首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peptide hormones are key messengers in the signaling network between the nervous system, endocrine glands, energy stores and the gastrointestinal tract that regulates feeding and metabolism. Studies on the Drosophila nervous system have uncovered parallels and homologies in homeostatic peptidergic signaling between fruit flies and vertebrates. Yet, the role of enteroendocrine peptides in the regulation of feeding and metabolism has not been explored, with research hampered by the unknown identity of peptides produced by the fly's intestinal tract. We performed a peptidomic LC/MS analysis of the fruit fly midgut containing the enteroendocrine cells. By MS/MS fragmentation, we found 24 peptides from 9 different preprohormones in midgut extracts, including MIP-4 and 2 forms of AST-C. DH(31), CCHamide1 and CCHamide2 are biochemically characterized for the first time. All enteroendocrine peptides represent brain-gut peptides, and apparently are processed by Drosophila prohormone convertase 2 (AMON) as suggested by impaired peptide detectability in amon mutants and localization of amon-driven GFP to enteroendocrine cells. Because of its genetic amenability and peptide diversity, Drosophila provides a good model system to study peptide signaling. The identification of enteroendocrine peptides in the fruit fly provides a platform to address functions of gut peptide hormones in the regulation of feeding and metabolism.  相似文献   

2.
Gene expression and immunolocalisation studies have determined that the helicostatins are brain-gut peptides in larvae of the lepidopteran, Helicoverpa armigera. Mapping of the distribution of these peptides in the nervous system and alimentary canal has provided evidence for multifunctional regulatory roles. In situ hybridisation studies have shown that the helicostatin precursor gene is expressed in neurones of the central and stomatogastric nervous systems, and endocrine cells of the midgut demonstrating that the helicostatins are true brain-gut peptides. Antisera raised against Leu-callatostatin 3 (ANRYGFGL-NH(2)), a peptide isolated from the blowfly, Calliphora vomitoria was used to map the distribution of allatostatin-like immunoreactive (Ast-ir) material in H. armigera to elucidate possible functions of the helicostatins. In situ hybridisation studies verified that the helicostatin precursor gene is expressed in neurones shown to contain Ast-ir, providing strong evidence that the Ast-ir material is helicostatins. Extensive immunoreactive axonal projections into complex regions of neuropile indicate that the helicostatins may have a neuromodulatory role in the brain and segmental ganglia of the ventral nerve cord. The presence of large amounts of immunoreactive material in axons within the corpora cardiaca (CC) and transverse nerves of the perisympathetic nervous system, two known neurohaemal organs, provides evidence for a neurohormonal role. The corpora allata (CA) were innervated only sparsely by Ast-ir axons suggesting that the CA are not a neurohaemal release site or a target. Thus, it is unlikely that the helicostatins regulate juvenile hormone (JH) biosynthesis or release. Ast-ir axons extended from the frontal ganglion through the recurrent nerve and many branches were closely associated with muscles of the foregut, stomodeal valve, and anterior midgut, implicating helicostatins in regulation of foregut motility. Ast-ir material was also present in nerves associated with muscles of the pyloric valve and rectum, and in endocrine cells of the midgut.  相似文献   

3.
Myoinhibitory neuropeptides in the American cockroach   总被引:8,自引:0,他引:8  
Predel R  Rapus J  Eckert M 《Peptides》2001,22(2):199-208
A large number of myostimulatory neuropeptides from neurohaemal organs of the American cockroach have been described since 1989. These peptides, isolated from the retrocerebral complex and abdominal perisympathetic organs, are thought to be released as hormones. To study the coordinated action of these neuropeptides in the regulation of visceral muscle activity, it might be necessary to include myoinhibitors as well, however, not a single myoinhibitory neuropeptide of the American cockroach has been described so far. To fill this gap, we describe the isolation of LMS (leucomyosuppressin) and Pea-MIP (myoinhibitory peptide) from neurohaemal organs of the American cockroach. LMS was very effective in inhibiting phasic activity of all visceral muscles tested. It was found in the corpora cardiaca of different species of cockroaches, as well as in related insect groups, including mantids and termites. Pea-MIP which is strongly accumulated in the corpora cardiaca was not detected with a muscle bioassay system but when searching for tryptophane-containing peptides using a diode-array detector. This peptide caused only a moderate inhibition in visceral muscle assays. The distribution of Pea-MIP in neurohaemal organs and cells supplying these organs with Pea-MIP immunoreactive material, is described. Additionally to LMS and Pea-MIP, a member of the allatostatin peptide family, known to exhibit inhibitory properties in other insects, was tested in visceral muscle assays. This allatostatin was highly effective in inhibiting spontaneous activity of the foregut, but not of other tested visceral muscles of the American cockroach.  相似文献   

4.
Rhodnius prolixus, a blood-feeding hemipteran insect, ingests large meals which are followed by rapid diuresis to eliminate excess water and salt. In Rhodnius, serotonin and an unidentified peptide(s) [33,34] have been shown to act as neurohormonal diuretic factors. In other insects, two families of diuretic peptides, the corticotropin releasing factor (CRF)-like, and kinin peptides [9], have been identified and sequenced. Recently, we demonstrated the presence of a CRF-like diuretic peptide in the CNS and digestive system of Rhodnius [47] using immunohistochemistry and bioassay.In this study, combining immunohistochemistry and radioimmunoassay (RIA) techniques, we show the presence of leucokinin-like peptide(s) in the CNS and digestive system of Rhodnius 5th instar. Additionally, double-label immunohistochemistry demonstrates that the leucokinin-like and CRF-like peptides are co-localized in the posterior lateral neurosecretory cells of the mesothoracic ganglionic mass (MTGM) and in neurohaemal areas on abdominal nerves one and two, suggesting the possibility of co-release of the peptides into the hemolymph.Partially purified extracts of the CNS and neurohaemal tissue were tested in vitro on Malpighian tubule secretion and cAMP assays. The factors eluting with increasing acetonitrile percentages from Sep-Pak cartridges were assayed in the presence or absence of ketanserin, a serotonin antagonist which blocks the effects of serotonin on Malpighian tubules. The results indicate activity of serotonin and a CRF-like diuretic peptide on Rhodnius Malpighian tubules, but fail to demonstrate activity of the leucokinin-like peptide(s).The rapid diuresis following feeding is a highly coordinated event, requiring the movement of water and salt across the epithelial cells of the crop into the hemolymph, and from the hemolymph across the cells of the Malpighian tubules. The urine then travels along the Malpighian tubules into the hindgut in order to be expelled. The presence of a leucokinin-like peptide(s) in the CNS and digestive system, which co-localizes with a CRF-like peptide(s), suggests that kinins may play a role in the rapid diuresis, although possibly not directly on the Malpighian tubules.  相似文献   

5.
6.
Injections of haemolymph, organ extracts and various other substances, as well as in vitro experiments, show that ovary and oviduct extracts on the one hand, and dibutyryl cyclic AMP on the other, enhance ovulation, whereas parturition is stimulated by extracts of the brain, thoracic ganglionic mass, nerve XVII, different parts of the genital apparatus and perhaps proctolin. On the contrary, the proximal neurohaemal organs (corpus cardiacum and perisympathetic organs) appear to contain a substance inhibiting parturition. Lastly, normal intact flies cannot respond to extracts facilitating parturition in decapitated flies. Neuromuscular junctions probably containing peptides and neurotransmitters are described in the muscles of the ovaries, oviducts and the vaginal aperture. Other junctions containing neurotransmitters only are present in uterine and intersegmental muscles. The neurohaemal areas of nerve XVII contain 3 types of peptidergic terminals. From our overall results it is concluded that ovulation is regulated by neurosecretory products released at neuromuscular junctions in the ovaries and oviducts. Parturition control is more complicated. A first neurohormone (parturition-stimulating hormone) appears to be produced in the nerve centres and released in neurohaemal areas located on nerve XVII in the vicinity of the uterus; it enhances the contraction of this organ. A second neurohormone, the parturition-inhibiting hormone may be released in the corpora cardiaca and the median perisympathetic organ. A cephalic nervous factor might exert inhibitory action.  相似文献   

7.
We report that degradation of proteins microinjected into human fibroblasts is accompanied by release into the culture medium of peptide fragments and intact proteins as well as single amino acids. For the nine proteins and polypeptides microinjected, acid-precipitable radioactivity, i.e. peptide fragments and/or intact proteins, ranged from 10 to 67% of the total released radioactivity. Peptide fragments and/or intact protein accounted for 60% of the radioactivity released into the medium by cells microinjected with ribonuclease A. Two major radiolabeled peptide fragments were found, and one was of an appropriate size to function as an antigen in antigen-presenting cells. The peptides released from microinjected ribonuclease A were derived from lysosomal pathways of proteolysis based on several lines of evidence. Previous studies have shown that microinjected ribonuclease A is degraded to single amino acids entirely within lysosomes (McElligott, M. A., Miao, P., and Dice, J. F. (1985) J. Biol. Chem. 260, 11986-11993). We show that release of free amino acids and peptide fragments and/or intact protein was equivalently stimulated by serum deprivation and equivalently inhibited by NH4Cl. We also show that lysosomal degradation of endocytosed [3H]ribonuclease A was accompanied by the release of two peptide fragments similar in size and charge to those from microinjected [3H]ribonuclease A. These findings demonstrate that degradation within lysosomes occurs in a manner that spares specific peptides; they also suggest a previously unsuspected pathway by which cells can secrete cytosol-derived polypeptides.  相似文献   

8.
Two predominant peptides have been isolated from neurohaemal lobes of corpora cardiaca of 8000 adults of Locusta migratoria. Both peptides have been unambiguously characterized by automated peptide microsequencing and liquid secondary-ion mass spectrometry as a 50-residue peptide (5K peptide) and a 48-residue isologue (5K' peptide). Computer search of sequence data banks did not reveal any significant similarity with other identified proteins. The 5K peptides are remarkably rich in alanine residues (25%) and contain a stretch of five consecutive alanines. This structure suggests that these molecules could correspond to spacer peptides. This assumption is corroborated in the accompanying paper [Lagueux et al. (1990) Eur. J. Biochem. 187, 249-254] on the molecular cloning of the precursor protein which attributes to the 5K peptides a role analogous to that of the C peptides of insulins.  相似文献   

9.
In Drosophila melanogaster, seven distinct families of antimicrobial peptides with different structures and specificities are synthesized by the fat body and released into the hemolymph during the immune response. Using microscale high performance liquid chromatography, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and Edman degradation, we have isolated and characterized from immune-challenged Drosophila two novel induced molecules, under the control of the Imd pathway, that correspond to post-translationally modified antimicrobial peptides or peptide fragments. The first molecule is a doubly glycosylated form of drosocin, an O-glycosylated peptide that kills Gram-negative organisms. The second molecule represents a truncated form of the pro-domain of the Drosophila attacin C carrying two post-translational modifications and has significant structural similarities to proline-rich antibacterial peptides including drosocin. We have synthesized this peptide and found that it is active against Gram-negative bacteria. Furthermore, this activity is potentiated when the peptide is used in combination with the Drosophila antimicrobial peptide cecropin A. The synergistic action observed between these two molecules suggests that the truncated post-translationally modified pro-domain of attacin C by itself may play an important role in the antimicrobial defense of Drosophila.  相似文献   

10.
Class II MHC (MHC II) expression is restricted to professional APCs and thymic epithelium but it also occurs in the epithelial cells of autoimmune organs which are the unique targets of the CD4 autoreactive T cells in endocrine autoimmune diseases. This specificity is presumably conditioned by an epithelium-specific peptide repertoire associated to MHC II at the cell surface. MHC II expression and function is dependent on the action of two main chaperones, invariant chain (Ii) and DM, whose expression is coregulated with MHC II. However, there is limited information about the in vivo expression levels of these molecules and uncoordinated expression has been demonstrated in class II-positive epithelial cells that may influence the MHC-associated peptide repertoires and the outcome of the autoimmune response. We have examined the pool of peptides associated to DR4 molecules expressed by a neuroendocrine epithelial cell and the consequences of Ii and DM coexpression. The RINm5F rat insulinoma cell line was transfected with HLA-DRB1*0401, Ii, and DM molecules in four different combinations: RIN-DR4, -DR4Ii, -DR4DM, and -DR4IiDM. The analysis of the peptide repertoire and the identification of the DR4 naturally processed ligands in each transfected cell were achieved by mass spectrometry. The results demonstrate that 1) the expression of Ii and DM affected the DR4 peptide repertoires by producing important variations in their content and in the origin of peptides; 2) these restrictions affected the stability and sequence of the peptides of each repertoire; and 3) Ii and DM had both independent and coordinate effects on these repertoires.  相似文献   

11.
The functions of the 6-7 amino acid N-terminal domain conserved in insect and crustacean members of the hyperglycemic hormone (CHH) family were assayed by site-directed mutagenesis of Schistocerca gregaria ion-transport peptide (SchgrITP). Mutant peptides were expressed in Drosophila Kc1 cells and tested in a biological assay measuring stimulation of active Cl(-) transport across the locust ileum. We exchanged the N-terminal domain of SchgrITP with that of the shrimp Penaeus japonicus hyperglycemic hormone leaving the remainder of SchgrITP intact. The chimeric peptide was completely inactive in the ileal bioassay, showing that the N-terminus of SchgrITP is essential and that the 2 amino acids (phenylalanine-3 and aspartate-4) conserved in the shrimp and locust peptides are not sufficient for function. We made all possible alanine substitutions in the SchgrITP N-terminal domain. Only phenylalanines 2 and 3 were essential for function in the locust ileal bioassay. All N-terminal mutations were cleaved correctly from the prepropeptide, and expressed in similar concentrations as wild-type ITP suggesting the specific amino acids are not essential for these functions. Post-translational modification may explain a minor ITP isomorph observed in Drosophila Kc1 cell expression. Alanine substitution at position 2 produced a weak ITP antagonist. These structure-function studies, the first for any member of the CHH family, show that both conserved and unconserved amino acids contribute to SchgrITP ion-transport function and that the conserved aspartate in position 4 is required for a yet uncharacterized function.  相似文献   

12.
We describe the theoretical basis for a peptide identification method wherein peptides are represented as vectors based on their amino acid composition and grouped into clusters. Unknown peptides are identified by finding the database cluster and peptide entries with the shortest Euclidian distance. We demonstrate that the amino acid composition of peptides is virtually as informative as the sequence and allows rapid peptide identification more accurately than peptide mass alone.  相似文献   

13.
Conserved ATP-dependent proteases ensure the quality control of mitochondrial proteins and control essential steps in mitochondrial biogenesis. Recent studies demonstrated that non-assembled mitochondrially encoded proteins are degraded to peptides and amino acids that are released from mitochondria. Here, we have characterized peptides extruded from mitochondria by mass spectrometry and identified 270 peptides that are exported in an ATP- and temperature-dependent manner. The peptides originate from 51 mitochondrially and nuclearly encoded proteins localized mainly in the matrix and inner membrane, indicating that peptides generated by the activity of all known mitochondrial ATP-dependent proteases can be released from the organelle. Pulse-labeling experiments in logarithmically growing yeast cells revealed that approximately 6-12% of preexisting and newly imported proteins is degraded and contribute to this peptide pool. Under respiring conditions, we observed an increased proteolysis of newly imported proteins that suggests a higher turnover rate of respiratory chain components and thereby rationalizes the predominant appearance of representatives of this functional class in the detected peptide pool. These results demonstrated a constant efflux of peptides from mitochondria and provided new insight into the stability of the mitochondrial proteome and the efficiency of mitochondrial biogenesis.  相似文献   

14.
15.
The biosynthesis of neuroendocrine peptides is typically examined by following the rate of appearance of a radioactive amino acid into mature forms of peptides. In the present study, we labeled cell lines with L-leucine containing 10 deuterium residues (d(10)-Leu) and used mass spectrometry to measure the biosynthetic rate of gamma-lipotropin in the AtT-20 cell line and insulin in the INS-1 cell line. After 3 h of labeling, both peptides show detectable levels of the d-labeled form in the cells and media. The relative levels of the d-labeled forms are greater in the media than in the cells, consistent with previous studies that found that newly synthesized peptides are secreted at a higher rate than older peptides under basal conditions. When AtT-20 cells were stimulated with KCl or forskolin, the ratio of d- to H-labeled gamma-lipotropin in the medium decreased, suggesting that the older peptide was in a compartment that could be released upon the appropriate stimulation. Overexpression of proSAAS in AtT-20 cells reduced the ratio of d- to H-labeled gamma-lipotropin, consistent with the proposed role of proSAAS as an endogenous inhibitor of prohormone convertase-1. Labeling with d10-Leu was also used to test whether altering the pH of the secretory pathway with chloroquine affected the rate of peptide biosynthesis. In AtT-20 cells, 30 microm chloroquine for 3 or 6 h significantly reduced the rate of formation of gamma-lipotropin in both cells and media. Similarly, INS-1 cells treated with 10, 30, or 60 microm chloroquine for 6 h showed a significant decrease in the rate of formation of insulin in both cells and media. These results are consistent with the acidic pH optima for peptide processing enzymes. Stable isotopic labeling with d10-Leu provides a sensitive method to examine the rate of peptide formation in neuroendocrine cell lines.  相似文献   

16.
The guanylin family of peptides has 3 subclasses of peptides containing either 3 intramolecular disulfide bonds found in bacterial heat-stable enterotoxins (ST), or 2 disulfides observed in guanylin and uroguanylin, or a single disulfide exemplified by lymphoguanylin. These peptides bind to and activate cell-surface receptors that have intrinsic guanylate cyclase (GC) activity. These hormones are synthesized in the intestine and released both luminally and into the circulation, and are also produced within the kidney. Stimulation of renal target cells by guanylin peptides in vivo or ex vivo elicits a long-lived diuresis, natriuresis, and kaliuresis by both cGMP-dependent and independent mechanisms. Uroguanylin may act as a hormone in a novel endocrine axis linking the digestive system and kidney as well as a paracrine system intrarenally to increase sodium excretion in the postprandial period. This highly integrated and redundant mechanism allows the organism to maintain sodium balance by eliminating excess sodium in the urine. In addition, small concentrations of the atrial natriuretic peptide (ANP) can synergize with low concentrations of both guanylin or uroguanylin, which do not induce natriuresis per se, to promote significant natriuresis. Interestingly, the activation of the particulate guanylate cyclase receptors by natriuretic peptides can promote relaxation of animal and human penile erectile tissue and increase intracavernosal pressure to induce penile erection. These peptides can be prototypes for new drugs to treat erectile dysfunction, especially in patients with endothelial and nitrergic dysfunction, such as in diabetes.  相似文献   

17.
Park D  Hou X  Sweedler JV  Taghert PH 《Peptides》2012,36(2):251-256
Bioactive peptides are important therapeutic drugs, yet conventional methods of peptide synthesis are challenged to meet increasing demand. We developed a novel and efficient means of metabolic engineering: therapeutic peptide production in Drosophila and as a proof of concept, we demonstrate production of fully matured human insulin. This in vivo system offers an innovative means to produce valuable bioactive peptides for therapies, its inherent flexibility facilitates drug development, and its ease of producing fully processed peptides simplifies metabolic engineering of new peptide products.  相似文献   

18.
 This review focuses on some selected aspects of the endocrine heart and natriuretic peptides. The endocrine heart is composed of specific myoendocrine cells of the cardiac atria. The myoendocrine cells synthesize and secrete the natriuretic peptide hormones which exhibit natriuretic, diuretic, and vasorelaxant properties. Immunohistochemical analyses show that natriuretic peptides of the A-type and B-type are localized not only in the specific granules of these myoendocrine cells but also in many other organs including the brain, adrenal medulla, and kidney. Also, their receptors are detected in many organs showing the multiple functions of these regulatory peptides. Of the members of the natriuretic peptide family, ANP (ANP for atrial natriuretic peptide; also denominated cardiodilatin, CDD), brain natriuretic peptide (BNP), C-type natriuretic peptide (CNP), and the A-type, including its renal form, urodilatin, are emphasized in this review. Urodilatin is localized in the kidney, differentially processed, and secreted into the urine. The intrarenal synthesis and secretion is the basis for a paracrine system regulating water and sodium reabsorption at the level of the collecting duct. CDD/ANP-1-126, cleaved from a precursor of 126 amino acids in the heart to a 28-amino acid-containing circulating molecular form (CDD/ANP-99-126), and urodilatin (CDD/ANP-95-126) share similar biochemical features and biological functions, but urodilatin may be more involved in the regulation of body fluid volume and water–electrolyte excretion, while circulating CDD/ANP-99-126 is responsible for blood pressure regulation. The physiological and pharmacological properties of these peptides have great clinical impact, and as a consequence urodilatin is involved in drug development for the treatment of acute renal failure, cardiomyopathia, and acute asthma. Accepted: 8 July 1998  相似文献   

19.
Neuroendocrine light yellow cells of the pond snail Lymnaea stagnalis express a neuropeptide gene encoding three different peptides. The morphology of the cell system has been studied by in situ hybridization, using two synthetic oligonucleotides encoding parts of light yellow cell peptides I and III, and by immunocytochemistry with antisera to synthetic light yellow cell peptide II and to two fragments of light yellow cell peptide I. One large cluster of light yellow cells was observed in the ventro-lateral protrusion of the right parietal ganglion, smaller clusters lying in the posterior dorsal part of this ganglion and in the visceral ganglion. The cells had an extended central neurohaemal area. Immunopositive axons projected into all nerves of the ganglia of the visceral complex, into the superior cervical and the nuchal nerves, and into the connective tissue surrounding the central nervous system. Axon tracts ramified between the muscle cells of the walls of the anterior aorta and of smaller blood vessels. Peripheral innervation by the light yellow cell system was only found in muscular tissue of the ureter papilla. The antisera to the two peptide fragments of light yellow cell peptide I not only stained the light yellow cells, but also the identified yellow cells, which have previously been shown to produce the sodium influx-stimulating neuropeptide. The latter cells were negative to the in situ hybridization probes and antisera specific to the light yellow cell system. It is therefore unlikely that the yellow cells express the light yellow cell neuropeptide gene. Nevertheless, the cells contain a neuropeptide sharing antigenic determinants with light yellow cell peptide I. Our observations support the hypothesis that light yellow cells are involved in maintaining the shape of the animal via the regulation of ion- and waterbalance processes and blood pressure.  相似文献   

20.
《Fly》2013,7(4):183-187
ABSTRACT

The coupling of growth to nutritional status is an important adaptive response of living organisms to their environment. For this ability, animals have evolved various strategies, including endocrine systems that respond to changing nutritional conditions. In animals, nutritional information is mostly perceived by peripheral organs, such as the digestive tract and adipose tissues, and is subsequently transmitted to other peripheral organs or the brain, which integrates the incoming signals and orchestrates physiological and behavioral responses. In Drosophila melanogaster, adipose tissue, known as the fat body, functions as an endocrine organ that communicates with the brain. This fat body-brain axis coordinates growth with nutritional status by regulating the secretion of Drosophila insulin-like peptides (Dilps) from the brain. However, the molecular nature of the fat body-brain axis remains to be elucidated. We recently demonstrated that a small peptide, CCHamide-2 (CCHa2), expressed in the fat body and gut, directly stimulates its receptor (CCHa2-R) in the brain, leading to Dilp production. Notably, the expression of CCHa2 is sensitive to the presence of nutrients, particularly sugars. Our results, together with the results of previous studies, show that signaling between peripheral organs and the brain is a conserved strategy that couples nutritional availability to organismal physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号