profile investigated by immunoblotting using sera from atopic patients and maize profilin polyclonal antibody (ZmPRO3). Pollen extract profiles showed several bands ranging from 10 to 97 kDa. In immunoblotting studies, a low molecular weight protein (12–13 kDa) was recognized by profilin antibody. Also, in all pollen extracts except Zea mays, the IgE binding proteins of 12–13 kDa were detected in sera from the 25 patients with different sensitization profiles presenting high IgE values (>80 kU/l). This protein can be considered as a potential causal agent of the allergic respiratory diseases.  相似文献   

8.
9.
Pariana, a primitive bamboo, is the only genus in the Gramineae (Poaceae) to have pollen grains without an annulus as part of its single aperture (porate) system. In contrast, the markedly thickened exine layer underlying the pore margin is similar to counterparts in all grass genera. Components of the future annulus in Gramineae pollen develop toward the cytoplasm (proximally) and begin to be pressed outward by an increase in the cytoplasm during the microspore vacuolate stage, culminating in an annulus by maturity. However, in some species of Pariana these components are either not sufficiently developed or the cytoplasmic expansion is not sufficient to press the components into an annular ring around the pore. The structural relationship of exine layering in this type of pollen grain in Gramineae and other families with similar apertures has not hitherto been extensively studied. A critical examination of the apertures in bambusoid grasses may clarify their systematic position within the Gramineae.  相似文献   

10.
11.
The occurrence of pollen grains in the atmosphere markedly relates to meteorological factors. In the study we have evaluated a correlation between the concentration of pollen grains in the atmosphere of Bratislava and temperature, relative humidity and rainfall during the vegetation period of 1995 and 1997. For our analysis we have selected one representative of each phytoallergen group (trees, grasses, weeds). We have chosen the Betula genus of trees, the whole Poaceae family of grasses and ragweed Ambrosia artemisiifolia L. to represent weeds. The taxons mentioned represent the most significant allergens in Slovakia. The concentration of pollen grains has been monitored by a Lanzoni volumetric pollen trap. The data obtained, the average daily concentration in 1 m(3), have been included in the statistical analysis together with values for the average daily temperature, relative humidity and total rainfall in 24 h. The correlation between the concentration of pollen grains in the atmosphere and selected meteorological variables from daily monitoring has been studied with the help of linear regression and correlation coefficients. We have found the average daily temperature and relative humidity (less than temperature) to be significant factors influencing the occurrence of pollen grains in the atmosphere of Bratislava. The total daily rainfall does not seem to be significant from the statistical point of view.  相似文献   

12.
A comparative study is presented of the pollen emissions of Urticaceae, Plantaginaceae and Poaceae, collected during 1995 with Hirst samplers (Burkard or Lanzoni) at five sites in western Spain: two Mediterranean sites located in the south (Huelva and Seville) and three Atlantic sites in the north (Orense, Vigo and Santiago). The annual pollen of Poaceae and Plantaginaceae collected in the Atlantic cities was found to be twice that in the Mediterranean sites, and the total amount of Urticaceae was higher at sites with an urban environment and subject to sea influence (Vigo, Huelva and Seville). At all the sites, the start of the main pollination periods (MPP) took place in the following order: Urticaceae, Plantaginaceae and Poaceae. It was also observed that the MPP of these three pollen types began earlier in Huelva and Seville, where the mean temperatures necessary for the beginning of pollen emissions are recorded very early. Regarding the variation in pollen concentrations throughout the year, Urticaceae presented peaks of maximum concentration in March (Huelva, Seville, Vigo and Orense) and June (Santiago); Plantaginaceae in March (south) and June (north); and Poaceae in May (south) and June–July (north). At northern sites, pollen emissions of Urticaceae and Plantaginaceae continued throughout the summer, while in the south they decreased considerably from May onwards. From the allergenic point of view, the indices of reactivity described for Urticaceae and Poaceae were exceeded more often at northern sites, in particular at Vigo. The meteorological conditions associated with periods of highest pollen emission of these three herbaceous types are a rise in mean temperature, light or absent rainfall, and abundant sunshine. The statistical correlations between pollen emissions and meteorological factors were not well-defined, either for the stations or for all the taxa, although they were clearer for the Atlantic cities and for Urticaceae.  相似文献   

13.
Variation in hybridization rates among contact sites of a species pair provides an opportunity for assessing the importance of individual reproductive isolating mechanisms in limiting gene flow between species and thus promoting speciation. Conspecific pollen advantage is common in angiosperms, but its importance as a reproductive isolating mechanism is uncertain. We compared the strength of conspecific pollen advantage in two Ipomopsis aggregata-I. tenuituba (Polemoniaceae) contact sites that differ in frequency of natural hybrids. We performed hand pollinations of single- and 1:1 mixed-species pollen loads, using donor and recipient plants from both contact sites. Paternity of offspring from mixed-species pollinations was determined using an allozyme marker. Donors from the high frequency hybrid site showed no conspecific pollen advantage; both species sired seeds in proportion to their fraction of the pollen load (0.5). In contrast, I. aggregata from the low frequency hybrid site sired 70-85% of offspring on recipients from both sites. These results suggest that pollen interactions can influence the level of natural hybridization. They also suggest the importance of geographic variation in reproductive isolation, which should be considered in studies of biological invasions and exposure of engineered crops to wild relatives.  相似文献   

14.
The aim of this study was to determine the onset, length and end of the ragweed pollen season, taking into account diurnal, day-to-day, monthly and annual pollen variations, the effect of some meteorological parameters on atmospheric pollen concentrations and possible differences in the airborne pollen season and concentration due to sampling site. Airborne pollen was collected at three sites in central Croatia (Zagreb, Samobor and Ivanić Grad) during three pollen seasons (2002–2004). Seven-day Hirst-type volumetric pollen traps were used for pollen sampling. Ragweed pollen was the third most abundant pollen type to occur in the atmosphere of central Croatia. Total Ambrosia pollen concentration was the highest in the 2003 pollen season and the lowest in 2004 at all sampling sites. Maximum emissions were restricted to August and September. Intradiurnal periodicity showed a peak from 1000 to 1200 hours. The concentration of ragweed pollen during the pollen season was greatly influenced by temperature and precipitation: on rainy days accompanied by temperature decline, the air pollen concentration decreased abruptly. The results of this study are aimed at helping to alleviate the symptoms of allergic reactions in individuals with ragweed pollen hypersensitivity, thus improving their quality of life.  相似文献   

15.
Airborne Poaceae pollen counts are greatly influenced by weather-related parameters, but may also be governed by other factors. Poaceae pollen is responsible for most allergic reactions in the pollen-sensitive population of Galicia (Spain), and it is therefore essential to determine the risk posed by airborne pollen counts. The global climate change recorded over recent years may prompt changes in the atmospheric pollen season (APS). This survey used airborne Poaceae pollen data recorded for four Galician cities since 1993, in order to characterise the APS and note any trends in its onset, length and severity. Pollen sampling was performed using Hirst-type volumetric traps; data were subjected to Spearman’s correlation test and regression models, in order to detect possible correlations between different parameters and trends. The APS was calculated using ten different methods, in order to assess the influence of each on survey results. Finally, trends detected for the major weather-related parameters influencing pollen counts over the study period were compared with those recorded over the last 30 years. All four cities displayed a trend towards lower annual total Poaceae pollen counts, lower peak values and a smaller number of days on which counts exceeded 30, 50 and 100 pollen grains/m3. Moreover, the survey noted a trend towards delayed onset and shorter duration of the APS, although differences were observed depending on the criteria used to define the first and the last day of the APS.  相似文献   

16.
Lectotypifications of Festuca infesta Hack. ex Trab., Festuca maroccana Trab. and Festuca rubra L. subsp. scabrescens Hack. ex Trab. are designated here. The principal diagnostic characters and chorology are also presented for each taxon. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 342–343.  相似文献   

17.
A study over six consecutive years of the pollination dynamics of the Amaranthaceae and Chenopodiaceae in Badajoz, and a comparative study over three years with stations in Mérida and Cáceres showed that there were different factors affecting this process. Thus, the proximity of croplands was found to be important in determining the magnitude of the concentrations, and this was also confirmed with a study of the concentrations measured directly in the croplands. Autumn and summer rainfall was found to affect, and also to have a certain influence on the length of the flowering period. The daily variations in pollen levels were studied in relation to meteorological parameters, finding a correlation that was positive with respect to temperature and negative with respect to atmospheric humidity and the distance travelled by the wind, i.e. airflow measured in hm with a revolving-cup anemometer. These correlations were the same in all three of the localities studied. The direction of the wind, however, was found to have different effects according to the locality studied. This is explained by their positions relative to the irrigation zones in the region. The pattern of diurnal pollen release from these taxa shows the greatest levels to be reached between 10:00 and 12:00 hours in Mérida as well as in Badajoz. In Cáceres, however, the distribution throughout the day was very even, with few hourly variations. This may be due to the sparse representation of these species in the neighbourhood of the Cáceres trap, with the pollen having been transported from sources that were farther away.  相似文献   

18.
Seed protein electrophoresis confirms the existence of polymorphism among hexaploid populations ofFestuca arundinacea. Both protein and morphological results suggest thatF. pratensis andF. arundinacea should retain independent specific status. High protein homology of these two species withF. gigantea points towards phylogenetic links between these taxa.  相似文献   

19.
The relationship between the meteorological elements, especially the thermal conditions and the Poaceae pollen appearance in the air, were analysed as a basis to construct a useful model predicting the grass season start. Poaceae pollen concentrations were monitored in 1991–2012 in Kraków using the volumetric method. Cumulative temperature and effective cumulative temperature significantly influenced the season start in this period. The strongest correlation was seen as the sum of mean daily temperature amplitudes from April 1 to April 14, with mean daily temperature >15 °C and effective cumulative temperature >3 °C during that period. The proposed model, based on multiple regression, explained 57 % of variation of the Poaceae season starts in 1991–2010. When cumulative mean daily temperature increased by 10 °C, the season start was accelerated by 1 day. The input of the interaction between these two independent variables into the factor regression model caused the increase in goodness of model fitting. In 2011 the season started 5 days earlier in comparison with the predicted value, while in 2012 the season start was observed 2 days later compared to the predicted day. Depending on the value of mean daily temperature from March 18th to the 31st and the sum of mean daily temperature amplitudes from April 1st to the 14th, the grass pollen seasons were divided into five groups referring to the time of season start occurrence, whereby the early and moderate season starts were the most frequent in the studied period and they were especially related to mean daily temperature in the second half of March.  相似文献   

20.
Pollen is an important vector of gene flow in plants, particularly for outcrossing species like tall fescue. Several aspects of pollination biology were investigated using pollen from transgenic and nontransgenic plants of tall fescue (Festuca arundinacea Schreb.), the most important forage species worldwide of the Festuca genus. To effectively assess in vitro pollen viability in tall fescue, an optimized germination medium (0.8 mol/L sucrose, 1.28 mmol/L boric acid and 1.27 mmol/L calcium nitrate) was developed. Treatment with relatively high temperatures (36° and 40°C) and high doses of UV-B irradiation (900-1500 μW/cm(2)) reduced pollen viability, while relative humidity did not significantly influence pollen viability. Viability of pollen from transgenic progenies (T1 and T2) was similar to that from seed-derived control plants. Pollen from primary transgenics (T0) and primary regenerants (R0) had various levels of viability. Hand pollination using the primary regenerants and transgenics revealed that no seed set could be obtained when pollen viability was lower than 5%. Pollen from transgenic progenies and nontransgenic control plants could survive up to 22 h under controlled conditions in growth chamber. However, under sunny atmospheric conditions, viability of transgenic and nontransgenic pollen reduced to 5% in 30 min, with a complete loss of viability in 90 min. Under cloudy atmospheric conditions, pollen remained viable up to 240 min, with about 5% viability after 150 min. This report is the first on pollen viability and longevity in transgenic forage grasses and could be useful for risk assessment of transgenic plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号