首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Physical and biological properties of highly oncogenic human adenovirus type 12 were compared with a low oncogenic mutant (cyt mutant). Parental and cyt mutant virions had very similar density and DNA size. However, the parental strain virion preparations contained a much higher proportion of defective virions (capable of cell killing, but not able to induce T- or V-antigen) than cyt mutant stock. It was also found that cyt mutant had a reduced virus yield in several human cell lines compared with the parental strain.  相似文献   

2.
The experiments described in this paper were part of an attempt to determine the mechanisms involved in the isomerization of the pseudorabies virus genome. To this end, [(14)C]thymidine-labeled parental virus DNA that was transferred to progeny virions produced by cells incubated in medium containing bromodeoxy-uridine was analyzed in neutral and alkaline CsCl density gradients. The buoyant density of the (14)C-labeled DNA indicated that the parental DNA strands had retained their integrity and had not undergone breakage and reunion with progeny DNA strands; neither massive intermolecular nor intramolecular recombination had occurred after replication of the DNA. Whereas breakage and reunion between parental and progeny virus DNA strands were not detectable, these processes were observed between differentially density-labeled parental DNAs. Furthermore, the frequency of recombination between progeny DNAs accumulating in the cells was low. These results indicate that in pseudorabies virus-infected rabbit kidney cells recombination occurs mainly between parental genomes and precedes DNA replication. An analysis of the kinetics of appearance of recombinants between pairwise combinations of temperature-sensitive mutants also indicated that recombination is an early event. The ratio between the number of recombinant virions and the number of temperature-sensitive mutant virions produced by the cells remained the same throughout infection. Since the relative amounts of viral DNAs synthesized early and late during the infective process that were integrated into virions were approximately the same, it appears that late viral DNA did not experience an increased number of recombinational events compared with early viral DNA. These results, which reinforce the conclusion reached from the results of the analysis of the behavior of the parental DNA molecules in density shift experiments, indicate that recombination is an early event.  相似文献   

3.
Varicella-zoster virus (VZV) open reading frame 17 (ORF17) is homologous to herpes simplex virus (HSV) UL41, which encodes the viral host shutoff protein (vhs). HSV vhs induces degradation of mRNA and rapid shutoff of host protein synthesis. An antibody to ORF17 protein detected a 46-kDa protein in VZV-infected cells. While HSV vhs is located in virions, VZV ORF17 protein was not detectable in virions. ORF17 protein induced RNA cleavage, but to a substantially lesser extent than HSV-1 vhs. Expression of ORF17 protein did not inhibit expression from a beta-galactosidase reporter plasmid, while HSV type 1 vhs abolished reporter expression. Two VZV ORF17 deletion mutants were constructed to examine the role of ORF17 in virus replication. While the ORF17 VZV mutants grew to peak titers that were similar to those of the parental virus at 33 degrees C, the ORF17 mutants grew to 20- to 35-fold-lower titers than parental virus at 37 degrees C. ORF62 protein was distributed in a different pattern in the nuclei and cytoplasm of cells infected with an ORF17 deletion mutant at 37 degrees C compared to 33 degrees C. Inoculation of cotton rats with the ORF17 deletion mutant resulted in a level of latent infection similar to that produced by inoculation with the parental virus. The importance of ORF17 protein for viral replication at 37 degrees C but not at 33 degrees C suggests that this protein may facilitate the growth of virus in certain tissues in vivo.  相似文献   

4.
5.
6.
7.
Mutations in the IN domain of retroviral DNA may affect multiple steps of the virus life cycle, suggesting that the IN protein may have other functions in addition to its integration function. We previously reported that the human immunodeficiency virus type 1 IN protein is required for efficient viral DNA synthesis and that this function requires specific interaction with other viral components but not enzyme (integration) activity. In this report, we characterized the structure and function of the Moloney murine leukemia virus (MLV) IN protein in viral DNA synthesis. Using an MLV vector containing green fluorescent protein as a sensitive reporter for virus infection, we found that mutations in either the catalytic triad (D184A) or the HHCC motif (H61A) reduced infectivity by approximately 1,000-fold. Mutations that deleted the entire IN (DeltaIN) or 34 C-terminal amino acid residues (Delta34) were more severely defective, with infectivity levels consistently reduced by 10,000-fold. Immunoblot analysis indicated that these mutants were similar to wild-type MLV with respect to virion production and proteolytic processing of the Gag and Pol precursor proteins. Using semiquantitative PCR to analyze viral cDNA synthesis in infected cells, we found the Delta34 and DeltaIN mutants to be markedly impaired while the D184A and H61A mutants synthesized cDNA at levels similar to the wild type. The DNA synthesis defect was rescued by complementing the Delta34 and DeltaIN mutants in trans with either wild-type IN or the D184A mutant IN, provided as a Gag-IN fusion protein. However, the DNA synthesis defect of DeltaIN mutant virions could not be complemented with the Delta34 IN mutant. Taken together, these analyses strongly suggested that the MLV IN protein itself is required for efficient viral DNA synthesis and that this function may be conserved among other retroviruses.  相似文献   

8.
R Renne  M Lagunoff  W Zhong    D Ganem 《Journal of virology》1996,70(11):8151-8154
The genome of a novel human herpesvirus has been detected in specimens of Kaposi's sarcoma (KS) and in several AIDS-related lymphoproliferative disorders. Here we examine the size and genomic conformation of the DNA of this virus (known as KS-associated herpesvirus or human herpesvirus 8) in latently and lytically infected cells and in virions. Pulsed-field gel electrophoresis of viral DNA shows that the viral genome is similar in size to those of other gammaherpesviruses (160 to 170 kb). As with Epstein-Barr virus, KS-associated herpesvirus DNA is stably maintained in latently infected B cells as episomal monomer circles and induction from latency is associated with the selective accumulation of linear genomic forms.  相似文献   

9.
Chromatin isolated from herpes simplex virus type 1-infected baby hamster kidney cells contains a number of tightly associated virus-induced polypeptides. A subset of these proteins bind to immobilized DNA in vitro (Vmw 175, 155, 130, 63, 43, 38/39). Virus-induced polypeptides extractable with acid from infected cell chromatin include Vmw 155, the major capsid protein of herpes simplex virus type 1 virions, and Vmw 63 and 38/39 which are heterogeneous with respect to charge and are phosphorylated. These chromatin preparations, in the presence of deoxynucleoside triphosphates and MgCl2 were capable of synthesizing viral and cell DNA in a reaction which was stimulated by the addition of ATP, riboNTPs and potassium acetate. In vitro synthesized viral DNA co-sedimented with prelabelled parental DNA but the single-stranded product was smaller than parental DNA. Density labelling indicated that extensive synthesis was taking place and all BamHI fragments of viral DNA were represented by the DNA synthesized in vitro.  相似文献   

10.
11.
The vaccinia virus E2L (VACWR058) gene is conserved in all sequenced chordopoxviruses and is predicted to encode an 86-kDa protein with no recognizable functional motifs or nonpoxvirus homologs. Although the region immediately upstream of the open reading frame lacked optimal consensus promoter motifs, expression of the E2 protein occurred after viral DNA replication. Transfection studies, however, indicated that the promoter was weak compared to well-characterized intermediate and late promoters. The E2 protein was present in mature virions purified from infected cells but was more abundant in extracellular enveloped forms. Despite the conservation of the E2L gene in chordopoxviruses, deletion mutants could be isolated from both the WR and IHD-J strains of vaccinia virus. These null mutants produced very small plaques in all cell lines tested, reduced amounts of mature infectious virions, and very low numbers of extracellular virions. Nevertheless, viral protein synthesis appeared qualitatively and quantitatively normal. The defect in extracellular virus formation was corroborated by electron microscopy, which also showed some aberration in the wrapping of virions by cisternal membranes. Extracellular virions that did form, however, were able to induce actin tail formation.  相似文献   

12.
The regulation of membrane formation in bacteriophage PM2 serves as a simple model for changes in membrane structure in eukaryotic cells. Prior to Pseudomonas host lysis, wild-type virions mature to an icosahedral morphology at the inner face of the cytoplasmic membrane. The proliminary charcterization of two temperature-sensitive mutants of PM2 is described. In cells infected at the restrictive temperature with ts 1, an abundance of “empty” virus-size membrane vesicles are seen. Synthesis of DNA is also reduced in ts 1 infected cells. The preponderance of vesicles is not sen in cells infected with wil-type virus or with ts 1 at the permissive temperature. The “empty” appearance of the viral membranes suggests that viral DNA is not encapsulated. The major viral capsid protein (MW 26,000) is located just out side the viral membrane and normallyl sediments with host and virus membranes; insted, large amounts of capsid protein can be precipitated from the supernatant with TCA. Compared to cells infected with wild type virus, cells infected with is 5 at th restrictive temperature produce inside the cell an aboundance of virus-soze membrane vesicles. Taken Together, These results with viral mutants suggest that formation of a viral membrane of the proper size does not require a DNA core around which to form, or an outer scaffolding of coat protein against which to form a spherical bilayer.  相似文献   

13.
The adenovirus type 12 mutants in700 and pm700 carry site-specific mutations within the reading frame encoding the E1B 19-kilodalton protein (19K protein) which prevent the production of the intact 19K protein. In cultures of human A549 cells, these mutants grow just as well as the wild-type virus does, but they display a large-plaque (lp), cytocidal (cyt) phenotype. DNA in these infected cells is not degraded, but at late times in human KB cells infected by the mutants, the mutants display a DNA degradation (deg) phenotype. The transformation phenotype of these mutants is also host range. Although the mutants are defective for transformation of the 3Y1 rat cell line, they transform rat and mouse primary kidney cells in vitro at wild-type efficiency and are capable of inducing tumors in rats. These results support the view that the type 12 E1B 19K protein is not obligatory for oncogenic transformation.  相似文献   

14.
I Mak  S Mak 《Journal of virology》1983,45(3):1107-1117
Several mutants with much reduced oncogenicity (spontaneous mutants H12 cyt 52 and H12 cyt 70 and UV-induced mutants H12 cyt 61, H12 cyt 62, and H12 cyt 68) of the highly oncogenic adenovirus type 12 (Ad12) were studied for their ability to transform primary baby rat kidney cells. Four of the mutants showed much reduced capacity to transform cells in vitro, while H12 cyt 61 transformed cells as efficiently as the wild-type virus. Viral gene expression in several cell lines established from cultures infected by cyt mutants was studied, and it was found that viral sequences belonging to the left 16% of Ad12 were always transcribed. These results suggest that the function of the transformed state is not defective in the cyt mutants studied. Heterotypic complementation studies showed that the defect(s) in a cyt mutant can be corrected by an Ad7 function. Ad5 dl 313, with a deletion between 3.5 and 10.5 map units, transformed rat cells only at high multiplicity. These results suggest that the region E1B of adenoviruses may be required for efficient transformation of rat cells.  相似文献   

15.
Varicella-zoster virus (VZV) encodes at least six glycoproteins. Glycoprotein I (gI), the product of open reading frame 67, is a 58- to 62-kDa glycoprotein found in VZV-infected cells. We constructed two VZV gI deletion mutants. Immunoprecipitation of VZV gE from infected cells indicated that cells infected with VZV deleted for gI expressed a gE that was larger (100 kDa) than that expressed in cells infected with the parental virus (98 kDa). Cell-associated or cell-free VZV deleted for gI grew to lower titers in melanoma cells than did parental VZV. While VZV deleted for gI replicated in other human cells, the mutant virus replicated to very low titers in primary guinea pig and monkey cells and did not replicate in Vero cells. When compared with the parental virus, rescued viruses, in which the gI deletion was restored with a wild-type allele, showed a similarly sized gE and comparable growth patterns in melanoma and Vero cells. VZV deleted for gI entered Vero cells; however, viral DNA synthesis was impaired in these cells. The VZV gI mutant was slightly impaired for adsorption to human cells. Thus, VZV gI is required for replication of the virus in Vero cells, for efficient replication of the virus in nonhuman cells, and for normal processing of gE.  相似文献   

16.
Maturation of viral proteins in cells infected with mutants of vesicular stomatitis virus was studied by surface iodination and cell fractionation. The movement of G, M, and N proteins to the virion bud appeared to be interdependent. Mutations thought to be in G protein prevented its migration to the cell surface, allowed neither M nor N protein to become membrane bound, and blocked formation of viral particles. Mutant G protein appeared not to leave the endoplasmic reticulum at the nonpermissive temperature, but this defect was partially reversible. In cells infected with mutants that caused N protein to be degraded rapidly or prevented its assembly into nucleocapsids, M protein did not bind to membranes and G protein matured to the cell surface, but never entered structures with the density of virions. Mutations causing M protein to be degraded prevented virion formation, and G protein behaved as in cells infected by mutants in N protein. These results are consistent with a model of virion formation involving coalescence of soluble nucleocapsid and soluble M protein with G protein already in the plasma membrane.  相似文献   

17.
  相似文献   

18.
Human lymphoblastoid Raji cells, which do not produce virus, supported replication of Epstein-Barr virus (EBV) upon superinfection. Early antigen, viral capsid antigen, and virions were produced in Raji cells superinfected with EBV. Viral DNA replicated under complete inhibition of host cell DNA synthesis to the extent that a few micrograms of EBV DNA were recovered from 107 superinfected Raji cells, corresponding to 5,000 viral genomes/cell. Homology of the synthesized viral DNA to parental EBV DNA was more than 90%. Virions produced by the Raji cells contained a 55S DNA but failed to induce early antigen, viral capsid antigen, and viral DNA synthesis after a second superinfection of Raji cells.  相似文献   

19.
20.
Non-histone proteins and long-range organization of HeLa interphase DNA   总被引:22,自引:0,他引:22  
We have studied the association of the Sindbis virus glycoproteins in mature virions and infected cells. The glycoproteins were cross-linked with bifunctional amino-reactive reagents (11 Å cross-linking distance), some of which could be subsequently cleaved by reduction. Using monospecific rabbit antisera against each viral envelope glycoprotein it was found that >90% of the cross-linked glycoprotein dimers from intact virions or virions solubilized with Triton X100 prior to cross-linking were heterodimers of E1 and E2. The pattern of cross-linked glycoproteins from intact virions as well as infected cells suggested that three E1-E2 dimers may be associated to form a hexameric subunit. Cross-linking of pulselabeled infected monolayers showed that PE2 was cross-linked to E1 less efficiently than was E2, suggesting that if PE2 and E1 are associated as a complex in infected cells then their conformation with respect to reactive amino groups is distinct from that of the mature virion glycoproteins. ts mutants of Sindbis virus in the complementation groups corresponding to E1 and PE2 fail to cleave PE2 at the non-permissive temperature (40 °C). In monolayers infected with these mutants or a heat-resistant variant of Sindbis virus, the glycoprotein precursors synthesized at the elevated temperature were readily cross-linked into large aggregates, indicating a temperature-sensitive tendency for the proteins to aggregate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号