首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sitati EM  Diamond MS 《Journal of virology》2006,80(24):12060-12069
Although studies have established that innate and adaptive immune responses are important in controlling West Nile virus (WNV) infection, the function of CD4(+) T lymphocytes in modulating viral pathogenesis is less well characterized. Using a mouse model, we examined the role of CD4(+) T cells in coordinating protection against WNV infection. A genetic or acquired deficiency of CD4(+) T cells resulted in a protracted WNV infection in the central nervous system (CNS) that culminated in uniform lethality by 50 days after infection. Mice surviving past day 10 had high-level persistent WNV infection in the CNS compared to wild-type mice, even 45 days following infection. The absence of CD4(+) T-cell help did not affect the kinetics of WNV infection in the spleen and serum, suggesting a role for CD4-independent clearance mechanisms in peripheral tissues. WNV-specific immunoglobulin M (IgM) levels were similar to those of wild-type mice in CD4-deficient mice early during infection but dropped approximately 20-fold at day 15 postinfection, whereas IgG levels in CD4-deficient mice were approximately 100- to 1,000-fold lower than in wild-type mice throughout the course of infection. WNV-specific CD8(+) T-cell activation and trafficking to the CNS were unaffected by the absence of CD4(+) T cells at day 9 postinfection but were markedly compromised at day 15. Our experiments suggest that the dominant protective role of CD4(+) T cells during primary WNV infection is to provide help for antibody responses and sustain WNV-specific CD8(+) T-cell responses in the CNS that enable viral clearance.  相似文献   

2.
A genetic absence of the common IFN-α/β signaling receptor (IFNAR) in mice is associated with enhanced viral replication and altered adaptive immune responses. However, analysis of IFNAR(-/-) mice is limited for studying the functions of type I IFN at discrete stages of viral infection. To define the temporal functions of type I IFN signaling in the context of infection by West Nile virus (WNV), we treated mice with MAR1-5A3, a neutralizing, non cell-depleting anti-IFNAR antibody. Inhibition of type I IFN signaling at or before day 2 after infection was associated with markedly enhanced viral burden, whereas treatment at day 4 had substantially less effect on WNV dissemination. While antibody treatment prior to infection resulted in massive expansion of virus-specific CD8(+) T cells, blockade of type I IFN signaling starting at day 4 induced dysfunctional CD8(+) T cells with depressed cytokine responses and expression of phenotypic markers suggesting exhaustion. Thus, only the later maturation phase of anti-WNV CD8(+) T cell development requires type I IFN signaling. WNV infection experiments in BATF3(-/-) mice, which lack CD8-α dendritic cells and have impaired priming due to inefficient antigen cross-presentation, revealed a similar effect of blocking IFN signaling on CD8(+) T cell maturation. Collectively, our results suggest that cell non-autonomous type I IFN signaling shapes maturation of antiviral CD8(+) T cell response at a stage distinct from the initial priming event.  相似文献   

3.
Samuel MA  Diamond MS 《Journal of virology》2005,79(21):13350-13361
West Nile virus (WNV) is a mosquito-borne flavivirus that is neurotropic in humans, birds, and other animals. While adaptive immunity plays an important role in preventing WNV spread to the central nervous system (CNS), little is known about how alpha/beta interferon (IFN-alpha/beta) protects against peripheral and CNS infection. In this study, we examine the virulence and tropism of WNV in IFN-alpha/beta receptor-deficient (IFN- alpha/betaR-/-) mice and primary neuronal cultures. IFN-alpha/betaR-/- mice were acutely susceptible to WNV infection through subcutaneous inoculation, with 100% mortality and a mean time to death (MTD) of 4.6 +/- 0.7 and 3.8+/- 0.5 days after infection with 10(0) and 10(2) PFU, respectively. In contrast, congenic wild-type 129Sv/Ev mice infected with 10(2) PFU showed 62% mortality and a MTD of 11.9 +/- 1.9 days. IFN-alpha/betaR-/- mice developed high viral loads by day 3 after infection in nearly all tissues assayed, including many that were not infected in wild-type mice. IFN-alpha/betaR-/- mice also demonstrated altered cellular tropism, with increased infection in macrophages, B cells, and T cells in the spleen. Additionally, treatment of primary wild-type neurons in vitro with IFN-beta either before or after infection increased neuronal survival independent of its effect on WNV replication. Collectively, our data suggest that IFN-alpha/beta controls WNV infection by restricting tropism and viral burden and by preventing death of infected neurons.  相似文献   

4.
Alpha/beta interferons (IFN-alpha/betas) are known to antagonize herpes simplex virus type 1 (HSV-1) infection by directly blocking viral replication and promoting additional innate and adaptive, antiviral immune responses. To further define the relationship between the adaptive immune response and IFN-alpha/beta, the protective effect induced following the topical application of plasmid DNA containing the murine IFN-alpha 1 transgene onto the corneas of wild-type and T-cell-deficient mice was evaluated. Mice homozygous for both the T-cell receptor (TCR) beta- and delta-targeted mutations expressing no alpha beta or gamma delta TCR (alpha beta/gamma delta TCR double knockout [dKO]) treated with the IFN-alpha 1 transgene succumbed to ocular HSV-1 infection at a rate similar to that of alpha beta/gamma delta TCR dKO mice treated with the plasmid vector DNA. Conversely, mice with targeted disruption of the TCR delta chain and expressing no gamma delta TCR(+) cells treated with the IFN-alpha 1 transgene survived the infection to a greater extent than the plasmid vector-treated counterpart and at a level similar to that of wild-type controls treated with the IFN-alpha 1 transgene. By comparison, mice with targeted disruption of the TCR beta chain and expressing no alpha beta TCR(+) cells (alpha beta TCR knockout [KO]) showed no difference upon treatment with the IFN-alpha1 transgene or the plasmid vector control, with 0% survival following HSV-1 infection. Adoptively transferring CD4(+) but not CD8(+) T cells from wild-type but not IFN-gamma-deficient mice reestablished the antiviral efficacy of the IFN-alpha 1 transgene in alpha beta TCR KO mice. Collectively, the results indicate that the protective effect mediated by topical application of a plasmid construct containing the murine IFN-alpha 1 transgene requires the presence of CD4(+) T cells capable of IFN-gamma synthesis.  相似文献   

5.
6.
Infection with West Nile virus (WNV) causes fatal encephalitis more frequently in immunocompromised humans than in those with a healthy immune system. Although a complete understanding of this increased risk remains unclear, experiments with mice have begun to define how different components of the adaptive and innate immune response function to limit infection. Previously, we demonstrated that components of humoral immunity, particularly immunoglobulin M (IgM) and IgG, have critical roles in preventing dissemination of WNV infection to the central nervous system. In this study, we addressed the function of CD8(+) T cells in controlling WNV infection. Mice that lacked CD8(+) T cells or classical class Ia major histocompatibility complex (MHC) antigens had higher central nervous system viral burdens and increased mortality rates after infection with a low-passage-number WNV isolate. In contrast, an absence of CD8(+) T cells had no effect on the qualitative or quantitative antibody response and did not alter the kinetics or magnitude of viremia. In the subset of CD8(+)-T-cell-deficient mice that survived initial WNV challenge, infectious virus was recovered from central nervous system compartments for several weeks. Primary or memory CD8(+) T cells that were generated in vivo efficiently killed target cells that displayed WNV antigens in a class I MHC-restricted manner. Collectively, our experiments suggest that, while specific antibody is responsible for terminating viremia, CD8(+) T cells have an important function in clearing infection from tissues and preventing viral persistence.  相似文献   

7.
The first weeks of life are characterized by immune tolerance and increased susceptibility to intracellular pathogens. The neonatal adaptive response to HSV is attenuated compared with adult control models in humans and mice. T Regulatory cells (Tregs) control autoimmunity and excessive immune responses to infection. We therefore compared Treg responses in the draining lymph nodes (LN) of HSV-infected neonatal and adult C57BL/6 mice with the effect of Treg depletion/inactivation by anti-CD25 (PC61) treatment before infection on Ag-specific T cell effector responses at this site. There was a small, but significant increase in the frequency of CD4(+)Foxp3(+) Tregs at day 3 postinfection (p.i.) in the LN of neonatal and adult mice, compared with age-matched mock-infected controls. Depletion of Tregs before HSV infection significantly enhanced HSV-specific CD8(+) T cell cytotoxicity in vivo, cell number, activation, and granzyme B expression 4 days p.i. only in neonatal mice, and significantly enhanced CD8(+) and CD4(+) T cell IFN-gamma responses in both infected adults and neonates. Treg depletion also reduced the titer of infectious virus in the draining LN and nervous system of infected neonates on days 2 and 3 p.i. Treg suppression of the neonatal CTL response p.i. with HSV was associated with increased expression of TGF-beta in the draining LN at day 4 p.i. compared with uninfected neonates, but IL-10 was increased in infected adults alone. These experiments support the notion that the newborn primary T cell effector responses to HSV are suppressed by Tregs.  相似文献   

8.
The activation and entry of antigen-specific CD8(+) T cells into the central nervous system is an essential step towards clearance of West Nile virus (WNV) from infected neurons. The molecular signals responsible for the directed migration of virus-specific T cells and their cellular sources are presently unknown. Here we demonstrate that in response to WNV infection, neurons secrete the chemokine CXCL10, which recruits effector T cells via the chemokine receptor CXCR3. Neutralization or a genetic deficiency of CXCL10 leads to a decrease in CXCR3(+) CD8(+) T-cell trafficking, an increase in viral burden in the brain, and enhanced morbidity and mortality. These data support a new paradigm in chemokine neurobiology, as neurons are not generally considered to generate antiviral immune responses, and CXCL10 may represent a novel neuroprotective agent in response to WNV infection in the central nervous system.  相似文献   

9.
Experiments designed to distinguish virus-specific from non-virus-specific T cells showed that bystander T cells underwent apoptosis and substantial attrition in the wake of a strong T-cell response. Memory CD8 T cells (CD8(+) CD44(hi)) were most affected. During acute viral infection, transgenic T cells that were clearly defined as non-virus specific decreased in number and showed an increase in apoptosis. Also, use of lymphocytic choriomeningitis virus (LCMV) carrier mice, which lack LCMV-specific T cells, showed a significant decline in non-virus-specific memory CD8 T cells that correlated to an increase in apoptosis in response to the proliferation of adoptively transferred virus-specific T cells. Attrition of T cells early during infection correlated with the alpha/beta interferon (IFN-alpha/beta) peak, and the IFN inducer poly(I:C) caused apoptosis and attrition of CD8(+) CD44(hi) T cells in normal mice but not in IFN-alpha/beta receptor-deficient mice. Apoptotic attrition of bystander T cells may make room for the antigen-specific expansion of T cells during infection and may, in part, account for the loss of T-cell memory that occurs when the host undergoes subsequent infections.  相似文献   

10.
Memory CD8+ T cells provide an early source of IFN-gamma   总被引:7,自引:0,他引:7  
During the non-Ag-specific early phase of infection, IFN-gamma is believed to be primarily provided by NK and NKT cells in response to pathogen-derived inflammatory mediators. To test whether other cell types were involved in early IFN-gamma release, IFN-gamma-producing cells were visualized in spleens and lymph nodes of LPS-injected mice. In addition to NK and NKT cells, IFN-gamma was also detected in a significant fraction of CD8(+) T cells. CD8(+) T cells represented the second major population of IFN-gamma-producing cells in the spleen ( approximately 30%) and the majority of IFN-gamma(+) cells in the lymph nodes ( approximately 70%). LPS-induced IFN-gamma production by CD8(+) T cells was MHC class I independent and was restricted to CD44(high) (memory phenotype) cells. Experiments performed with C3H/HeJ (LPS-nonresponder) mice suggested that CD8(+) T cells responded to LPS indirectly through macrophage/dendritic cell-derived IFN-alpha/beta, IL-12, and IL-18. IFN-gamma was also detected in memory CD8(+) T cells from mice injected with type I IFN or with poly(I:C), a synthetic dsRNA that mimics early activation by RNA viruses. Taken together, these results suggest that in response to bacterial and viral products, memory T cells may contribute to innate immunity by providing an early non-Ag-specific source of IFN-gamma.  相似文献   

11.
12.
Wang Y  Lobigs M  Lee E  Müllbacher A 《Journal of virology》2003,77(24):13323-13334
C57BL/6J mice infected intravenously with the Sarafend strain of West Nile virus (WNV) develop a characteristic central nervous system (CNS) disease, including an acute inflammatory reaction. Dose response studies indicate two distinct kinetics of mortality. At high doses of infection (10(8) PFU), direct infection of the brain occurred within 24 h, resulting in 100% mortality with a 6-day mean survival time (MST), and there was minimal destruction of neural tissue. A low dose (10(3) PFU) of infection resulted in 27% mortality (MST, 11 days), and virus could be detected in the CNS 7 days postinfection (p.i.). Virus was present in the hypogastric lymph nodes and spleens at days 4 to 7 p.i. Histology of the brains revealed neuronal degeneration and inflammation within leptomeninges and brain parenchyma. Inflammatory cell infiltration was detectable in brains from day 4 p.i. onward in the high-dose group and from day 7 p.i. in the low-dose group, with the severity of infiltration increasing over time. The cellular infiltrates in brain consisted predominantly of CD8(+), but not CD4(+), T cells. CD8(+) T cells in the brain and the spleen expressed the activation markers CD69 early and expressed CD25 at later time points. CD8(+) T-cell-deficient mice infected with 10(3) PFU of WNV showed increased mortalities but prolonged MST and early infection of the CNS compared to wild-type mice. Using high doses of virus in CD8-deficient mice leads to increased survival. These results provide evidence that CD8(+) T cells are involved in both recovery and immunopathology in WNV infection.  相似文献   

13.
In vitro infection of bovine cells of many origins with the cytopathogenic bovine viral diarrhea virus (cpBVDV) results in the induction of alpha/beta interferon (IFN-alpha/beta), whereas noncytopathogenic BVDV (ncpBVDV) isolates have been shown not to induce IFN-alpha/beta in vitro. Similarly, cpBVDV induces IFN-alpha/beta in the early bovine fetus, but ncpBVDV does not. However, acute infection of naive cattle with ncpBVDV results in IFN-alpha/beta production. In this study, we identified and characterized a minor population of cells, present in lymph nodes that produce IFN-alpha in response to ncpBVDV. These cells expressed the myeloid markers CD14, CD11b, and CD172a but did not express CD4 and CD45RB. We also established that these cells produced IFN-alpha in the absence of detectable productive infection.  相似文献   

14.
The low precursor frequency of individual virus-specific CD8(+) T cells in a naive host makes the early events of CD8(+) T cell activation, proliferation, and differentiation in response to viral infection a challenge to identify. We have therefore examined the response of naive CD8(+) T cells to pulmonary influenza virus infection with a murine adoptive transfer model using hemagglutinin-specific TCR transgenic CD8(+) T cells. Initial activation of CD8(+) T cells occurs during the first 3 days postinfection exclusively within the draining lymph nodes. Acquisition of CTL effector functions, including effector cytokine and granule-associated protease expression, occurs in the draining lymph nodes and differentially correlates with cell division. Division of activated CD8(+) T cells within the draining lymph nodes occurs in an asynchronous manner between days 3 and 4 postinfection. Despite the presence of Ag for several days within the draining lymph nodes, dividing T cells do not appear to maintain contact with residual Ag. After multiple cell divisions, CD8(+) T cells exit the draining lymph nodes and migrate to the infected lung. Activated CD8(+) T cells also disseminate throughout lymphoid tissue including the spleen and distal lymph nodes following their emigration from draining lymph nodes. These results demonstrate an important role for draining lymph nodes in orchestrating T cell responses during a local infection of a discrete organ to generate effector CD8(+) T cells capable of responding to infection and seeding peripheral lymphoid tissues.  相似文献   

15.
The emergence of West Nile virus (WNV) in the Western Hemisphere is marked by the spread of pathogenic lineage I strains, which differ from typically avirulent lineage II strains. To begin to understand the virus-host interactions that may influence the phenotypic properties of divergent lineage I and II viruses, we compared the genetic, pathogenic, and alpha/beta interferon (IFN-alpha/beta)-regulatory properties of a lineage II isolate from Madagascar (MAD78) with those of a new lineage I isolate from Texas (TX02). Full genome sequence analysis revealed that MAD78 clustered, albeit distantly, with other lineage II strains, while TX02 clustered with emergent North American isolates, more specifically with other Texas strains. Compared to TX02, MAD78 replicated at low levels in cultured human cells, was highly sensitive to the antiviral actions of IFN in vitro, and demonstrated a completely avirulent phenotype in wild-type mice. In contrast to TX02 and other pathogenic forms of WNV, MAD78 was defective in its ability to disrupt IFN-induced JAK-STAT signaling, including the activation of Tyk2 and downstream phosphorylation and nuclear translocation of STAT1 and STAT2. However, replication of MAD78 was rescued in cells with a nonfunctional IFN-alpha/beta receptor (IFNAR). Consistent with this finding, the virulence of MAD78 was unmasked upon infection of mice lacking IFNAR. Thus, control of the innate host response and IFN actions is a key feature of WNV pathogenesis and replication fitness.  相似文献   

16.
West Nile virus (WNV) causes a severe central nervous system (CNS) infection in humans, primarily in the elderly and immunocompromised. Prior studies have established an essential protective role of several innate immune response elements, including alpha/beta interferon (IFN-alpha/beta), immunoglobulin M, gammadelta T cells, and complement against WNV infection. In this study, we demonstrate that a lack of IFN-gamma production or signaling results in increased vulnerability to lethal WNV infection by a subcutaneous route in mice, with a rise in mortality from 30% (wild-type mice) to 90% (IFN-gamma(-/-) or IFN-gammaR(-/-) mice) and a decrease in the average survival time. This survival pattern in IFN-gamma(-/-) and IFN-gammaR(-/-) mice correlated with higher viremia and greater viral replication in lymphoid tissues. The increase in peripheral infection led to early CNS seeding since infectious WNV was detected several days earlier in the brains and spinal cords of IFN-gamma(-/-) or IFN-gammaR(-/-) mice. Bone marrow reconstitution experiments showed that gammadelta T cells require IFN-gamma to limit dissemination by WNV. Moreover, treatment of primary dendritic cells with IFN-gamma reduced WNV production by 130-fold. Collectively, our experiments suggest that the dominant protective role of IFN-gamma against WNV is antiviral in nature, occurs in peripheral lymphoid tissues, and prevents viral dissemination to the CNS.  相似文献   

17.
We have used fluorescent latex beads, with or without covalently conjugated OVA, to facilitate study of Ag trafficking in the mouse lung and draining peribronchial lymph node (LN). At 6 h, and up to 48 h after intranasal administration, beads were observed as intracellular clusters in the tissue parenchyma. Flow cytometry of bead-positive (bead(+)) cells from the bronchoalveolar lavage demonstrated that a majority of these cells are CD11c(+), F4/80(+), and CD11b(-). Furthermore, fluorescent microscopy confirmed that a major subset of bead(+) cells in the lung tissue was also CD11c(+). In the draining peribronchial LNs, small numbers of beads were present in the subcapsular sinus as early as 6 h after inhalation. By 12 h and beyond, bead(+) cells had localized exclusively to the LN T zone. OVA-conjugated latex beads, in addition to stimulating brisk proliferation of naive, OVA-specific DO11.10 transgenic T cells in vitro, could also recruit OVA-specific T cells in vivo. In some cases, bead(+) APCs and CD4(+) Th1 cells were found adjacently localized in the lung tissue 6 h after airway challenge. Thus, interactions of bead(+) APCs with Ag-specific CD4(+) T cells occurred earlier in the peripheral airways than these same interactions occurred in the draining peribronchial LN. Lastly, after adoptive transfer, in vitro differentiated Th1 cells accumulated at peripheral sites in the lung tissue and airways before Ag challenge and therefore were ideally positioned to influence subsequent immune reactions of the airway.  相似文献   

18.
Infection by the human immunodeficiency virus (HIV) is characterized by functional impairment and chronic activation of T lymphocytes, the causes of which are largely unexplained. We cultured peripheral blood mononuclear cells (PBMC) from HIV-uninfected donors in the presence or absence of HIV. HIV exposure increased expression of the activation markers CD69 and CD38 on CD4 and CD8 T cells. IFN-alpha/beta, produced by HIV-activated plasmacytoid dendritic cells (pDC), was necessary and sufficient for CD69 and CD38 upregulation, as the HIV-induced effect was inhibited by blockade of IFN-alpha/beta receptor and mimicked by recombinant IFN-alpha/beta. T cells from HIV-exposed PBMC showed reduced proliferation after T cell receptor stimulation, partially prevented by 1-methyl tryptophan, a competitive inhibitor of the immunesuppressive enzyme indoleamine (2,3)-dioxygenase (IDO), expressed by HIV-activated pDC. HIV-induced IDO inhibited CD4 T cell proliferation by cell cycle arrest in G1/S, and prevented CD8 T cell from entering the cell cycle by downmodulating the costimulatory receptor CD28. Finally, the expression of CHOP, a marker of the stress response activated by IDO, was upregulated by HIV in T cells in vitro and is increased in T cells from HIV-infected patients. Our data provide an in vitro model for HIV-induced T cell dysregulation and support the hypothesis that activation of pDC concomitantly contribute to phenotypic T cell activation and inhibition of T cell proliferative capacity during HIV infection.  相似文献   

19.
Studies with mice lacking the common plasma membrane receptor for type I interferon (IFN-αβR(-)(/)(-)) have revealed that IFN signaling restricts tropism, dissemination, and lethality after infection with West Nile virus (WNV) or several other pathogenic viruses. However, the specific functions of individual IFN subtypes remain uncertain. Here, using IFN-β(-)(/)(-) mice, we defined the antiviral and immunomodulatory function of this IFN subtype in restricting viral infection. IFN-β(-)(/)(-) mice were more vulnerable to WNV infection than wild-type mice, succumbing more quickly and with greater overall mortality, although the phenotype was less severe than that of IFN-αβR(-)(/)(-) mice. The increased susceptibility of IFN-β(-)(/)(-) mice was accompanied by enhanced viral replication in different tissues. Consistent with a direct role for IFN-β in control of WNV replication, viral titers in ex vivo cultures of macrophages, dendritic cells, fibroblasts, and cerebellar granule cell neurons, but not cortical neurons, from IFN-β(-)(/)(-) mice were greater than in wild-type cells. Although detailed immunological analysis revealed no major deficits in the quality or quantity of WNV-specific antibodies or CD8(+) T cells, we observed an altered CD4(+) CD25(+) FoxP3(+) regulatory T cell response, with greater numbers after infection. Collectively, these results suggest that IFN-β controls WNV pathogenesis by restricting infection in key cell types and by modulating T cell regulatory networks.  相似文献   

20.
CD4(+) T cells directly participate in bacterial clearance through secretion of proinflammatory cytokines. Although viral clearance relies heavily on CD8(+) T cell functions, we sought to determine whether human CD4(+) T cells could also directly influence viral clearance through cytokine secretion. We found that IFN-gamma and TNF-alpha, secreted by IL-12-polarized Th1 cells, displayed potent antiviral effects against a variety of viruses. IFN-gamma and TNF-alpha acted directly to inhibit hepatitis C virus replication in an in vitro replicon system, and neutralization of both cytokines was required to block the antiviral activity that was secreted by Th1 cells. IFN-gamma and TNF-alpha also exerted antiviral effects against vesicular stomatitis virus infection, but in this case, functional type I IFN receptor activity was required. Thus, in cases of vesicular stomatitis virus infection, the combination of IFN-gamma and TNF-alpha secreted by human Th1 cells acted indirectly through the IFN-alpha/beta receptor. These results highlight the importance of CD4(+) T cells in directly regulating antiviral responses through proinflammatory cytokines acting in both a direct and indirect manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号