首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
We report a novel chromatin-modulating factor, nuclear FK506-binding protein (FKBP). It is a member of the peptidyl prolyl cis-trans isomerase (PPIase) family, whose members were originally identified as enzymes that assist in the proper folding of polypeptides. The endogenous FKBP gene is required for the in vivo silencing of gene expression at the rDNA locus and FKBP has histone chaperone activity in vitro. Both of these properties depend on the N-terminal non-PPIase domain of the protein. The C-terminal PPIase domain is not essential for the histone chaperone activity in vitro, but it regulates rDNA silencing in vivo. Chromatin immunoprecipitation showed that nuclear FKBP associates with chromatin at rDNA loci in vivo. These in vivo and in vitro findings in nuclear FKBPs reveal a hitherto unsuspected link between PPIases and the alteration of chromatin structure.  相似文献   

2.
Xiao H  Jackson V  Lei M 《FEBS letters》2006,580(18):4357-4364
Fpr4, a FK506-binding protein (FKBP), is a recently identified novel histone chaperone. How it interacts with histones and facilitates their deposition onto DNA, however, are not understood. Here, we report a functional analysis that shows Fpr4 forms complexes with histones and facilitates nucleosome assembly like previously characterized acidic histone chaperones. We also show that the chaperone activity of Fpr4 resides solely in an acidic domain, while the peptidylprolyl isomerase domain conserved among all FKBPs inhibits the chaperone activity. These observations argue that Fpr4, while unique structurally, deposits histones onto DNA for nucleosome assembly through the well-established mechanism shared by other chaperones.  相似文献   

3.
4.
FK506-binding proteins are the peptidyl prolyl cis-trans isomerases that are involved in various intracellular events. We characterized a novel mouse FK506-binding protein homolog, FKBP133/KIAA0674, in the developing nervous system. FKBP133 contains a domain similar to Wiskott-Aldrich syndrome protein homology region 1 (WH1) and a domain homologous to FK506-binding protein motif. FKBP133 was predominantly expressed in cerebral cortex, hippocampus, and peripheral ganglia at embryonic day 18.5. FKBP133 protein was distributed in the axonal shafts and was partially co-localized with F-actin in the growth cones of dorsal root ganglion neurons (DRG). The number of filopodia was increased in the DRG neurons overexpressing FKBP133. In contrast, the overexpression of a mutant deleted the WH1 domain reduced the growth cone size and the number of filopodia. Furthermore, the neurons overexpressing FKBP133 became significantly resistant to Semaphorin-3A induced collapse response. These results suggest that FKBP133 modulates growth cone behavior with the WH1 domain.  相似文献   

5.
Analysis of the human repertoire of the FK506-binding protein (FKBP) family of peptidyl-prolyl cis/trans isomerases has identified an expansion of genes that code for human FKBPs in the secretory pathway. There are distinct differences in tissue distribution and expression levels of each variant. In this article we describe the characterization of human FKBP19 (Entrez Gene ID: FKBP11), an FK506-binding protein predominantly expressed in vertebrate secretory tissues. The FKBP19 sequence comprises a cleavable N-terminal signal sequence followed by a putative peptidyl-prolyl cis/trans isomerase domain with homology to FKBP12. This domain binds FK506 weakly in vitro. FKBP19 mRNA is abundant in human pancreas and other secretory tissues and high levels of FKBP19 protein are detected in the acinar cells of mouse pancreas.  相似文献   

6.
7.
Patterson CE  Gao J  Rooney AP  Davis EC 《Genomics》2002,79(6):881-889
FK506-binding proteins (FKBPs) are peptidyl-prolyl cis/trans isomerases PPIases) that bind the immunosuppressive drug FK506. Of the many eukaryotic FKBPs that have been identified, FKBP65 is an endoplasmic reticulum-localized protein that associates with tropoelastin in the secretory pathway. Unlike any other FKBP characterized so far, FKBP65 is developmentally regulated and may be intimately involved in organogenesis. Here, we report the isolation, sequencing, and genomic organization of the mouse FKBP65 gene (Fkbp10) and provide a comparison with the human ortholog. Mouse Fkbp10 contains 10 exons and 9 introns encompassing 8.5 kb. The exon-intron organization of Fkbp10 displays a pattern of repetition that reflects the coding sequence of the four PPIase, or FK506-binding, domains present in the mature protein. The exon organization of the PPIase domains differs from that of the other FKBP family members. The evolution of the FKBP65 gene and other members of the FKBP multigene family were therefore investigated from a taxonomically diverse array of prokaryotic and eukaryotic taxa. These analyses suggest that the FKBP multigene family emerged early in the evolutionary history of eukaryotes, and during that time some members, including the FKBP65 gene, have experienced gene elongation by means of PPIase domain duplication.  相似文献   

8.
The folding and trafficking of tropoelastin is thought to be mediated by intracellular chaperones, although the identity and role of any tropoelastin chaperone remain to be determined. To identify proteins that are associated with tropoelastin intracellularly, bifunctional chemical cross-linkers were used to covalently stabilize interactions between tropoelastin and associated proteins in the secretory pathway in intact fetal bovine auricular chondrocytes. Immunoprecipitation of tropoelastin from cell lysates after cross-linking and analysis by SDS-PAGE showed the presence of two proteins of ~74 kD (p74) and 78 kD (p78) that coimmunoprecipitated with tropoelastin. Microsequencing of peptide fragments from a cyanogen bromide digest of p78 identified this protein as BiP and sequence analysis identified p74 as the peptidyl-prolyl cis–trans isomerase, FKPB65. The appearance of BiP and FKBP65 in the immunoprecipitations could be enhanced by the addition of brefeldin A (BFA) and N-acetyl-leu-leu-norleucinal (ALLN) to the culture medium for the final 4 h of labeling. Tropoelastin accumulates in the fused ER/Golgi compartment in the presence of BFA if its degradation is inhibited by ALLN (Davis, E.C., and R.P. Mecham. 1996. J. Biol. Chem. 271:3787–3794). The use of BFA and other secretion-disrupting agents suggests that the association of tropoelastin with FKBP65 occurs in the ER. Results from this study provide the first identification of a ligand for an FKBP in the secretory pathway and suggest that the prolyl cis–trans isomerase activity of FKBP65 may be important for the proper folding of the proline-rich tropoelastin molecule before secretion.  相似文献   

9.
Human FK506 binding protein 65 is associated with colorectal cancer   总被引:1,自引:0,他引:1  
We initiated the present study to identify new genes associated with colorectal cancer. In a previously published microarray study an EST (W80763), later identified as the gene hFKBP10 (NM_021939), was found to be strongly expressed in tumors while absent in the normal mucosa. Here we describe this gene hFKBP10 together with its encoded protein hFKBP65 as a novel marker associated with colorectal cancer. Analysis of 31 colorectal adenocarcinomas and 14 normal colorectal mucosa by RealTime PCR for hFKBP10 showed a significant up-regulation in tumors, when compared with normal mucosa. Immunohistochemical analysis of 26 adenocarcinomas and matching normal mucosa, as well as benign hyperplastic polyps and adenomas, using a monoclonal anti-hFKBP65 antibody, showed that the protein was not present in normal colorectal epithelial cells, but strongly expressed in the tumor cells of colorectal cancer. The protein was also expressed in fibroblasts of both normal mucosa and tumor tissue. Western blot analysis of matched tumors and normal mucosa supported the finding of increased hFKBP65 expression in tumors compared with normal mucosa, in addition to identifying the molecular mass of hFKBP65 to approximately 72 kDa. Cellular localization and glycosylation studies revealed the hFKBP65 protein to be localized in the endoplasmic reticulum, and to be N-glycosylated. In conclusion, the protein hFKBP65 is associated with colorectal cancer, and we hypothesize the protein to be involved in fibroblast and transformed epithelial cell-specific protein synthesis in the endoplasmic reticulum.  相似文献   

10.
The binary Clostridium botulinum C2 toxin consists of the binding/translocation component C2IIa and the separate enzyme component C2I. C2IIa delivers C2I into the cytosol of eukaryotic target cells where C2I ADP-ribosylates actin. After receptor-mediated endocytosis of the C2IIa/C2I complex, C2IIa forms pores in membranes of acidified early endosomes and unfolded C2I translocates through the pores into the cytosol. Membrane translocation of C2I is facilitated by the activities of host cell chaperone Hsp90 and the peptidyl-prolyl cis/trans isomerase (PPIase) cyclophilin A. Here, we demonstrated that Hsp90 co-precipitates with C2I from lysates of C2 toxin-treated cells and identified the FK506-binding protein (FKBP) 51 as a novel interaction partner of C2I in vitro and in intact mammalian cells. Prompted by this finding, we used the specific pharmacological inhibitor FK506 to investigate whether the PPIase activity of FKBPs plays a role during membrane translocation of C2 toxin. Treatment of cells with FK506 protected cultured cells from intoxication with C2 toxin. Moreover, FK506 inhibited the pH-dependent translocation of C2I across membranes into the cytosol but did not interfere with the enzyme activity of C2I or binding of C2 toxin to cells. Furthermore, FK506 treatment delayed intoxication with the related binary actin ADP-ribosylating toxins from Clostridium perfringens (iota toxin) and Clostridium difficile (CDT) but not with the Rho-glucosylating Clostridium difficile toxin A (TcdA). In conclusion, our results support the hypothesis that clostridial binary actin-ADP-ribosylating toxins share a specific FKBP-dependent translocation mechanism during their uptake into mammalian cells.  相似文献   

11.
12.
13.
A FKBP cDNA encoding murine FK506 binding protein (FKBP) has been cloned, and its complete nucleotide sequence has been determined. The open reading frame within the 1556-bp cDNA segment encodes an 108 amino acid (aa) protein that differs from the human FKBP by three aa and from the bovine FKBP by five aa. Molecular modeling of the protein places the aa substitutions at positions not directly involved in drug binding or interaction with the potential drug target protein, calcineurin A.  相似文献   

14.
The ryanodine receptor (RyR) calcium release channel functions as a redox sensor that is sensitive to channel modulators. The FK506-binding protein (FKBP) is an important regulator of channel activity, and disruption of the RyR2-FKBP12.6 association has been implicated in cardiac disease. In the present study, we investigated whether the RyR-FKBP association is redox-regulated. Using co-immunoprecipitation assays of solubilized native RyR2 from cardiac muscle sarcoplasmic reticulum (SR) with recombinant [(35)S]FKBP12.6, we found that the sulfydryl-oxidizing agents, H(2)O(2) and diamide, result in diminished RyR2-FKBP12.6 binding. Co-sedimentation experiments of cardiac SR vesicles with [(35)S]FKBP12.6 also demonstrated that oxidizing reagents decreased FKBP binding. Matching results were obtained with skeletal muscle SR. Notably, H(2)O(2) and diamide differentially affected the RyR2-FKBP12.6 interaction, decreasing binding to approximately 75 and approximately 50% of control, respectively. In addition, the effect of H(2)O(2) was negligible when the channel was in its closed state or when applied after FKBP binding had occurred, whereas diamide was always effective. A cysteine-null mutant FKBP12.6 retained redox-sensitive interaction with RyR2, suggesting that the effect of the redox reagents is exclusively via sites on the ryanodine receptor. K201 (or JTV519), a drug that has been proposed to prevent FKBP12.6 dissociation from the RyR2 channel complex, did not restore normal FKBP binding under oxidizing conditions. Our results indicate that the redox state of the RyR is intimately connected with FKBP binding affinity.  相似文献   

15.
A member of a eukaryotic gene superfamily, encoding a peptidylproline cis-trans-isomerase (rotamase) has been isolated from a maize (Zea mays L. A69Y+) endosperm cDNA library. The maize sequence (mzFKBP-66) encodes a 66-kDa polypeptide most closely related to the subclass of rotamases which bind an immunosuppressive drug, FK506, (termed FK506-binding proteins, FKBPs), and possesses four tandem copies of the FKBP-like binding domain. The sequence mzFKBP-66 is expressed ubiquitously in the maize plant, and the protein encoded is present in both cytosolic and nuclear compartments within the cell. Both the native mzFKBP-66 and a recombinant protein overexpressed in Escherichia coli showed peptidylproline␣cis-trans-isomerase (PPIase) activity at rates comparable to those reported for mammalian immunophilins. This activity was also sensitive to inhibition by FK506. Immunoaffinity chromatography using anti-mzFKBP66 demonstrated an association of the protein with an unknown 36-kDa polypeptide, and affinity chromatography of mzFKBP-66 on calmodulin-agarose beads indicated the presence of a calmodulin-binding site. The existence of mzFKBP-66-associated proteins suggests that plant immunophilins may act as part of multicomponent complexes, as has been shown for other representatives of this class of enzyme. Received: 9 June 1997 / Accepted: 19 August 1997  相似文献   

16.
FK 506-binding proteins (FKBPs) are a family of cytosolic proteins identified by virtue of their ability to bind the immunosuppressants FK 506 and rapamycin. While their function has been extensively studied in the immune system, little is known about their role during early embryonic development. Here we describe the cloning and expression of a new Xenopus FKBP (xFKBP). xFKBP encodes a 63-kDa protein that shares high sequence homology with mouse FKBP65. It is expressed maternally and becomes restricted after the gastrula stage to dorsal mesoderm and notochord. At the tailbud stage expression persists in the notochord and begins to accumulate in epidermis, branchial arches and developing somites. In adults, xFKBP mRNA is confined to the testis.  相似文献   

17.
Calcineurin, a Ca2+/calmodulin-dependent protein phosphatase, plays an important role in various physiological functions including T cell activation. This enzyme is a target molecule for the immunosuppressants, cyclosporin A and FK506. In the present study, we investigated immunohistochemical localization of calcineurin and FKBP12, an FK506-binding protein, in human thymus and epidermis. The catalytic subunit (calcineurin A) of calcineurin was abundantly expressed in Hassall's corpuscles which were localized in the thymic medulla and represented the terminal stages of thymic medullary epithelium. The regulatory subunit (calcineurin B) of calcineurin was also expressed in high amounts in Hassall's corpuscles. In the epidermis, which shows similarities to Hassall's corpuscles, both subunits were also abundantly expressed, and their expression increased with the differentiation of keratinocytes. FKBP12 was observed to be expressed abundantly, both in Hassall's corpuscles and the entire epidermis. These findings suggest that the differentiated forms of the two cell types, which are the thymic medullary epithelial cell and the keratinocyte, are the target for pharmacological actions of FK506.  相似文献   

18.
Various human neurodegenerative disorders are associated with processes that involve misfolding of polypeptide chains. These so-called protein misfolding disorders include Alzheimer's and Parkinson's diseases and an increasing number of inherited syndromes that affect neurons involved in motor control circuits throughout the central nervous system. The reasons behind the particular susceptibility of neurons to misfolded proteins are currently not known. The main function of a class of proteins known as molecular chaperones is to prevent protein misfolding and aggregation. Although neuronal cells contain the major known classes of molecular chaperones, central-nervous-system-specific chaperones that maintain the neuronal proteome free from misfolded proteins are not well defined. In this study, we assign a novel molecular chaperone activity to the protein sacsin responsible for autosomal recessive spastic ataxia of Charlevoix-Saguenay, a degenerative disorder of the cerebellum and spinal cord. Using purified components, we demonstrate that a region of sacsin that contains a segment with homology to the molecular chaperone Hsp90 is able to enhance the refolding efficiency of the model client protein firefly luciferase. We show that this region of sacsin is highly capable of maintaining client polypeptides in soluble folding-competent states. Furthermore, we demonstrate that sacsin can efficiently cooperate with members of the Hsp70 chaperone family to increase the yields of correctly folded client proteins. Thus, we have identified a novel chaperone directly involved in a human neurodegenerative disorder.  相似文献   

19.
20.
Tasab M  Batten MR  Bulleid NJ 《The EMBO journal》2000,19(10):2204-2211
Hsp47 is a heat-shock protein that interacts transiently with procollagen during its folding, assembly and transport from the endoplasmic reticulum (ER) of mammalian cells. It has been suggested to carry out a diverse range of functions, such as acting as a molecular chaperone facilitating the folding and assembly of procollagen molecules, retaining unfolded molecules within the ER, and assisting the transport of correctly folded molecules from the ER to the Golgi apparatus. Here we define the substrate recognition of Hsp47, demonstrating that it interacts preferentially with triple-helical procollagen molecules. The association of Hsp47 with procollagen coincides with the formation of a collagen triple helix. This demonstrates that Hsp47's role in procollagen folding and assembly is distinct from that of prolyl 4-hydroxylase. These results indicate that Hsp47 acts as a novel molecular chaperone, potentially stabilizing the correctly folded collagen helix from heat denaturation before its transport from the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号