首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Recombinant protein purification is facilitated using high expression systems which produce larger quantities of streptokinase protein as inclusion bodies. As the accumulation of active streptokinase is toxic to the host cells, we have optimized the conditions to achieve large amounts of streptokinase in the form of inclusion bodies. The solubility and yield of pure protein are highly dependent on various combinations of chemical additives, ionic and non-ionic detergents and salts, with solubilizing agents followed by refolding of denatured protein into active form. As the extraction of the purified streptokinase from inclusion bodies requires denaturation and a subsequent refolding step, careful balancing steps were needed to develop under different controlled conditions. Here the purified fragments of refolded proteins were screened to select the conditions that yield the active streptokinase having native conformation. The maximum specific activity of the purified streptokinase was achieved by these methods. The refolded recombinant streptokinase was analyzed by RP-HPLC showing a purity of 99%. Size exclusion chromatography profile shows that there are minimal aggregates in the active streptokinase protein and the percentage of renaturation is around 99%.  相似文献   

3.
Optimized conditions are needed to refold recombinant proteins from bacterial inclusion bodies into their biologically active conformations. In this study, we found two crucial requirements for efficient refolding of cationic tetrameric chicken avidin. The first step is to eliminate nucleic acid contaminants from the bacterial inclusion body. The electrostatic interactions between the remaining nucleic acids and proteins strongly enhanced protein aggregation during the refolding process. The cysteine specific reversible S-cationization procedure was successfully employed for large-scale preparation of nucleic acid free denatured protein without purification tag system. The second step is the intramolecular disulfide formation prior to refolding in dialysis removing denaturant. Disulfide intact monomeric avidin showed efficient formation of biologically active tetrameric conformation during the refolding process. Using this optimized refolding procedure, highly cationic avidin derivative designed as an intracellular delivery carrier of biotinylated protein was successfully prepared.  相似文献   

4.
Refolding of cysteine-rich protein for establishing native conformation and a biologically active form is the most challenging step in recombinant protein synthesis. In this study, expressed vascular endothelial growth factor-A (VEGF-A), as a cysteine-rich protein, in a prokaryotic expression cell was refolded based on computer simulation technique and multiple chemical additive-based buffers to recover its biologically active form. For this purpose, cloned and expressed VEGF-A in Escherichia coli BL21 (DE3) was purified and dialyzed by a basic buffer containing nine diverse chemical additives. In parallel with the evaluations of the applied additives, professional computer simulation software was also used. The activity of refolded protein was evaluated in differentiation of mesenchymal stem cells (MSCs) to the endothelial cells (ECs). The results showed that dialyzing the produced recombinant VEGF-A in chemical additive-based buffers containing cysteine, 1, 4-dithiothreitol (DTT), arginine, and Triton X-100 led to efficient VEGF-A refolding. The results of flowcytometry analysis indicated that CD31 and CD144 as the specific ECs markers in VEGF-A treated MSCs were 31 and 73%, respectively. Protein refolding method using chemical additive-based buffers containing cysteine, DTT, arginine and Triton X-100 was the best accessible technique for refolding cysteine-rich recombinant VEGF-A.  相似文献   

5.
The protein refolding of inclusion bodies was investigated using reversed micelles formed by aerosol OT (AOT). Ribonuclease A (RNase A) was overexpressed in Escherichia coli and used as native inclusion bodies. The enzymatic activity of RNase A was completely regained from the inclusion bodies within 14 h by solubilization in reversed micelles. To further enhance the refolding rate, a molecular chaperone, GroEL, was incorporated into the refolding system. The resultant refolding system including GroEL showed better performance under optimized conditions for the refolding of RNase A inclusion bodies. The refolding rate was considerably improved by the addition of the molecular chaperone, and the refolding step was completed in 1 h. The protein refolding in the GroEL-containing refolding system was strongly dependent on the coexistence of ATP and Mg2+, suggesting that the GroEL hosted in the reversed micelles was biologically active and assisted in the renaturation of the inclusion bodies. The addition of cold acetone to the reversed micellar solution allowed over 90% recovery of the renatured RNase A.  相似文献   

6.
Ewing sarcoma family tumors (ESFT) are aggressive bone and soft tissue tumors that express EWS-ETS fusion genes as driver mutations. Although the histogenesis of ESFT is controversial, mesenchymal (MSC) and/or neural crest (NCSC) stem cells have been implicated as cells of origin. For the current study we evaluated the consequences of EWS-FLI1 expression in human embryonic stem cell-derived NCSC (hNCSC). Ectopic expression of EWS-FLI1 in undifferentiated hNCSC and their neuro-mesenchymal stem cell (hNC-MSC) progeny was readily tolerated and led to altered expression of both well established as well as novel EWS-FLI1 target genes. Importantly, whole genome expression profiling studies revealed that the molecular signature of established ESFT is more similar to hNCSC than any other normal tissue, including MSC, indicating that maintenance or reactivation of the NCSC program is a feature of ESFT pathogenesis. Consistent with this hypothesis, EWS-FLI1 induced hNCSC genes as well as the polycomb proteins BMI-1 and EZH2 in hNC-MSC. In addition, up-regulation of BMI-1 was associated with avoidance of cellular senescence and reversible silencing of p16. Together these studies confirm that, unlike terminally differentiated cells but consistent with bone marrow-derived MSC, NCSC tolerate expression of EWS-FLI1 and ectopic expression of the oncogene initiates transition to an ESFT-like state. In addition, to our knowledge this is the first demonstration that EWS-FLI1-mediated induction of BMI-1 and epigenetic silencing of p16 might be critical early initiating events in ESFT tumorigenesis.  相似文献   

7.
Aggregation is a serious obstacle for recovery of biologically active heterologous proteins from inclusion bodies (IBs) produced by recombinant bacteria. E. coli transformed with a vector containing the cDNA for Bothropstoxin-1 (BthTx-1) expressed the recombinant product as IBs. In order to obtain the native toxin, insoluble and aggregated protein was refolded using high hydrostatic pressure (HHP). IBs were dissolved and refolded (2 kbar, 16 h), and the effects of protein concentration, as well as changes in ratio and concentration of oxido-shuffling reagents, guanidine hydrochloride (GdnHCl), and pH in the refolding buffer, were assayed. A 32% yield (7.6 mg per liter of bacterial culture) in refolding of the native BthTx-1 was obtained using optimal conditions of the refolding buffer (Tris–HCl buffer, pH 7.5, containing 3 mM of a 2:3 ratio of GSH/GSSG, and 1 M GdnHCl). Scanning electron microscopy (SEM) showed that that disaggregation of part of IBs particles occurred upon compression and that the morphology of the remaining IBs, spherical particles, was not substantially altered. Dose-dependent cytotoxic activity of high-pressure refolded BthTx-1 was shown in C2C12 muscle cells.  相似文献   

8.
Human insulin-like growth factor II (IGF-II) was produced in an Escherichia coli ompT strain as a 22.5-kDa fusion protein. IGF-II was fused to the carboxy-terminal of a synthetic 15-kDa IgG-binding protein, originating from staphylococcal protein A, via a unique methionine linker. During fermentation, the fusion protein was exported to the growth medium at levels exceeding 900 mg/liter and subsequently affinity purified on IgG Sepharose followed by ion exchange on S Sepharose. After chemical cleavage with CNBr, yielding an authentic IGF-II molecule, the recombinant IGF-II was purified to homogeneity by a two step procedure involving ion-exchange and reverse-phase HPLC. A substantial fraction of the secreted protein was found to be biologically active, eliminating the need for complex refolding procedures. The yield of highly purified and biologically active IGF-II was 5-7 mg/liter of fermenter broth. The IGF-II produced by this method displayed biochemical, immunological, receptor binding, and biological activity properties equal to those of native IGF-II isolated from human serum.  相似文献   

9.
The B lymphocyte stimulator (BAFF) is a novel member of the tumor necrosis factor (TNF) ligand family which is important in B lymphocyte maturation and survival. Here, a recombinant form of the extracellular domain of the BAFF (hsBAFF) was expressed in Escherichia coli BL21(DE3) under the control of a T7 promoter. The resulting insoluble bodies were separated from cellular debris by centrifugation and solubilized with 8 M urea. A rapid and simple on-column refolding procedure was developed. It was applied and then the refolded hsBAFF was purified by anion-exchange. The purified final product was >98% pure by SDS-PAGE stained with Coomassie brilliant blue R-250. Mass spectroscopic analysis indicated the protein to be 17.5 kDa, which equalled the theoretically expected mass. The N-terminal sequencing of refolding hsBAFF showed the sequence corresponded to the designed protein. The correct refolding of the recombinant protein was verified in the recovery of its secondary and tertiary structures as assessed by circular dichroism and fluorescence emission spectra. The renatured protein displayed its immunoreactivity with the antibodies to BAFF protein by Western blotting. The final purified material was biologically active in a validated induced human B lymphocyte proliferation bioassay. The expression and in vitro refolding of hsBAFF resulted in production of an active molecule in a yield of 15 mg/L flask cultivation.  相似文献   

10.
Recombinant carp growth hormone and its Cys123Ala analogue were refolded in 4.5 M urea, pH 11.3 in the presence of 0.1 mM cysteine. Shortening of the refolding process from 48 h to 1 h resulted in a 30 to 40 fold increase in yield of the biologically active monomers, and lowered dimerization and oligomerization. A similar short-time refolding procedure was also found to be advantageous with other structurally different, non-related proteins, such as the extracellular domains of rabbit and bovine prolactin receptors.  相似文献   

11.
The human gene encoding the mature form of bone morphogenetic protein-2 (hBMP-2), a dimeric disulfide-bonded protein of the cystine knot growth factor family, was expressed in recombinant Escherichia coli using a temperature-inducible expression system. The recombinant protein was produced in the form of cytoplasmic inclusion bodies and the effect of different variables on the renaturation of rhBMP-2 was investigated. In particular, variables such as pH, redox conditions, protein concentration, temperature, the presence of different types of aggregation suppressors, and host cell contaminants were studied with respect to their effect on aggregation during refolding and on the final renaturation yield of rhBMP-2. It is shown that the renaturation yield is particularly sensitive to pH, temperature, protein concentration, and the presence of aggregation suppressors. In contrast, little effect of the redox conditions and the ionic strength on the renaturation yield was observed, as equal yields were obtained in a broad range of reduced to oxidized glutathione ratios and concentrations of NaCl, respectively. The aggregation suppressor 2-(cyclohexylamino)ethanesulfonic acid (CHES) proved to be superior with respect to the final renaturation yield, although, in comparison to the more common arginine, it was less efficient in preventing aggregation of rhBMP-2 during refolding. Detergent washing of inclusion bodies was sufficient, as further purification of rhBMP-2 prior to refolding was without effect on the final renaturation yield. An increase in the concentration of renatured rhBMP-2 was achieved by a pulsed refolding procedure by which up to a total amount of 2.1 mg mL(-1) rhBMP-2 could be transferred in seven pulses into the renaturation buffer with an overall refolding yield of 38%, corresponding to 0.8 mg mL(-1) renatured dimeric rhBMP-2. Furthermore, a simplified purification procedure is presented that also includes freeze-drying for long-term storage of biologically active rhBMP-2. Finally, it is shown that the appearance of rhBMP-2 variants could be avoided by using a host strain overexpressing rare codon tRNAs.  相似文献   

12.
Full-length recombinant transposase Tc1A from Caenorhabditis elegans (343 amino acids) expressed in Escherichia coli BL21 in inclusion bodies has been purified in a high yield in a soluble form. The procedure includes denaturation of the inclusion bodies followed by refolding of the Tc1A protein by gel filtration. This last step is absolutely crucial to give a high yield of soluble and active protein since it allows the physical separation of the aggregates from intermediates that give rise to correctly refolded protein. This step is very sensitive to the concentration of protein. Good yields of refolded protein are obtained by refolding 2 to 12 mg of denatured protein. The other purification steps involve the initial use of gel filtration under denaturing conditions and a final step of ion-exchange chromatography. Biological activity of the purified protein was confirmed in an in vitro transposon excision assay and its DNA-binding capacity by UV crosslinking. This new Tc1A purification procedure gives a yield of 12-16 mg/liter E. coli culture, in a form suitable for crystallization studies.  相似文献   

13.
The 1x myc-tagged cDNA encoding for human CIS2 protein was subcloned into a pET-29a+ vector in order to express and produce a recombinant S-peptide tagged and 1x myc-tagged protein in Escherichia coli BL21(DE3). The constitutively expressed protein was isolated from inclusion bodies by a simple solubilization-renaturation procedure and purified by anion-exchange chromatography on Q-Sepharose. The recombinant form was found to be pure and monomeric as judged by both SDS-PAGE and gel-filtration chromatography and its biological activity was proven by its ability to bind to the tyrosine-phosphorylated cytosolic fragment of human growth hormone receptor fused to glutathione-S-transferase. Recombinant CIS2 was compared by biochemical, immunological, and molecular methods to the CIS2 protein expressed in eukaryotic cells. This report describes the first substantial production of biologically active recombinant human CIS2.  相似文献   

14.
Papain (EC 3.4.22.2), the archetypal cysteine protease of C1 family, is of considerable commercial significance. In order to obtain substantial quantities of active papain, the DNA coding for propapain, the papain precursor, has been cloned and expressed at a high level in Escherichia coli BL21(DE3) transformed with two T7 promoter based pET expression vectors - pET30 Ek/LIC and pET28a+ each containing the propapain gene. In both cases, recombinant propapain was expressed as an insoluble His-tagged fusion protein, which was solubilized, and purified by nickel chelation affinity chromatography under denaturing conditions. By systematic variation of parameters influencing the folding, disulfide bond formation and prevention of aggregate formation, a straightforward refolding procedure, based on dilution method, has been designed. This refolded protein was subjected to size exclusion chromatography to remove impurities and around 400 mg of properly refolded propapain was obtained from 1 L of bacterial culture. The expressed protein was further verified by Western blot analysis by cross-reacting it with a polyclonal anti-papain antibody and the proteolytic activity was confirmed by gelatin SDS-PAGE. This refolded propapain could be converted to mature active papain by autocatalytic processing at low pH and the recombinant papain so obtained has a specific activity closely similar to the native papain. This is a simple and efficient expression and purification procedure to obtain a yield of active papain, which is the highest reported so far for any recombinant plant cysteine protease.  相似文献   

15.
The production of human proinsulin in Escherichia coli usually leads to the formation of inclusion bodies. As a consequence, the recombinant protein must be isolated, refolded under suitable redox conditions, and enzymatically converted to the biologically active insulin. In this study we describe a detailed in vitro renaturation protocol for human proinsulin that includes native structure formation and the enzymatic conversion to mature insulin. We used a His(8)-Arg-proinsulin that was renatured from the completely reduced and denatured state in the presence of a cysteine/cystine redox couple. The refolding process was completed after 10-30 min and was shown to be strongly dependent on the redox potential and the pH value, but not on the temperature. Refolding yields of 60-70% could be obtained even at high concentrations of denaturant (3M guanidinium-HCl or 4M urea) and protein concentrations of 0.5mg/ml. By stepwise renaturation a concentration of about 6 mg/ml of native proinsulin was achieved. The refolded proinsulin was correctly disulfide-bonded and native and monomeric as shown by RP-HPLC, ELISA, circular dichroism, and analytical gel filtration. Treatment of the renatured proinsulin with trypsin and carboxypeptidase B yielded mature insulin.  相似文献   

16.
17.
Lynx1 expresses in the central nervous system and plays important role in a regulation of nicotinic acetylcholine receptors. Successful milligram-quantitive expression of ws-Lynx1 was achieved only in the case of its production in the form of cytoplasm inclusion bodies. Different conditions of ws-Lynx1 refolding for yield optimization were performed. The obtained recombinant protein was characterized by means of mass spectrometry and CD spectroscopy. The binding experiments on the nAChRs from Torpedo californica membranes revealed that ws-Lynxl is biologically active and blocks muscle nAChR with IC50-20-30 microM.  相似文献   

18.
Production of correctly folded and biologically active proteins in Escherichia coli can be a challenging process. Frequently, proteins are recovered as insoluble inclusion bodies and need to be denatured and refolded into the correct structure. To address this, a refolding screening process based on a 96-well assay format supported by design of experiments (DOE) was developed for identification of optimal refolding conditions. After a first generic screen of 96 different refolding conditions the parameters that produced the best yield were further explored in a focused DOE-based screen. The refolding efficiency and the quality of the refolded protein were analyzed by RP-HPLC and SDS–PAGE. The results were analyzed by the DOE software to identify the optimal concentrations of the critical additives. The optimal refolding conditions suggested by DOE were verified in medium-scale refolding tests, which confirmed the reliability of the predictions. Finally, the refolded protein was purified and its biological activity was tested in vitro. The screen was applied for the refolding of Interleukin 17F (IL-17F), stromal-cell-derived factor-1 (SDF-1α/CXCL12), B cell-attracting chemokine 1 (BCA-1/CXCL13), granulocyte macrophage colony stimulating factor (GM-CSF) and the complement factor C5a. This procedure identified refolding conditions for all the tested proteins. For the proteins where refolding conditions were already available, the optimized conditions identified in the screening process increased the yields between 50% and 100%. Thus, the method described herein is a useful tool to determine the feasibility of refolding and to identify high-yield scalable refolding conditions optimized for each individual protein.  相似文献   

19.
Human milk contains several biologically active proteins that benefit the breast-fed infant. In order to survive in the gastrointestinal tract, these proteins need to be protected against proteolysis. Since human milk contains relatively high concentrations of alpha-1-antitrypsin (AAT), we have expressed recombinant AAT in rice to explore the possibility of supplementing infant formula with this protein. The stability of recombinant AAT was examined by biochemical and functional assays, such as SDS-PAGE, Western blotting, ELISA, elastase and trypsin inhibition, following exposure to heat, low pH, and in vitro digestion, conducted in both phosphate buffered saline and infant formula. Native AAT is resistant to acidic environments down to pH 2 for 1 h and can withstand in vitro digestion modeled after conditions in the infant gut. Recombinant AAT is nearly as resistant as the native form in buffer, and is equally resilient in formula. Heat treatments (60 degrees C for 15 min, 72 degrees C for 20 sec, 85 degrees C for 3 min, and 137 degrees C for 20 sec) revealed that recombinant AAT is not as stable as native AAT in buffer, particularly at higher temperatures. While significantly less recombinant AAT is detected by ELISA after heating in formula, addition of bile extract can restore epitopes resulting in higher concentrations, suggesting protein aggregation that may not affect AAT activity. This study shows that recombinant AAT may survive the conditions of the infant stomach and duodenum and affect protein digestion in the infant small intestine.  相似文献   

20.
High hydrostatic pressures have been used to dissociate non-native protein aggregates and foster refolding to the native conformation. In this study, partial specific volume and adiabatic compressibility measurements were used to examine the volumetric contributions to pressure-modulated refolding. The thermodynamics of pressure-modulated refolding from non-native aggregates of recombinant human interleukin-1 receptor antagonist (IL-1ra) were determined by partial specific volume and adiabatic compressibility measurements. Aggregates of IL-1ra formed at elevated temperatures (55 degrees C) were found to be less dense than native IL-1ra and refolded at 31 degrees C under 1,500 bar pressure with a yield of 57%. Partial specific adiabatic compressibility measurements suggest that the formation of solvent-free cavities within the interior of IL-1ra aggregates cause the apparent increase in specific volume. Dense, pressure-stable aggregates could be formed at 2,000 bar which could not be refolded with additional high pressure treatment, demonstrating that aggregate formation conditions and structure dictate pressure-modulated refolding yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号