共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative stress causes damage to proteins, lipids and nucleic acids, and thereby compromises cell viability. Some of the
oxidative stress markers in an eukaryotic model organism, fission yeast Schizosaccharomyces pombe, were evaluated in this study. Intracellular oxidation, protein carbonyls, lipid peroxidation and reduced glutathione (GSH)
levels were investigated in H2O2-treated and non-treated control cells. It was observed that increased H2O2 concentration proportionally lowered the cell number and increased the intracellular oxidation, lipid peroxidation and protein
carbonyl levels in S. pombe. A dose-dependent decrease in GSH level was also detected. The fission yeast S. pombe is best known for its contribution to understanding of eukaryotic cell cycle control. S. pombe displays a different physiology from Saccharomyces cerevisiae in several ways and is thus probably more closely related to higher eukaryotes. The purpose of this study was to provide
some data about the effects of hydrogen peroxide on the proteins and lipids in the fission yeast. The data obtained here is
expected to constitute a basis for the further studies on redox balance and related processes in yeast and mammalian cells. 相似文献
2.
Eukaryotic replication origins are highly variable in their activity and replication timing. The nature and role of cis-acting regulatory sequences that control chromosomal replication timing is not well defined. In the fission yeast, Schizosaccharomyces pombe, a 200-bp late-replication-enforcing element (LRE), has been shown to enforce late replication of ARS elements in plasmids. Here, we show that a short (133-bp) fragment of the LRE (shLRE) is required for causing late replication of adjoining origins in its native as well as in an ectopic early-replicating chromosomal location. Active from both sides of an early-replicating origin, the shLRE is a bona fide cis-acting regulatory element that imposes late replication timing in the chromosome. 相似文献
3.
Yanagida M 《Genome biology》2002,3(3):comment2003.1-comment20034
The fission yeast Schizosaccharomyces pombe has long been a model organism for studies of eukaryotic cells, winning renown especially for studies of the cell cycle. Now that its genome has been sequenced, S. pombe is ready to assume its rightful place in the pantheon of small eukaryotic giants. 相似文献
4.
5.
Stable chromium(VI)-sensitive and -tolerant mutants were obtained by induced mutagenesis of Schizosaccharomyces pombe lysine and leucine auxotrophic heterothallic strains 6chr+ and 9chr+. Eleven of them were selected for further studies. Fast transport of 51CrO4(2-) was detected in a representative sensitive mutant, chr-51S, while the tolerant mutant chr1-66T and the parental strain 6chr+ exhibited significantly lower 51CrO4(2-) uptake. The segregation of tetrads of three selected CrVI-tolerant mutants, chr1-66T, chr1-14T and chr2-04T, strongly indicated that tolerance was determined by single mutations. Random spore analysis proved that the mutations of chr1-66T and chr1-14T were allelic and the mutation of mutant chr2-04T was not allelic with the mutation of chr1-66T. Recombinants carrying the ura4D18 selective marker were created for transformation experiments. Two of them (chr1-661T and chr2-046T) can be used to clone and identify the genes responsible for their CrVI tolerance phenotype. 相似文献
6.
Identification of thermostable glyoxalase I in the fission yeast <Emphasis Type="Italic">Schizosaccharomyces pombe</Emphasis> 总被引:1,自引:0,他引:1
Glyoxalase I is a ubiquitous enzyme that detoxifies methylglyoxal, which is derived from glycolysis but inhibits the growth of cells from microorganisms to mammals. Here, the structural gene for glyoxalase I (glo1+) from the fission yeast Schizosaccharomyces pombe was identified. Disruption of glo1+ enhanced susceptibility to methylglyoxal, while expression of glo1+ in a glo1 mutant of Saccharomyces cerevisiae restored tolerance to this aldehyde. The glo1+ gene product was purified. The glyoxalase I of S. pombe was a monomeric enzyme with a molecular weight of 34,000 and the kcat/Km value for methylglyoxal was 4.3×107 M–1 min–1. Treatment of purified enzyme with EDTA in imidazole buffer completely abolished enzyme activity, whereas the EDTA-treated enzyme was reactivated by several divalent metal ions, such as Zn2+, Co2+, Ni2+ and Mn2+. The glyoxalase I of S. pombe exhibited fairly high thermal stability, and almost 100% activity was retained after incubating the enzyme at 60°C for 4 h. 相似文献
7.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes. 相似文献
8.
9.
Noel H. Holmgren 《Brittonia》2018,70(1):115-139
A revision of Penstemon sect. Saccanthera subsect. Serrulati includes a new species (P. salmonensis), a new variety (P. triphyllus var. infernalis), and the elevation of a subspecies to species (P. curtiflorus), bringing the total number of species to eight, which are keyed and described, complete with nomenclature and type citations. 相似文献
10.
A genetic transformation system has been developed for callus cells of Crataegus
aronia using Agrobacterium
tumefaciens. Callus culture was established from internodal stem segments incubated on Murashige and Skoog (MS) medium supplemented with
5 mg l−1 Indole-3-butyric acid (IBA) and 0.5 mg l−1 6-benzyladenine (BA). In order to optimize the callus culture system with respect to callus growth and coloration, different
types and concentrations of plant growth regulators were tested. Results indicated that the best average fresh weight of red
colored callus was obtained on MS medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 kinetin (Kin) (callus maintenance medium). Callus cells were co-cultivated with Agrobacterium harboring the binary plasmid pCAMBIA1302 carrying the mgfp5 and hygromycin phosphotransferase (hptII) genes conferring green fluorescent protein (GFP) activity and hygromycin resistance, respectively. Putative transgenic calli
were obtained 4 weeks after incubation of the co-cultivated explants onto maintenance medium supplemented with 50 mg l−1 hygromycin. Molecular analysis confirmed the integration of the transgenes in transformed callus. To our knowledge, this
is the first time to report an Agrobacterium-mediated transformation system in Crataegus
aronia. 相似文献
11.
Studying Pneumocystis has proven to be a challenge from the perspective of propagating a significant amount of the pathogen in a facile manner.
The study of several fungal pathogens has been aided by the use of invertebrate model hosts. Our efforts to infect the invertebrate
larvae Galleria
mellonella with Pneumocystis proved futile since P. murina neither caused disease nor was able to proliferate within G. mellonella. It did, however, show that the pathogen could be rapidly cleared from the host. 相似文献
12.
Repair of double-strand breaks (DSBs), which arise in DNA spontaneously or under the influence of external factors, is critical for cell survival. The evolutionarily conserved mechanism of error-free recombinational repair plays a major role in maintaining the genome integrity and has a number of similarities between lower eukaryotes and vertebrates. The review considers the currently available data on the mechanism of recombinational DSB repair in the fission yeast Schizosaccharomyces pombe and its differences from the corresponding mechanisms of Saccharomyces cerevisiae and higher eukaryotes. 相似文献
13.
Notocactus scopa cv. Soonjung was subjected to in planta Agrobacterium tumefaciens-mediated transformation with vacuum infiltration, pin-pricking, and a combination of the two methods. The pin-pricking combined with vacuum infiltration (20-30 cmHg for 15 min) resulted in a transformation efficiency of 67-100%, and the expression of the uidA and nptII genes was detected in transformed cactus. The established in planta transformation technique generated a transgenic cactus with higher transformation efficiency, shortened selection process, and stable gene expression via asexual reproduction. All of the results showed that the in planta transformation method utilized in the current study provided an efficient and time-saving procedure for the delivery of genes into the cactus genome, and that this technique can be applied to other asexually reproducing succulent plant species. 相似文献
14.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae. 相似文献
15.
Lactobacillus equi, Lactobacillus hayakitensis, Lactobacillus johnsonii, and Weissella confusa/cibaria were the dominant species in 12 South African horses. The Bifidobacterium-group was detected in the feces of only one of the 12 horses. Sequencing of the nested-PCR amplicon identified the Bifidobacterium-group as Parascardovia denticolens. Cell numbers of L. equi, L. hayakitensis, and W. confusa/cibaria were consistent in all samples. P. denticolens, Bifidodobacterium pseudolongum, and a phylogenetic relative of Alloscardovia omnicolens were rarely detected. L. equigenerosi, a dominant species in Japanese horses, was detected in the fecal samples of only one horse. 相似文献
16.
Kazuhiro Kashiwagi Tomoaki Shigeta Hiroaki Imataka Takuhiro Ito Shigeyuki Yokoyama 《Journal of structural and functional genomics》2016,17(1):33-38
Tight control of protein synthesis is necessary for cells to respond and adapt to environmental changes rapidly. Eukaryotic translation initiation factor (eIF) 2B, the guanine nucleotide exchange factor for eIF2, is a key target of translation control at the initiation step. The nucleotide exchange activity of eIF2B is inhibited by the stress-induced phosphorylation of eIF2. As a result, the level of active GTP-bound eIF2 is lowered, and protein synthesis is attenuated. eIF2B is a large multi-subunit complex composed of five different subunits, and all five of the subunits are the gene products responsible for the neurodegenerative disease, leukoencephalopathy with vanishing white matter. However, the overall structure of eIF2B has remained unresolved, due to the difficulty in preparing a sufficient amount of the eIF2B complex. To overcome this problem, we established the recombinant expression and purification method for eIF2B from the fission yeast Schizosaccharomyces pombe. All five of the eIF2B subunits were co-expressed and reconstructed into the complex in Escherichia coli cells. The complex was successfully purified with a high yield. This recombinant eIF2B complex contains each subunit in an equimolar ratio, and the size exclusion chromatography analysis suggests it forms a heterodecamer, consistent with recent reports. This eIF2B increased protein synthesis in the reconstituted in vitro human translation system. In addition, disease-linked mutations led to subunit dissociation. Furthermore, we crystallized this functional recombinant eIF2B, and the crystals diffracted to 3.0 Å resolution. 相似文献
17.
Schizosaccharomyces pombe carboxypeptidase Y (CPY) is synthesized as a zymogen and transported into the vacuole where maturation and activation occurs.
The 110-kDa S. pombe CPY precursor is processed twice and finally converted to a mature form consisting of polypeptides of approximately 19 and
32 kDa linked by a single disulfide bond. In Saccharomyces cerevisiae, maturation of CPY occurs mostly through the activity of vacuolar aspartyl protease Pep4p, whereas a Pep4p homolog has not
been found in the S. pombe genome database. Based on analysis of protease-deficient mutants, we found that S. pombe CPY was not able to be processed or activated in isp6Δpsp3Δ double disruptants. Both Isp6p and Psp3p are subtilase-type serine proteases with related sequences. Moreover, alkaline
phosphatase of S. pombe was found to be localized at the vacuolar membrane and was also unprocessed in isp6Δpsp3Δ double disruptants. Vacuolar localization of GFP-fused Isp6p and Psp3p was determined by fluorescence microscopy. These
results suggest that the two serine proteases Isp6p and Psp3p are functional in the vacuole and are involved in proteolytic
processing of vacuolar proteins. 相似文献
18.
19.