首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mandibular cross sections of Pan, Pongo, Gorilla, Homo, and two fossil specimens of Paranthropus were examined by computed tomography (CT) to determine the biomechanical properties of the hominoid mandibular corpus. Images obtained by CT reveal that while the fossil hominids do not differ significantly from extant hominoids in the relative contribution of compact bone to total subperiosteal area, the shape of the Paranthropus corpora indicates that the mechanical design of the robust australopithecine mandible is fundamentally distinct from that of modern hominoids in terms of its ability to resist transverse bending and torsion. It is also apparent that, among the modern hominoids, interspecific and sexual differences in corpus shape are not significant from a biomechanical perspective. While ellipse models have been used previously to describe the size, shape, and subsequent biomechanical properties of the corpus, the present study shows that such models do not predict the biomechanical properties of corpus cross-sectional geometry in an accurate or reliable manner. The traditional "robusticity" index of the mandibular corpus is of limited utility for biomechanical interpretations. The relationship of compact bone distribution in the corpus to dimensions such as mandibular length and arch width may provide a more functionally meaningful definition of mandibular robusticity.  相似文献   

2.
Cross-sectional geometric properties of the postcanine mandibular corpus are determined for the only known specimen of Otavipithecus namibiensis, a middle Miocene hominoid from southern Africa. It is shown that Otavipithecus is unique in that several important mechanical properties of its mandible, including maximum and minimum moments of inertia and distribution of cortical bone, differ from patterns seen in both extant hominoids and the early hominids Australopithecus africanus and Australopithecus (Paranthropus) robustus. This is particularly apparent in the mechanical design of the posterior portion of the mandibular corpus for resisting increased torsional and transverse bending moments. Cortical index values at the level of M2 also reveal that both Otavipithecus and A. africanus are similarly designed to resist increased masticatory loads with relatively less cortical bone area, a highly efficient mechanical design. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Dental tissues provide important insights into aspects of hominid palaeobiology that are otherwise difficult to obtain from studies of the bony skeleton. Tooth enamel is formed by ameloblasts, which demonstrate daily secretory rhythms developing tissue-specific structures known as cross striations, and longer period markings called striae of Retzius. These enamel features were studied in the molars of two well known South African hominid species, Australopithecus africanus and Paranthropus robustus. Using newly developed portable confocal microscopy, we have obtained cross striation periodicities (number of cross striations between adjacent striae) for the largest sample of hominid teeth reported to date. These data indicate a mean periodicity of seven days in these small-bodied hominids. Important differences were observed in the inferred mechanisms of enamel development between these taxa. Ameloblasts maintain high rates of differentiation throughout cervical enamel development in P. robustus but not in A. africanus. In our sample, there were fewer lateral striae of Retzius in P. robustus than in A. africanus. In a molar of P. robustus, lateral enamel formed in a much shorter time than cuspal enamel, and the opposite was observed in two molars of A. africanus. In spite of the greater occlusal area and enamel thickness of the molars of both fossil species compared with modern humans, the total crown formation time of these three fossil molars was shorter than the corresponding tooth type in modern humans. Our results provide support for previous conclusions that molar crown formation time was short in Plio-Pleistocene hominids, and strongly suggest the presence of different mechanisms of amelogenesis, and thus tooth development, in these taxa.  相似文献   

4.
In comparative studies of masticatory function and mandibular biomechanics, the mediolateral dimension of the postcanine corpus (corpus breadth) is commonly utilized as a measure of torsional stiffness from which relative torsional strength is inferred. The use of this dimension entails certain assumptions about corpus shape and cortical bone distribution that are invalid. When corpus breadth is related to an appropriate, empirically supported measure of torsional strength, it is revealed that this dimension has limited utility for inference of biomechanical competence under torsion. The use of linear dimensions to infer structural adaptations to specific loading regimes is problematic given that bone tissue is not optimally deployed to minimize strain levels arising from isolated loads. For the inference of the masticatory biomechanical environment, the more reasonable approach is to consider overall size of the corpus (i.e., cross-sectional area) for inference of intra- and inter-specific differences in masticatory forces.  相似文献   

5.
The influence of hard-object feeding on the size and shape of the mandibular corpus was investigated through a comparative biomechanical analysis of the jaws of adult femaleCebus apella andCebus capucinus. Computed tomography (CT) was used to discern the amount and distribution of cortical bone at M2 and symphyseal cross sections. From these data, the biomechanical properties of the mandibular corpus were determined to assess the structural rigidity of the jaw with respect to the bending, torsional, and shear stresses that occur during mastication and incision. The mandibles ofC. apella are demonstrably more robust than those ofC. capucinus in terms of biomechanical rigidity; differences in corporeal size rather than shape largely account for the enhanced robusticity in the sample ofC. apella. The differences that separate the two taxa probably represent a structural response to the mechanical demands of durophagy inC. apella. These observations suggest that specialization on a diet of hard objects may be expected to result in an overall hypertrophy of bony contours throughout the mandibular corpus.  相似文献   

6.
Body mass estimates for fossil hominin taxa can be obtained from suitable postcranial and cranial variables. However, the nature of the taphonomic processes that winnow the mammalian fossil record are such that these data are usually only available for the minority of the specimens that comprise the hypodigm of a species. This study has investigated the link between species mean body mass and the height and width of the mandibular corpus in a core sample of 23 species of extant simians. The slopes of the least-squares regressions for the whole sample and for the hominoid subset are similar. However, the intercepts differ so that for a given body mass, a hominoid will generally have a smaller mandible than a generalized simian. The same mandibular measurements were taken on 75 early hominin mandibles assigned to eight species groups. When mandibular corpus height- and width-derived estimates of body mass for the fossil taxa were compared with available postcranial and cranial-derived body mass estimates, the eight early hominin species sort into four groups. The first, which includes A. afarensis and A. africanus, has mandibles which follow a “generalized simian” scaling relationship. The second group, which comprises the two “robust” australopithecine species, P. boisei and P. robustus, has mandibles which scale with body mass as if they are “super-simians,” for they have substantially larger mandibles than a simian with the same body mass. The two “early Homo” species, H. habilis sensu stricto and H. rudolfensis, make up the third group. It has mandibular scaling relationships that are intermediate between that of the comparative simian sample and that of the hominoid subsample. The last of the four groups comprises H. ergaster and H. erectus; their mandibles scale with body mass as if they were hominoids, so that of the four groups they have the smallest mandibles per unit body mass. These results are related to comparable information about relative tooth size. Their relevance for attempts to interpret the dietary adaptations of early hominins are explored. Am J Phys Anthropol 105:523–538, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
Anthropologists have often used mandibular torsional properties to make inferences about primate dietary adaptations. Most of the methods employed are based on assumptions related to periodontal and alveolar properties. This study uses the finite element method to evaluate some of these assumptions with a cross-section through the third molar of a gorilla. Results indicate that the properties of alveolar bone play an important role in determining the strain field. In comparison, the exact stiffness values of the periodontal ligaments seem to have a much smaller impact. Replacing the dental roots and periodontal ligaments with alveolar bone, however, has a significant influence on the strain field. It underestimates the maximum shear strain by about 28% along its periosteal aspect when alveoli are modeled as cortical bone. It overestimates the strain by a smaller amount when alveoli are modeled as trabecular bone.This study supports the assumption that primate mandibles behave like a closed-section under torsion under the limiting condition that the alveolar bone stiffness is more than half of the value of cortical bone; alveolar bone can then be modeled as cortical bone with a minimal loss of accuracy. In addition, this study suggests that the minimum cortical thickness should be considered for torsional strength. Finally, modeling accuracy can be significantly increased if both dental and periodontal structures can be realistically incorporated into mandibular biomechanical models. However, this may not be always feasible in studies of fossil mandibles. This is due mainly to the difficulties involved in estimating alveolar bone densities and in distinguishing boundaries between cortical bone, alveolar bone, periodontal ligaments, and dental roots in fossil specimens.  相似文献   

8.
Local variation in cortical bone thickness in the postcanine mandibular corpus appears to be stereotypical among anthropoids. Specifically, at sections under the molars, lingually situated cortical bone is typically thinner than that along the lateral aspect. This pattern applies despite phylogenetic, dietary, and allometric differences among the anthropoids sampled to date. Demes et al. (Food Acquisition and Processing in Primates [1984] New York: Plenum Press, p. 369-390) employed a theoretical analysis of mastication in Gorilla and Homo to argue that this pattern could be explained with reference to biomechanical stresses. Specifically, they proposed that the combined effects of torsion and direct shear on the working-side corpus create a condition in which net stresses and strains are reduced along the lingual cortical plate. Demonstration of this effect would suggest a functional linkage between localized differences in bone mass and strain gradients in the facial skeleton. We conducted an empirical evaluation of the effects of the combined loads of torsion and direct shear in vitro on a sample of formalin-fixed human mandibles. Rosette strain gages were affixed to the lateral and medial aspects of the corpus in each specimen, and surface strains were recorded separately under controlled torsional and occlusal loads, and under simultaneous application of these loads. The hypothesis that lingual strains are reduced under combined twisting and occlusal loads was generally supported; however, we observed reduction in surface strains at some sites along the lateral aspect of the corpus under these combined loads as well. These unexpected findings are attributable to unanticipated loading conditions imposed by occlusal forces, which result from sources of stress in addition to direct shear. These experiments provide provisional support for the hypothesis that superposed sources of bone strain produce large strain gradients between buccal and lingual aspects of the mandibular corpus, and that local variation in bone mass may be associated with these gradients.  相似文献   

9.
Experimental studies and mathematical models are disparate approaches for inferring the stress and strain environment in mammalian jaws. Experimental designs offer accurate, although limited, characterization of biomechanical behavior, while mathematical approaches (finite element modeling in particular) offer unparalleled precision in depiction of strain magnitudes, directions, and gradients throughout the mandible. Because the empirical (experimental) and theoretical (mathematical) perspectives differ in their initial assumptions and their proximate goals, the two methods can yield divergent conclusions about how masticatory stresses are distributed in the dentary. These different sources of inference may, therefore, tangibly influence subsequent biological interpretation. In vitro observation of bone strain in primate mandibles under controlled loading conditions offers a test of finite element model predictions. Two issues which have been addressed by both finite element models and experimental approaches are: (1) the distribution of torsional shear strains in anthropoid jaws and (2) the dissipation of bite forces in the human alveolar process. Not surprisingly, the experimental data and mathematical models agree on some issues, but on others exhibit discordance. Achieving congruence between these methods is critical if the nature of the relationship of masticatory stress to mandibular form is to be intelligently assessed. A case study of functional/mechanical significance of gnathic morphology in the hominid genus Paranthropus offers insight into the potential benefit of combining theoretical and experimental approaches. Certain finite element analyses claim to have identified a biomechanical problem unrecognized in previous comparative work, which, in essence, is that the enlarged transverse dimensions of the postcanine corpus may have a less important role in resisting torsional stresses than previously thought. Experimental data have identified subperiosteal cortical thinning as a culprit in diminishing the role of cross-sectional geometry in conditioning the strain environment. These observations raise questions concerning the biomechanical significance of mandibular form in early hominids, fueling persistent arguments over whether gnathic morphology can be related to dietary specialization in the "robust" australopithecines. Nonmechanical explanations (e.g., tooth size or body size) for Paranthropus mandibular dimensions, however, are not compelling as competing hypotheses. Both theoretical and experimental models are in need of refinement before it is possible to conclude that the jaws of the "robust" australopithecines are not functionally linked to elevated masticatory loads.  相似文献   

10.
According to published accounts, an enlarged occipital-marginal sinus system is absent in Australopithecus africanus, although it occurs in high frequencies in A. robustus, A. Boisei, and Hadar hominids commonly designated A. afarensis. In this report, we describe, for the first time, an enlarged occipital-marginal sinus system on the endocranial cast of the Taung specimen, which is part of the holotype of A. africanus. In addition, well-developed right transverse and sigmoid sinuses are represented on the Taung endocast. The various components of the dual venous sinus system on the Taung endocast are measured, and the system is compared to those of other fossil hominids. The compresence of a lateral sinus system and enlarged occipital and marginal sinuses occurs in two Hadar specimens, 2 specimens of A. robustus crassidens, 1 A. boisei specimen, and several early H. sapiens crania. Hence, the presence of strong transverse sinus impressions in a fragmentary specimen may not be interpreted as an indication that an enlarged occipital-marginal sinus system was not present in the original specimen. Conversely, lack of transverse sinus grooves in a fragmentary specimen does provide indirect evidence than an enlarged occipital-marginal system would probably have been present in the whole specimen, as in 2 specimens of A. boisei. Including Taung, enlarged occipital and marginal sinuses occur in 1 out of 5, or 20%, of A. africanus specimens. This figure compares well with the range of mean frequencies in modern human cranial series (1.5 to 28%), but is much lower than are the frequencies for A. boisei, A. robustus, and the Hadar hominids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
This study aims to reassess the claim that the eruption sequence of the permanent incisor and first permanent molar teeth of Australopithecus (Paranthropus) robustus is identical with that in modern Homo sapiens. Eight fossil hominid mandibles of equivalent dental developmental age were chosen for comparative study. Emphasis has been placed upon the comparative timing of events within the growth period rather than eruption sequence alone. The results of this study indicate that Homo sapiens and Australopithecus (Paranthropus) robustus share the same pattern of permanent molar and incisor eruption and that this is significantly different from the pattern of eruption shared by the great apes, Australopithecus africanus and Australopithecus afarensis.  相似文献   

12.
Cortical bone distribution of the anthropoid mandibular symphysis has been addressed in relation to mechanical stress generated by mastication. To examine whether or not bone mass and distribution patterns of the human mandibular symphysis could be interpreted as an example of functional adaptation, we compared the skeletal growth series of two populations, prehistoric Jomon, considered to represent a "robust" mandibular morphology associated with a presumed heavier masticatory load, and modern Japanese. Results showed that the adult Jomon symphysis possessed significantly greater bone mass and thicker cortical bone compared to the modern Japanese condition. However, the second moments of area did not differ significantly between the two, indicating comparable rigidity against bending. Furthermore, the Jomon mandibles of the infant to juvenile stages exhibited most of the adult characteristics, in both bone mass/distribution of the symphysis and in mandibular corpus/ramus morphologies. The present study also demonstrated the presence of a growth pattern of symphyseal cortical thickness, common to both the Jomon and the modern Japanese series. In both populations, subsequent to deciduous molar occlusion, cortical bone tends to be thickest at the inferolingual symphysis, at the location where the highest tensile stresses presumably occur during mastication. These findings suggest that the "robust" characteristics of the Jomon mandible are initially manifested early in development, and that the effect of mechanical stimulus to bone mass formation in the human symphysis is largely confined to a regulatory role during growth modeling.  相似文献   

13.
The mechanical behavior of mammalian mandibles is well‐studied, but a comprehensive biomechanical analysis (incorporating detailed muscle architecture, accurate material properties, and three‐dimensional mechanical behavior) of an extant archosaur mandible has never been carried out. This makes it unclear how closely models of extant and extinct archosaur mandibles reflect reality and prevents comparisons of structure–function relationships in mammalian and archosaur mandibles. We tested hypotheses regarding the mechanical behavior of the mandible of Alligator mississippiensis by analyzing reaction forces and bending, shear, and torsional stress regimes in six models of varying complexity. Models included free body analysis using basic lever arm mechanics, 2D and 3D beam models, and three high‐resolution finite element models of the Alligator mandible, incorporating, respectively, isotropic bone without sutures, anisotropic bone with sutures, and anisotropic bone with sutures and contact between the mandible and the pterygoid flange. Compared with the beam models, the Alligator finite element models exhibited less spatial variability in dorsoventral bending and sagittal shear stress, as well as lower peak values for these stresses, suggesting that Alligator mandibular morphology is in part designed to reduce these stresses during biting. However, the Alligator models exhibited greater variability in the distribution of mediolateral and torsional stresses than the beam models. Incorporating anisotropic bone material properties and sutures into the model reduced dorsoventral and torsional stresses within the mandible, but led to elevated mediolateral stresses. These mediolateral stresses were mitigated by the addition of a pterygoid‐mandibular contact, suggesting important contributions from, and trade‐offs between, material properties and external constraints in Alligator mandible design. Our results suggest that beam modeling does not accurately represent the mechanical behavior of the Alligator mandible, including important performance metrics such as magnitude and orientation of reaction forces, and mediolateral bending and torsional stress distributions. J.Morphol. 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

14.
The discovery of Australopithecus afarensis has led to new interpretations of hominid phylogeny, some of which reject A. africanus as an ancestor of Homo. Analysis of buccolingual tooth crown dimensions in australopithecines and Homo species by Johanson and White (Science 202:321-330, 1979) revealed that the South African gracile australopithecines are intermediate in size between Laetoli/hadar hominids and South African robust hominids. Homo, on the other hand, displays dimensions similar to those of A. afarensis and smaller than those of other australopithecines. These authors conclude, therefore, that A. africanus is derived in the direction of A. robustus and is not an ancestor of the Homo clade. However, there is a considerable time gap (ca. 800,000 years) between the Laetoli/Hadar specimens and the earliest Homo specimens; "gracile" hominids from Omo fit into this chronological gap and are from the same geographic area. Because the early specimens at Omo have been designated A. afarensis and the later specimens classified as Homo habilis, Omo offers a unique opportunity to test hypotheses concerning hominid evolution, especially regarding the phylogenetic status of A. africanus. Comparisons of mean cheek teeth breadths disclosed the significant (P less than or equal to 0.05) differences between the Omo sample and the Laetoli/Hadar fossils (P4, M2, and M3), the Homo fossils (P3, P4, M1, M2, and M1), and A. africanus (M3). Of the several possible interpretations of these data, it appears that the high degree of similarity between the Omo sample and the South African gracile australopithecine material warrants considering the two as geographical variants of A. africanus. The geographic, chronologic, and metric attributes of the Omo sample argue for its lineal affinity with A. afarensis and Homo. In conclusion, a consideration of hominid postcanine dental metrics provides no basis for removing A. africanus from the ancestry of the Homo lineage.  相似文献   

15.
1964年在陕西公王岭发现的蓝田人头骨的形态比周口店直立人和印度尼西亚爪哇直立人原始,其厚重的骨壁及较小的脑量,落入了早期人属成员的变异范围。最新测年结果将蓝田人的生存年代从原先普遍接受的距今115万年提早到大约163万年前,接近能人和南方古猿生存年代变异范围的下限,蓝田人是迄今为止我国发现的有确定年代数据的最早的古人类化石。本文采用高分辨率CT技术对蓝田人的颞骨岩部进行了扫描,对骨性内耳迷路进行了3D虚拟复原,通过与和县直立人、欧洲古老型智人、早期人属成员、南方古猿非洲种、粗壮傍人和现代人内耳迷路的21项测量项目的对比和分析,结果显示蓝田人内耳迷路的测量数据与南方古猿非洲种最接近,其次为现代人和欧洲古老型智人,而与早期人属成员和粗壮傍人相差较大。主成分分析结果显示,蓝田人内耳迷路与早期人属成员、欧洲古老型智人、南方古猿非洲种及现代人都有重叠区域,距离最近的是南方古猿非洲种Sts 5,其次为和县直立人和南方古猿非洲种Sts 19,而与粗壮傍人距离较远。本文研究提供了中更新世中国古人类内耳迷路的形态数据,为进一步探讨蓝田人体质特征演化上的意义提供了参考资料。  相似文献   

16.
Because of their biomechanical significance, cross-sectional geometric properties of long bone diaphyses (areas, second moments of area) have been increasingly used in a number of form/function studies, e.g., to reconstruct body mass or locomotor mode in fossil primates or to elucidate allometric scaling relationships among extant taxa. In the present study, we test whether these biomechanical section properties can be adequately estimated using biplanar radiographs, as compared to calculations of the same properties from computer digitization of cross-sectional images. We are particularly interested in smaller animals, since the limb bone cortices of these animals may not be resolvable using other alternative noninvasive techniques (computed tomography). The test sample includes limb bones of small (25–5,000 g) relatively generalized quadrupedal mammals—mice, six species of squirrels, and Macaca fascicularis. Results indicate that biplanar radiographs are reasonable substitutes for digitized cross-sectional images for deriving areas and second moments of area of midshaft femora and humeri of mammals in this size range. Potential application to a variety of questions relating to mechanical loading patterns in such animals is diverse. © 1993 Wiley-Liss, Inc.  相似文献   

17.
The extinct great ape Gigantopithecus blacki from the middle Pleistocene of China and Vietnam is known only from dental and mandibular remains, and its dietary specializations remain contentious. Here, for the first time, we describe the root morphology in G. blacki using computed tomography and three-dimensional image processing. We quantify the tooth root lengths and surface areas of the female G. blacki mandible No. 1 from the Liucheng Cave and compare it to a sample of extant great apes and humans, as well as the giant panda (Ailuropoda melanoleuca) and the American black bear (Ursus americanus). The results show that, in G. blacki, the pattern of mandibular root numbers-particularly that of the premolars-corresponds with that of Gorilla gorilla, Pan troglodytes, and Pongo pygmaeus. However, G. blacki can be distinguished from the extant hominids by having relatively higher values for postcanine root length and surface area, both absolutely and relative to mandibular size (except for premolar root lengths of humans). The relatively large postcanine root surface areas, which are most similar to A. melanoleuca, suggest that the dentition of G. blacki was adapted to sustaining relatively large occlusal forces needed to fracture mechanically resistant foods such as bamboo.  相似文献   

18.
运用扫描电子显微镜,对4枚禄丰古猿牙齿(恒齿)的釉质结构进行了观察研究。发现:禄丰古猿牙齿釉质表面有明显的釉面横纹结构;釉面横纹的密度向牙颈方向逐渐增大;观察记数了4枚牙齿的釉面横纹数,进而推算出牙冠的形成时间和年龄。与化石人科成员、现代人及现生大猿比较,禄丰古猿牙冠发育模式及时间,与南方古猿纤细种比较接近或相似,明显长于南方古猿粗壮种,有别于现生大猿。  相似文献   

19.
It has been suggested that patterns of craniodental variation in living hominids (Gorilla, Homo, Pan, and Pongo) may be useful for evaluating variation in fossil hominid assemblages. Using this approach, a fossil sample exhibiting a pattern of variation that deviates from one shared among living taxa would be regarded as taxonomically heterogeneous. Here we examine patterns of tooth crown size and shape variation in great apes and humans to determine 1) if these taxa share a pattern of dental variation, and 2) if such a pattern can reliably discriminate between samples that contain single species and those that contain multiple species. We use parametric and nonparametric correlation methods to establish the degree of pattern similarity among taxa, and randomization tests to assess their statistical significance. The results of this study show that extant hominids do not share a pattern of dental size variation, and thus these taxa cannot be used to generate expectations for patterns of size variation in fossil hominid species. The hominines (Gorilla, Homo, and Pan) do share a pattern of shape variation in the mandibular dentition; however, Pongo is distinct, and thus it is unclear which, if either, pattern should be expected in fossil hominids. Moreover, in this case, most combined-species samples exhibit patterns of shape variation that are similar to those for single hominine species samples. Thus, although a common pattern of shape variation is present in the mandibular dentition, it is not useful for recognizing taxonomically mixed paleontological samples.  相似文献   

20.
The diets of Australopithecus africanus and Paranthropus robustus are hypothesized to have included C4 plants, such as tropical grasses and sedges, or the tissues of animals which themselves consumed C4 plants. Yet inferences based on the craniodental morphology of A. africanus and P. robustus indicate a seasonal diet governed by hard, brittle foods. Such mechanical characteristics are incompatible with a diet of grasses or uncooked meat, which are too tough for efficient mastication by flat, low-cusped molars. This discrepancy, termed the C4 conundrum, has led to the speculation that C4 plant underground storage organs (USOs) were a source of nutrition for hominin species. We test this hypothesis by examining the isotopic ecology of African mole rats, which consume USOs extensively. We measured delta18O and delta13C of enamel and bone apatite from fossil and modern species distributed across a range of habitats. We show that delta18O values vary little and that delta13C values vary along the C3 to C4/CAM-vegetative axis. Relatively high delta13C values exist in modern Cryptomys hottentotus natalensis and Cryptomys spp. recovered from hominin-bearing deposits. These values overlap those reported for A. africanus and P. robustus and we conclude that the USO hypothesis for hominin diets retains certain plausibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号