首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
In agro-ecosystems,plants are important mediators of interactions between their associated herbivorous insects and microbes,and any change in plants induced by one species may lead to cascading effects on interactions with other species.Often,such effects are regulated by phytohormones such as jasmonic acid(JA)and salicylic acid(SA).Here,we investigated the tripartite interactions among rice plants,three insect herbivores(Chilo suppressalis,Cnaphalocrocis medinalis or Nilapai-vata lugens),and the causal agent of rice blast disease,the fungus Magnaporthe oryzae.We found that pre-infestation of rice by C.suppressalis or N.lugens but not by C.medinalis conferred resistance to M.oryzae.For C.suppressalis and N.lugens,insect infestation without fungal inoculation induced the accumulation of both JA and SA in rice leaves.In contrast,infestation by C.medinalis increased JA levels but reduced SA levels.The exogenous application of SA but not of JA conferred resistance against M.oryzae.These results suggest that preinfestation by C suppressalis or N.lugens conferred resistance against M.oryzae by increasing SA accumulation.These findings enhance our understanding of the interactions among rice plant,insects and pathogens,and provide valuable information for developing an ecologically sound strategy for controlling rice blast.  相似文献   

3.
F. Zsoldos 《Plant and Soil》1962,16(3):269-283
Summary The factors which influence disease development greatly affect the nitrogen metabolism and water regime of the rice plant. Soluble nitrogen, mainly the amino acids, accumulates and this favours the establishment of parasitic micro-organisms. In diseased tissues the level of total-N and protein-N (per cent on dry weight) is higher than in the healthy ones. If the amount of protein-N is expressed on a total-N basis the diseased plants exhibit a lower protein content.High nitrogen doses lead to disturbances of the growth processes and may be attributed to the accumulation of NH3. The physiological activity of the root system of susceptible and resistant rice plants exhibits marked differences, particularly in the later developmental stages. Resistant varieties, due to their highly developed root system, yielded higher amounts of bleeding sap.As a result of excessive nitrogen nutrition the root/shoot ratio is shifted in favour of the latter and consequently the normal balance of water regime and the mineral nutrition is disturbed. In the so called brusone years physiological drought is observed and this leads to serious losses. The resistant varieties are more or less tolerant to the deleterious effect of physiological drought.  相似文献   

4.
Tomato fruit-weight 2.2 (FW2.2) was reported to control up to 30 % fruit weight. Recent studies demonstrated that FW2.2-like (FWL) genes also play important roles in plant growth and development. For instance, a maize homolog of FW2.2, named cell number regulator 1 (CNR1), negatively regulates plant and organ size. However, FWL genes in rice have not been characterized yet. In this study, eight FWL genes were identified in rice genome and designated as OsFWL1-8. The chromosome location, gene structure, protein motif, and phylogenetic relationship of OsFWL genes were analyzed. RT-PCR result and microarray data revealed that OsFWL genes exhibited diverse expression patterns and the detailed expression patterns of OsFWL5, 6, and 7 negatively correlated with leaf growth activity. Rice protoplast transient transformation experiment showed that most OsFWL proteins locate at cell membrane but OsFWL8 is present in the nucleus. In addition, the functions of OsFWL genes were investigated by analyzing two T-DNA insertion lines for OsFWL3 and 5. Compared with wild type, the grain weight of osfwl3 mutant and the plant height of osfwl5 mutant were increased by 5.3 and 12.5 %, respectively. We also found that the increase in grain length of osfwl3 mutant was due chiefly to incremental cell number, not cell size and the expression of OsFWL3 negatively correlated with glume growth activity. These results provide a comprehensive foundation for further study of OsFWL functions in rice.  相似文献   

5.
The DNA sequence of 106 BAC/PAC clones in the minimum tiling path (MTP) of the long arm of rice chromosome 11, between map positions 57.3 and 116.2 cM, has been assembled to phase 2 or PLN level. This region has been sequenced to 10× redundancy by the Indian Initiative for Rice Genome Sequencing (IIRGS) and is now publicly available in GenBank. The region, excluding overlaps, has been predicted to contain 2,932 genes using different software. A gene-by-gene BLASTN search of the NCBI wheat EST database of over 420,000 cDNA sequences revealed that 1,143 of the predicted rice genes (38.9%) have significant homology to wheat ESTs (bit score 100). Further BLASTN search of these 1,143 rice genes with the GrainGenes database of sequence contigs containing bin-mapped wheat ESTs allowed 113 of the genes to be placed in bins located on wheat chromosomes of different homoeologous groups. The largest number of genes, about one-third, mapped to the homoeologous group 4 chromosomes of wheat, suggesting a common evolutionary origin. The remaining genes were located on wheat chromosomes of different groups with significantly higher numbers for groups 3 and 5. Location of bin-mapped wheat contigs to chromosomes of all the seven homoeologous groups can be ascribed to movement of genes (transpositions) or chromosome segments (translocations) within rice or the hexaploid wheat genomes. Alternatively, it could be due to ancient duplications in the common ancestral genome of wheat and rice followed by selective elimination of genes in the wheat and rice genomes. While there exists definite conservation of gene sequences and the ancestral chromosomal identity between rice and wheat, there is no obvious conservation of the gene order at this level of resolution. Lack of extensive colinearity between rice and wheat genomes suggests that there have been many insertions, deletions, duplications and translocations that make the synteny comparisons much more complicated than earlier thought. However, enhanced resolution of comparative sequence analysis may reveal smaller conserved regions of colinearity, which will facilitate selection of markers for saturation mapping and sequencing of the gene-rich regions of the wheat genome.  相似文献   

6.
7.

Key message

We showed that rice prolamin polypeptides formed ER-derived PBs in transgenic rice calli, and that this heterologous transgene expression system is suitable for studying the mechanism of rice PB-I formation.

Abstract

Rice prolamins, alcohol-soluble seed storage proteins, accumulate directly within the rough endoplasmic reticulum (ER) lumen, leading to the formation of ER-derived type I protein bodies (PB-Is) in rice seed. Because rice prolamins do not possess a well-known ER retention signal such as K(H)DEL, or a unique sequence for retention in the ER such as a tandem repeat domain of maize and wheat prolamins, the mechanisms of prolamin accumulation in the ER and PB-I formation are poorly understood. In this study, we examined the formation mechanisms of PBs by expressing four types of rice prolamin species fused to green fluorescent protein (GFP) in transgenic rice calli. Each prolamin–GFP fusion protein was stably accumulated in rice calli and formed ER-derived PBs. In contrast, GFP fused with the signal peptide of prolamin was secreted into the intercellular space in rice calli. In addition, each of the four types of prolamin–GFP fusion proteins was co-localized with the ER chaperone binding protein. These results suggest that the mature polypeptide of prolamin is capable of being retained in the ER and induce the formation of PBs in non-seed tissue, and that the rice callus heterologous transgene expression system is useful for studying the mechanisms of rice PB-I formation.  相似文献   

8.
With the completion of the rice genome sequencing project, the next major challenge is the large-scale determination of gene function. As an important crop and a model organism, rice provides major insights into gene functions important for crop growth or production. Phenomics with detailed information about tagged populations provides a good tool for functional genomics analysis. By a T-DNA insertional mutagenesis approach, we have generated a rice mutant population containing 55,000 promoter trap and gene activation or knockout lines. Approximately 20,000 of these lines have known integration sites. The T0 and T1 plants were grown in net “houses” for two cropping seasons each year since 2003, with the mutant phenotypes recorded. Detailed data describing growth and development of these plants, in 11 categories and 65 subcategories, over the entire four-month growing season are available in a searchable database, along with the genetic segregation information and flanking sequence data. With the detailed data from more than 20,000 T1 lines and 12 plants per line, we estimated the mutation rates of the T1 population, as well the frequency of the dominant T0 mutants. The correlations among different mutation phenotypes are also calculated. Together, the information about mutant lines, their integration sites, and the phenotypes make this collection, the Taiwan Rice Insertion Mutants (TRIM), a good resource for rice phenomics study. Ten T2 seeds per line can be distributed to researchers upon request. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Chyr-Guan Chern, Ming-Jen Fan, and Su-May Yu have contributed equally to this work.  相似文献   

9.
Process-based crop simulation models require employment of new knowledge for continuous improvement. To simulate growth and development of different genotypes of a given crop, most models use empirical relationships or parameters defined as genetic coefficients to represent the various cultivar characteristics. Such a loose introduction of different cultivar characteristics can result in bias within a simulation, which could potentially integrate to a high simulation error at the end of the growing season when final yield at maturity is predicted. Recent advances in genetics and biomolecular analysis provide important opportunities for incorporating genetic information into process-based models to improve the accuracy of the simulation of growth and development and ultimately the final yield. This improvement is especially important for complex applications of models. For instance, the effect of the climate change on the crop growth processes in the context of natural climatic and soil variability and a large range of crop management options (e.g., N management) make it difficult to predict the potential impact of the climate change on the crop production. Quantification of the interaction of the environmental variables with the management factors requires fine tuning of the crop models to consider differences among different genotypes. In this paper we present this concept by reviewing the available knowledge of major genes and quantitative trait loci (QTLs) for important traits of rice for improvement of rice growth modelling and further requirements. It is our aim to review the assumption of the adequacy of the available knowledge of rice genes and QTL information to be introduced into the models. Although the rice genome sequence has been completed, the development of gene-based rice models still requires additional information than is currently unavailable. We conclude that a multidiscipline research project would be able to introduce this concept for practical applications.  相似文献   

10.
The expression of -amylase genes in rice (Oryza sativa) and its regulation by phytohormones gibberellic acid (GA) and abscisic acid (ABA) were examined. Upon germination -amylase is synthesizedde novo in aleurone cells and (GA) is not required. Exogenous addition of GA does not enhance the -amylase activity, while ABA inhibits the -amylase activity, mRNA accumulation, and the germination of rice seeds. GA can reverse ABA inhibition of -amylase expression, but not ABA inhibition of seed germination. Such regulation represents a new interaction of ABA and GA.  相似文献   

11.
《Phytochemistry》1987,26(3):711-713
Wall-bound α-glucosidase showed similar properties to other α-glucosidases produced by suspension-cultured rice cells except for weak soluble-starch hydrolysing activity. Thw wall-bound enzyme could not be solubilized from wall pellets with high salt concentrations, detergents or a combination of 8 M urea and 0.1 M sodium sulphite. Three carbohydrates susceptible to α-glucosidase digestion were also contained in the wall pellets. They were composed mainly of α-linked glucose residues, but gave a negative iodine test. One of them is maltotetraose, the others are polysaccharides.  相似文献   

12.
In this study, Bt transgenic rice (KMD rice) residue decomposition and the associated microbial community in a rapeseed–rice cropping system were assessed in comparison with its parental non-Bt rice variety (XiuShui 11). Decomposition was measured as mass loss by straw and root decay in litterbags over two consecutive years. Bacterial and fungal community compositions associated with residue decomposition were detected by terminal restriction fragment length polymorphism (T-RFLP) and the additive main effects multiplicative interaction (AMMI) analysis model. Decomposition dynamics and bacterial and fungal communities associated with decomposition were strongly affected by surface and incorporated placements, and by temporal factors. However, no significant differences were observed between Bt and non-Bt rice variety in either decomposition dynamics or in the soil microbial communities associated with residue decay. Our field study indicated that the insertion of the cry1Ab gene into Xiushui 11 rice genome had no significant effect on the residual decay and decomposition-associated microbial community compositions in the rapeseed-rice cropping system.  相似文献   

13.
14.
15.
Rice is the most important crop species on earth, providing staple food for 70% of the world's human population. Over the past four decades, successes in classical breeding, fertilization, pest control, irrigation and expansion of arable land have massively increased global rice production, enabling crop scientists and farmers to stave off anticipated famines. If current projections for human population growth are correct, however, present rice yields will be insufficient within a few years. Rice yields will have to increase by an estimated 60% in the next 30 years, or global food security will be in danger. The classical methods of previous green revolutions alone will probably not be able to meet this challenge, without being coupled to recombinant DNA technology. Here, we focus on the promise of these modern technologies in the area of nitrogen acquisition in rice, recognizing that nitrogen deficiency compromises the realization of rice yield potential in the field more than any other single factor. We summarize rice-specific advances in four key areas of research: (1). nitrogen fixation, (2). primary nitrogen acquisition, (3). manipulations of internal nitrogen metabolism, and (4). interactions between nitrogen and photosynthesis. We develop a model for future plant breeding possibilities, pointing out the importance of coming to terms with the complex interactions among the physiological components under manipulation, in the context of ensuring proper targeting of intellectual and financial resources in this crucial area of research.  相似文献   

16.
Traditional upland rice generally exhibits insufficient grains resulting from abnormal endosperm development compared to paddy rice. However, the underlying molecular mechanism of this trait is poorly understood. Here, we cloned the uridine 5ʹ-diphospho (UDP)-glucosyltransferase gene EDR1 (Endosperm Development in Rice) responsible for differential endosperm development between upland rice and paddy rice by performing quantitative trait loci analysis and map-based cloning. EDR1 was highly expressed in developing seeds during grain filling. Natural variations in EDR1 significantly reduced the UDP-glucosyltransferase activity of EDR1YZN compared to EDR1YD1, resulting in abnormal endosperm development in the near-isogenic line, accompanied by insufficient grains and changes in grain quality. By analyzing the distribution of the two alleles EDR1YD1 and EDR1YZN among diverse paddy rice and upland rice varieties, we discovered that EDR1 was conserved in upland rice, but segregated in paddy rice. Further analyses of grain chalkiness in the alleles of EDR1YD1 and EDR1YZN varieties indicated that rice varieties harboring EDR1YZN and EDR1YD1 preferentially showed high chalkiness, and low chalkiness, respectively. Taken together, these results suggest that the UDP-glucosyltransferase gene EDR1 is an important determinant controlling differential endosperm development between upland rice and paddy rice.  相似文献   

17.
The brown planthopper (BPH) and striped stem borer (SSB) are the most devastating insect pests in rice (Oryza sativa ) producing areas. Screening for endogenous resistant genes is the most practical strategy for rice insect‐resistance breeding. Forty‐five mutants showing high resistance against BPH were identified in a rice T‐DNA insertion population (11,000 putative homozygous lines) after 4 years of large‐scale field BPH‐resistance phenotype screening. Detailed analysis showed that deficiency of rice mitochondrial outer membrane protein 64 (OM64 ) gene resulted in increased resistance to BPH. Mitochondrial outer membrane protein 64 protein is located in the outer mitochondrial membrane by subcellular localization and its deficiency constitutively activated hydrogen peroxide (H2O2) signaling, which stimulated antibiosis and tolerance to BPH. The om64 mutant also showed enhanced resistance to SSB, a chewing insect, which was due to promotion of Jasmonic acid biosynthesis and related responses. Importantly, om64 plants presented no significant changes in rice yield‐related characters. This study confirmed OM64 as a negative regulator of rice herbivore resistance through regulating H2O2 production. Mitochondrial outer membrane protein 64 is a potentially efficient candidate to improve BPH and SSB resistance through gene deletion. Why the om64 mutant was resistant to both piercing‐sucking and chewing insects via a gene deficiency in mitochondria is discussed.  相似文献   

18.
We compared the effect of the rice storage protein glutelin B-1 (GluB-1) terminator with the nopaline synthase (Nos) terminator on the accumulation of the modified house dust mite allergen mDer f 2 driven by the maize ubiquitin promoter in transgenic rice. Accumulation of mDer f 2 in transgenic seed and leaf using the GluB-1 terminator was greater than when using the Nos terminator construct. The mDer f 2 mRNA containing the GluB-1 3′UTR was processed and polyadenylated at the same sites as the native GluB-1 mRNA in the seeds but diverged in leaves of the transgenic plants. In contrast, the poly(A) sites of mDer f 2 containing Nos 3′UTR were more divergent in both seed and leaf. These results suggest that GluB-1 3′UTR functions as a faithful terminator and that termination at the specific sites may play an important role in mRNA stability and/or translatability, resulting in higher levels of protein accumulation.  相似文献   

19.
Burkholderia glumae causes bacterial panicle blight of rice, which is an increasingly important disease problem in global rice production. Toxoflavin and lipase are known to be major virulence factors of this pathogen, and their production is dependent on the TofI/TofR quorum-sensing system, which is mediated by N-octanoyl homoserine lactone. Flagellar biogenesis and a type III secretion system are also required for full virulence of B. glumae. Bacterial panicle blight is thought to be caused by seed-borne B. glumae; however, its disease cycle is not fully understood. In spite of its economic importance, neither effective control measures for bacterial panicle blight nor rice varieties showing complete resistance to the disease are currently available. A better understanding of the molecular mechanisms underlying B. glumae virulence and of the rice defence mechanisms against the pathogen would lead to the development of better methods of disease control for bacterial panicle blight. TAXONOMY: Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Burkholderiaceae; Burkholderia. MICROBIOLOGICAL PROPERTIES: Gram-negative, capsulated, motile, lophotrichous flagella, pectolytic. DISEASE SYMPTOMS: Aborted seed, empty grains as a result of failure of grain filling, brown spots on panicles, seedling rot. DISEASE CONTROL: Seed sterilization, planting partially resistant lines (no completely resistant line is available). KNOWN VIRULENCE FACTORS: Toxoflavin, lipase, type III effectors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号